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Predicting drug side effects by multi-label
learning and ensemble learning
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Abstract

Background: Predicting drug side effects is an important topic in the drug discovery. Although several machine
learning methods have been proposed to predict side effects, there is still space for improvements. Firstly, the side
effect prediction is a multi-label learning task, and we can adopt the multi-label learning techniques for it. Secondly,
drug-related features are associated with side effects, and feature dimensions have specific biological meanings.
Recognizing critical dimensions and reducing irrelevant dimensions may help to reveal the causes of side effects.

Methods: In this paper, we propose a novel method ‘feature selection-based multi-label k-nearest neighbor
method’ (FS-MLKNN), which can simultaneously determine critical feature dimensions and construct high-accuracy
multi-label prediction models.

Results: Computational experiments demonstrate that FS-MLKNN leads to good performances as well as
explainable results. To achieve better performances, we further develop the ensemble learning model by
integrating individual feature-based FS-MLKNN models. When compared with other state-of-the-art methods, the
ensemble method produces better performances on benchmark datasets.

Conclusions: In conclusion, FS-MLKNN and the ensemble method are promising tools for the side effect
prediction. The source code and datasets are available in the Additional file 1.
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Background
Drugs can help to treat diseases, but usually come with side
effects or adverse reactions. Because of unintended side
effects, a great number of approved drugs were even with-
drawn from the market. Therefore, recognizing potential
side effects helps to reduce costs and avoid risks in the drug
discovery. However, wet experiments are costly and time-
consuming. Since researchers collected drug data and com-
pile them in the public databases, computational methods
were developed for the side effect prediction.
The traditional computational methods analyzed the

structure-activity relationship or quantitative struc-
ture–property relationship [1–5], but they are not suit-
able for the large-scale data. In recent years, machine
learning methods were applied to the drug side effect
prediction, because of their capability of dealing with
complicated data. Huang [6] combined drug targets,

protein-protein interaction networks and gene ontology
annotations, and then respectively adopted the support
vector machine (SVM) and logistic regression to build
prediction models. Pauwels [7] considered chemical
substructures of drug candidate molecules, and respect-
ively adopted four machine learning methods (k-nearest
neighbor, support vector machine, ordinary canonical
correlation analysis and sparse canonical correlation
analysis) to construct prediction models. Yamanishi [8, 9]
combined the chemical substructures and target protein
information about drugs, and adopted the sparse canon-
ical correlation analysis for prediction. Liu [10] integrated
the phenotypic information, chemical information and
biological information about drugs, and then built the
prediction models by using different machine learning
classifiers (logistic regression, naive Bayes, k-nearest
neighbor, random forest and SVM). Bresso [11] adopted
the decision trees and inductive logic programming to
identify and characterize side-effect profiles shared by
several drugs. Cheng [12] proposed a phenotypic network
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inference-based method. Huang [13] integrated protein-
protein interaction networks and drug substructures,
and built SVM-based models. Liu [14] determined
molecular predictors of adverse drug reactions with
causality analysis.
Although several machine learning methods have been

proposed to predict side effects, there is still space for
improvements. Firstly, the side effect prediction is actu-
ally a multi-label learning task, but far less attention has
been paid to this point. Therefore, we make efforts to
solve the problem in the frame of multi-label learning.
Although lots of multi-label learning methods have been
proposed, they can’t be directly used for our task, which
have thousands of labels and severely imbalanced data.
Secondly, several drug-related features are associated with
side effects, and dimensions of each feature are biological
components. For example, there are 881 types of substruc-
tures described by PubChem. Since a drug may have
specific substructures, it is represented by an 881-
dimensional feature vector, in which ‘0’ or ‘1’ means the
absence or presence of the corresponding substructure.
However, not all substructures are necessarily related with
side effects, and some may be redundant. Therefore, iden-
tifying critical feature dimensions or reducing irrelevant
dimensions can help to investigate the cause of side ef-
fects, and thus probably improve predictive performances.
In this paper, we propose a novel method named ‘feature

selection-based multi-label k-nearest neighbor method’
(FS-MLKNN) for the side effect prediction. FS-MLKNN
takes two steps to build the relationship between feature
vectors and side effects. In the first step, informative
dimensions are selected by using mutual information be-
tween feature dimensions and side effects, so as to reduce
the computational burden of multi-label learning. In the
second step, the genetic algorithm (GA) and the multi-
label k-nearest neighbor method (MLKNN) are further
combined to determine the optimal feature dimensions
and develop the prediction model. Computational experi-
ments demonstrate that FS-MLKNN can produce high-
accuracy performances.
To the best of our knowledge, various features may

bring diverse information as well as noise. The problem is
how to effectively integrate them. Here, we adopt ensem-
ble learning techniques to combine various features. Spe-
cifically, individual feature-based models are constructed
by FS-MLKNN and used as base predictors, and the
ensemble strategy named ‘weighted scoring’ is used to in-
tegrate base predictors and develop the ensemble models.
The computational results show that the ensemble method
can make improvements, and lead to better performances
than other state-of-the-art methods. The source code and
datasets are available in the Additional file 1.

Methods
Datasets
There are several public databases about drugs, side
effects and related information. SIDER database [15]
contains information on marketed medicines and their
adverse drug reactions. PubChem Compound database
[16, 17] contains validated chemical information. Drug-
Bank database [18–21] is a bioinformatics resource that
combines detailed drug data with comprehensive drug tar-
get information. KEGG DRUG [22] is a drug information
resource for approved drugs in Japan, USA and Europe.
A variety of drug-related features can be obtained from

these databases and are considered to be associated with
side effects. The drug chemical substructures are usually
considered as the most important factor for drug side
effects. Drug targets are usually involved in a particular
metabolic or signaling pathway, and may provide the im-
portant clue to drug side effects. Drug transporters are
expressed in many tissues, and play key roles in drug
absorption, distribution, and excretion. Drugs usually
undergo drug metabolism to be biologically active, and
the enzymes may influence the metabolism thus induce
side effects. The unintended biochemical pathways and
drug indications may cause most drug side effects.
To the best of our knowledge, several datasets were

ever used in the previous studies and now publicly avail-
able, i.e. Pauwels’s dataset [7], Mizutani’s dataset [8] and
Liu’s dataset [10]. Hence, we use them as the benchmark
datasets, and the details of datasets are described in
Table 1. Since Liu’s dataset contains a variety of features
(substructures, enzymes, pathways, targets, transporters
and indications), we use it to discuss the usefulness of
various features and demonstrate the advantages of
FS-MLKNN. Previous state-of-the-art methods were
constructed on the Pauwels’s dataset [7], Mizutani’s data-
set [8] and Liu’s dataset [10], and we construct our models
on the same datasets to make comparison.
Recently, SIDER database has been updated for the

fourth edition, which contains 1430 drugs and 5880 side
effect terms. According to PubChem ID, CAS registry
number, IUPAC International Chemical Identifier (InChI
key) or drug name, 1080 SIDER drugs are successfully
mapped to DrugBank database, which contains a variety
of drug-related biological features. Moreover, we remove
side effect terms which are associated with more than 3
drugs. Finally, we compile a dataset with 1080 drugs and
2260 side effect terms, which we name ‘SIDER 4 dataset’.
The features (substructures, enzymes, pathways, targets,
transporters and indications) for these drugs are included
in the dataset. In SIDER 4 dataset, 771 drugs are included
in the initial edition of SIDER database and Liu’s dataset,
and the others (309) are newly added drugs. SIDER 4
dataset is used for the independent experiment.
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The multi-label learning for side effect prediction
Problem formulation
In the side effect prediction, prediction models are con-
structed on the training drugs, and are applied to the
testing drugs. Formally, multi-label learning is to build a
model that maps inputs to binary vectors, rather than
scalar outputs of the ordinary classification. Since a
drug is usually associated with multiple side effects,
the work can be formulated as a multi-label classifica-
tion problem.
Representation of drug features and drug labels is the

first step in the multi-label learning. There are a variety of
features for drugs, such as chemical substructures, target
proteins, indications, etc. Each feature can help to repre-
sent a drug as a feature vector, and the dimensions are
binary values 1 or 0, which mean the presence or absence
of corresponding components. As mentioned above, the
‘substructure’ (described in PubChem) feature vector of a
drug is 881-dimensional. Similarly, side effects of a drug
are represented by a binary vector, in which values ‘1’ or
‘0’ means whether or not the drug induces corresponding
side effects.
Given a dataset of n drugs denoted as {(xi, yi)}i = 1

n ,
xi and yi are the p-dimensional feature vector and
q-dimensional side effect vector for the ith drug. As
shown in Fig. 1, our goal is to build the functional
relationship Y = F(X) : 2p → 2q between exploratory
variables (feature vector) and target values (side effect
vector) for multi-label learning.

Since this work makes predictions for thousands of side
effects (classification labels), we should take into account
the accuracy as well as efficiency. Here, we propose the
method named ‘feature selection-based multi-label k-
nearest neighbor method’ (FS-MLKNN). The classic
method ‘multi-label k-nearest neighbor’ (MLKNN) [23] is
the core of FS-MLKNN. By inheriting advantages of
MLKNN, FS-MLKNN can produce high-accuracy perfor-
mances for our task, and more importantly give out the
explainable results. The reasons for adopting MLKNN are
as follows. The multi-label learning algorithms are roughly
divided into two types: transformation methods and adap-
tion methods [24, 25]. Transformation methods usually
transform the multi-label problem into a set of binary
classification problems; adaption methods directly per-
form the multi-label classification. The study in [25] com-
pared a great number of multi-label learning methods,
and the experiments demonstrated that the performances
of MLKNN are close to that of the best methods (RF-PCT
and HOMER). The study in [26, 27] showed that most
existing multi-label learning algorithms will fail when the
label space is large, e.g. number of labels > 50. In contrast,
MLKNN can deal with thousands of side effect labels in a
reasonable amount of time.

Multi-label k-nearest neighbor method
Based on notations in Fig. 1, we briefly introduce
MLKNN. Given the training set {xi, yi}i = 1

n , xi is the ith
instance (drug), and yi is the corresponding side effect

Table 1 The details about benchmark datasets

Dataset #drug #side effect #substructure #target #transporter #enzyme #pathway # indication

Pauwels’s dataset 888 1385 881 N.A N.A N.A N.A N.A

Mizutani’s dataset 658 1339 881 1368 N.A N.A N.A N.A

Liu’s dataset 832 1385 881 786 72 111 173 869

N.A. means these features are not included in the datasets

Fig. 1 Multi-label task for drug side effect prediction and the data representation
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vector. yi(l) = 1, if the ith instance can induce the l th
side effect, otherwise and yi(l) = 0, l = 1, 2,⋯, q. The k
nearest neighbors (in training set) of instance xi are de-
noted by N(xi), i = 1, 2,⋯, n. Thus, based on the lth side
effect of these neighbors, a membership counting vector
can be denoted as:

Cxi lð Þ ¼
X

a∈N xið Þya lð Þ; l ¼ 1; 2;⋯; q

where Cxi lð Þ counts the number of neighbors of xi indu-
cing the lth side effect, and 0≤Cxi lð Þ≤k.
For a test drug t, MLKNN identifies its k nearest

neighbors in the training set, and calculate Ct(l). Let H1
l

be the event that a drug has lth side effect and H0
l be the

event that a drug does not has lth side effect. Let Ej
l be

the event that a drug just has j neighbors with lth side
effect in its k nearest neighbors. For the instance t,
its label for lth side effect yt(l) is determined by the
following principle:

yt lð Þ ¼ arg maxb∈ 0;1f gP Hl
bjEl

Ct lð Þ
� �

; l ¼ 1; 2;⋯; q

Using the Bayesian rule, above Eq. can be rewritten as:

yt lð Þ ¼ arg maxb∈ 0;1f g
P Hl

b

� �
P El

Ct lð ÞjHl
b

� �
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Ct lð Þ
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In the prediction model, P(Hb
l ) and P(Ej

l|Hb
l ) are calcu-

lated based on the training set. The prior probabilities
are calculated,

P Hl
1
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Xn

i¼1
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0
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0
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,
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are calculated by following equations,

P El
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1

� �
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� �
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l ¼ 1; 2; ⋅⋅⋅; q; j ¼ 1; 2; ⋅⋅⋅; k

Where s is the smooth factor. cl[i] is the number of in-
stances which just have i neighbors with lth side effect
in their k nearest neighbors; cl

' [i] is the number of
instances which just have i neighbors without lth
side effect in their k nearest neighbors.

Feature selection-based multi-label k-nearest neighbor
method
We design the feature selection-based multi-label k-nearest
neighbor method (FS-MLKNN) to simultaneously deter-
mine the optimal feature dimensions and build multi-label
prediction models. Here, p dimensions of feature vectors
and q dimensions of side effect vectors are respectively
denoted as V = {v1, v2, ⋅ ⋅⋅, vp} and D = {d1, d2, ⋅ ⋅⋅, dq}. As
shown in Fig. 2(a), FS-MLKNN has two steps.
In the first step, we use mutual information to select

critical dimensions of the feature. The mutual informa-
tion between the feature dimension vi and the label dj is
calculate as,

Iðvi;DjÞ ¼
X
x∈vi

X
y∈dj

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ;

i ¼ 1; 2;⋯; p; j ¼ 1; 2;⋯; q

We define the correlation between the feature dimen-
sion vi and the label set D = {d1, d2,⋯, dq},

I vi;Dð Þ ¼ Iðvi; d1; d2;⋯; dqÞ ¼ max
i∈ 1;2; ::qf g

I vijdj
� �

Then, the dimensions subset V' = {vi | I(vi;D) > σ} is
selected, and then used in the next step.
In the second step, we combine MLKNN and genetic

algorithm (GA) to select the optimal dimension subset
and develop multi-label classification model. GA is a
search approach that mimics the process of natural se-
lection. GA can effectively search the interesting space
and easily solve complex problems without requiring the
prior knowledge about the space and the problem. As
shown in Fig. 2(b), the dimension subsets are encoded
as chromosomes and then form a population. MLKNN
is adopted as the multi-learning engine, and MLKNN
models are respectively constructed based on the dimen-
sion subsets. Then, models are evaluated by the internal
5-fold cross validation on the training data, and AUPR
scores are used as the fitness scores of corresponding
chromosomes. The population is updated by selection,
mutation and variance. The optimal dimension subset is
finally determined by internal 5-CV on the training set,
and then we respectively build five MLKNN models
based on the training data in five internal folds and
selected dimensions. As shown in Fig. 2(c), the FS-
MLKNN model consists of five MLKNN models. When
making predictions for the testing set, the average scores
of outputs by five MLKNN models are adopted as the
predictions of FS-MLKNN model.

Combining various features by ensemble learning
There are different drug-related features for side effect
prediction, and each feature can be used to encode drugs
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and thus develop FS-MLKNN models. Here, we attempt to
combine various features to achieve better performances.
In machine learning, the work that combines various

features is also known as feature fusion, whose purpose
is to exploit features and remove the redundant informa-
tion. In bioinformatics, merging various feature vectors
is a simple and widely used feature fusion approach, but
it may be affected by the redundant information between
features. Ensemble learning is a sophisticated technique
of combining features, which recently attracts more and
more interests in bioinformatics. The success of ensemble
learning has been proved by lots of applications [28–33].
Here, we design the ensemble learning method to com-

bine various features and develop high-accuracy predic-
tion models. Figure 3 shows the flowchart of the ensemble

method. Given m features, we build m individual
feature-based FS-MLKNN models, and use them as
base predictors. Since features may make different
contributes, it is natural to adopt weighted scoring
ensemble strategy, which assigns m base predictors
with m weights {w1, w2,⋯, wm}. For a testing instance,
the ith predictor will give scores for q side effects,
denoted as Si = {si

1, si
2,⋯, si

q}, i = 1, 2,⋯,m. The final
prediction produced by the ensemble model is the
linear weighted sum of outputs from base predictors,

Fig. 2 a Flowchart of FS-MLKNN b details about the GA-based wrapper feature selection c the details about constructing FS-MLKNN prediction model

Fig. 3 Flowchart of ensemble learning
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Ensemble Score ¼ w1;w2; ⋅⋅⋅;wm½ � �
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Tuning weights for base predictors are critical for the
ensemble models. The weights are non-negative real
values between 0 and 1, and the sum of weights equals 1.
We adopt the genetic algorithm to search for the optimal
weights, and the internal 5-CV AUPR on training data is
used as the fitness score.

Experimental configurations and evaluation metrics
Here, 5-fold cross validation (5-CV) is adopted to test
performances of models. For a dataset, all drugs are ran-
domly split into five subsets with equal size. Each time,
four subsets are combined as the training set, and the
remaining subset is used as the testing set. The models
are trained on the training drugs and their side effects,
and then are used to predict side effects of testing drugs.
The procedure is repeated, until each subset has been
ever used for testing.
In the side effect prediction, the predicted scores for

side effects were usually merged for evaluation, and the
metrics for ordinary binary classification were often
adopted. The area under ROC curve (AUC) and the area
under the precision-recall curve (AUPR) can be used to
evaluate models regardless of any threshold. However,
there are much more negative labels than positive labels
in the side effect prediction, and machine-learning methods
are likely to produce overestimated AUC scores. Since
AUPR takes into account recall as well as precision, it is
used as the most important metric. To the best of our
knowledge, several metrics were designed for multi-
learning classification [24], i.e. Hamming loss, one-error,
coverage, ranking loss and average precision. Hamming
loss is the fraction of the wrong labels to the total number
of labels. The one-error evaluates the fraction of examples
whose top-ranked label is not in the relevant label set. The

coverage evaluates how many steps are needed, on average,
to move down the ranked label list so as to cover all the
relevant labels of the example. The average precision evalu-
ates the average fraction of relevant labels ranked higher
than a particular label. Therefore, we adopt AUPR, average
precision, one-error, coverage, ranking loss and hamming
loss for the side effect prediction.
For one-error, coverage, ranking loss and hamming

loss, the smaller the metric value the better the sys-
tem’s performance. For AUPR and average precision,
the larger the metric value the better the system’s
performance.
We have to set parameters for FS-MLKNN. In the first

step of FS-MLKNN, the threshold 0.001 is used for the
mutual information-based feature selection. In the sec-
ond step, Matlab genetic algorithm toolbox is used to
implement GA optimization, and the default parameters
are adopted for genetic operator, crossover operator and
mutation operator. The population of GA is set as 100.
The population update will terminate when the change
of best fitness scores is less than the default value of
1E-6 or the max generation number of 60 is reached.
The same configurations are used for the GA optimization
in weighted scoring ensemble learning.

Results and discussion
Performances of FS-MLKNN
First of all, the experiments are carried out on Liu’s dataset
to investigate the usefulness of various features and dem-
onstrate the advantages of FS-MLKNN. Specifically, we
encode the drugs with individual features, and then re-
spectively adopt FS-MLKNN and MLKNN as the multi-
label learning engines to construct prediction models. To
provide a comprehensive evaluation of the method, we
randomly repeat the data separation, and implement 5
runs of 5-cross validation for FS-MLKNN models and
MLKNN models. The means and standard deviations of
metric scores are respectively demonstrated in Table 2 and
Table 3.
According to the standard deviations of metric scores,

FS-MLKNN is likely to produce similar results for dif-
ferent splits of cross validation, and so does MLKNN.
Therefore, we compare mean metric scores of FS-
MLKNN and MLKNN based on the same features. The

Table 2 The 5-CV performances of individual feature-based MLKNN models on Liu’s dataset

Features AUC AUPR Hamming loss Ranking loss One error Coverage Average precision

Enzyme 0.8861 ± 0.0006 0.3989 ± 0.0011 0.0483 ± 0.0001 0.0839 ± 0.0002 0.1695 ± 0.0053 837.7197 ± 1.6124 0.4551 ± 0.0005

Pathway 0.8884 ± 0.0006 0.4105 ± 0.0010 0.0477 ± 0.0001 0.0802 ± 0.0001 0.1865 ± 0.0076 827.1183 ± 2.9986 0.4721 ± 0.0007

Target 0.8947 ± 0.0009 0.4424 ± 0.0017 0.0464 ± 0.0001 0.0745 ± 0.0003 0.1695 ± 0.0061 812.6752 ± 2.9022 0.4919 ± 0.0010

Transporter 0.8863 ± 0.0006 0.4010 ± 0.0013 0.0482 ± 0.0001 0.0826 ± 0.0002 0.1661 ± 0.0041 836.2058 ± 2.8593 0.4644 ± 0.0007

Indication 0.8948 ± 0.0004 0.4566 ± 0.0020 0.0456 ± 0.0001 0.0762 ± 0.0003 0.1363 ± 0.0034 818.3745 ± 3.6611 0.4950 ± 0.0012

Substructure 0.8912 ± 0.0005 0.4255 ± 0.0015 0.0472 ± 0.0001 0.0754 ± 0.0004 0.1760 ± 0.0040 808.9192 ± 2.4440 0.4888 ± 0.0014
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results in Table 2 and Table 3 show that FS-MLKNN pro-
duces better performances than MLKNN, no matter
which features are used, and we can clearly observe the
improvements on the AUPR scores. It is observed that the
models produce overestimated AUC scores for the imbal-
anced data in the experiment, and AUC is not a suitable
metric for the problem. Since MLKNN and FS-MLKNN
are robust to the data split of the cross validation, we
make analysis and comparison based on the same data
split in the following content.
Further, we evaluate their predictions for individual

side effect terms. For each side effect term, the predicted
scores and real labels are used to calculate the AUPR
score. Although there are 1385 side effect terms in Liu’s
dataset, 4 side effect terms are not observed for any of
832 drugs in the dataset. Since there is no positive in-
stance for these side effect terms, their AUPR scores
can’t be calculated. Therefore, we can respectively obtain
1381 AUPR scores for 1381 side effect terms based on
the results of FS-MLKNN and MLKNN. Then, we com-
pare their AUPR scores for each side effect term. As
shown in Table 4, we count the numbers of three cases
(FS-MLKNN better than MLKNN, FS-MLKNN equals
to MLKNN, MLKNN better than FS-MLKNN). For
thousands of side effect terms, cases that FS-MLKNN is
better than MLKNN are much more than the cases that
MLKNN is better than FS-MLKNN. For six features,
FS-MLKNN can consistently produce better perfor-
mances than MLKNN.
Although there are hundreds of dimensions for each

feature, FS-MLKNN selects a small proportion of

dimensions for prediction. The superior performances of
FS-MLKNN are due to the removal of redundant feature
dimensions. The optimal feature dimensions which are
determined by FS-MLKNN are shown in Table 5. Since
we implement 5-fold cross validation, there are five dif-
ferent sets of optimal dimensions for each model. We
calculate the frequencies of selected dimensions in five
folds, and the statistics are shown in Fig. 4. For feature
‘substructure’, a great proportion of the dimensions are
never selected. In contrast, only a few dimensions are
selected in all folds, for four features ‘enzyme’, ‘pathway’,
‘target’, ‘transporter’ and ‘indication’. The selected feature
dimensions are analyzed in the following section ‘inde-
pendent experiment and case study’.

Performances of ensemble models
The performances of individual feature-based methods
can measure the usefulness of corresponding features.
According to Table 2, these features can yield the AUPR
scores around or greater than 0.4, and ‘indication’
can lead to the best results. The most possible rea-
son is that the intents for which a drug is designed
are usually associated with the induced side effects.
In general, all features are of potential use for the
side effect prediction.
Since different features provide important information

in different views, we have to consider how to combine
various features effectively. In this paper, we consider
the weighted scoring ensemble learning to develop the
final prediction models. Because of six drug-related
features, six individual feature-based models are con-
structed by FS-MLKNN and used as base predictors.
Weights are assigned to these base predictors, and linear
weighted sums of outputs are adopted as the prediction
by the ensemble method.
The genetic algorithm is used to tune weights in the

ensemble method, and optimal weights are shown in
Table 6. The weights reflect the contributions of fea-
tures. The results show that the major contributions of
predictions come from indication, target and substruc-
ture, and the contributions of enzyme, pathway, and
transport are much smaller. In general, weights have re-
lation with performances of individual feature-based

Table 4 The comparison of side effect-based AUPR scores
produced by FS-MLKNN and MLKNN

Features # FS-MLKNN >
MLKNN

# FS-MLKNN =
MLKNN

# FS-MLKNN <
MLKNN

Enzyme 501 553 327

Pathway 432 543 406

Target 492 537 352

Transporter 457 568 356

Indication 497 566 318

Substructure 447 508 426

Table 3 The 5-CV performances of individual feature-based FS-MLKNN models on Liu’s dataset

Features AUC AUPR Hamming loss Ranking loss One error Coverage Average precision

Enzyme 0.8878 ± 0.0004 0.4080 ± 0.0013 0.0478 ± 0.0001 0.0826 ± 0.0002 0.1611 ± 0.0057 837.1250 ± 2.9063 0.4652 ± 0.0005

Pathway 0.8895 ± 0.0006 0.4187 ± 0.0028 0.0473 ± 0.0001 0.0792 ± 0.0003 0.1688 ± 0.0037 824.2678 ± 4.2341 0.4799 ± 0.0006

Target 0.8962 ± 0.0007 0.4557 ± 0.0019 0.0457 ± 0.0001 0.0739 ± 0.0003 0.1442 ± 0.0048 810.4788 ± 2.9801 0.5008 ± 0.0008

Transporter 0.8871 ± 0.0008 0.4060 ± 0.0018 0.0480 ± 0.0001 0.0819 ± 0.0003 0.1635 ± 0.0037 836.4404 ± 2.3029 0.4698 ± 0.0007

Indication 0.8963 ± 0.0008 0.4648 ± 0.0043 0.0452 ± 0.0002 0.0755 ± 0.0003 0.1341 ± 0.0054 818.0483 ± 3.9917 0.5005 ± 0.0014

Substructure 0.8931 ± 0.0005 0.4343 ± 0.0011 0.0468 ± 0.0001 0.0739 ± 0.0005 0.1659 ± 0.0069 804.3813 ± 2.7354 0.4989 ± 0.0021
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models (Table 3), and the features which produce better
results are given greater weights in the ensemble model.
Further, we compare the performances of the ensem-

ble models with that of individual feature-based FS-
MLKNN models. As shown in Fig. 5, the ensemble
model can make improvements over individual feature-
based models in terms of AUPR. Compared with the
best model based on the feature ‘indication’ (AUPR
score of 0.4646 on Liu’s dataset), the ensemble method
yields the higher AUPR score of 0.4802. There are some
possible reasons for the improvements. Firstly, a variety
of features provide diverse information for ensemble
learning. Secondly, different weights are assigned to fea-
tures, so as to consider their different contributions.

Comparison with benchmark methods
To the best of our knowledge, some state-of-the-art
methods, i.e. Pauwels’s method [7], Mizutani’s method
[8], Liu’s method [10] and Cheng’s method [12], were

proposed for side effect prediction, and their source
codes or datasets are publicly available.
These methods are roughly of two sorts: the side effect

profile prediction methods and the potential side effect
prediction methods. The side effect profile prediction
methods (Pauwels’s method and Mizutani’s method) at-
tempt to predict all interested side effects for a drug,
and predicted results are usually represented by a binary
vector (or profile) which represents the presence or ab-
sence of corresponding side effects. Potential side effect
prediction methods (Cheng's method) utilize the known
side effects as well as drug-related features to predict
missing or undetected side effects. Liu’s method can be
used for the side effect profile prediction as well as the
potential side effect prediction.
Since our work is to predict the side effect profile,

Pauwels’s method, Mizutani’s method and Liu’s method
are adopted as the benchmark methods for the fair
comparison. Here, we execute the R source codes of

Fig. 4 The frequencies of selected dimensions for various features (on Liu’s dataset). 0,1,2,3,4 mean the number of selected features in five folds;
5 means the number of features selected by all five folds

Table 5 The dimensions determined by FS-MLKNN on Liu’s dataset

Feature Original # 1-fold # 2-fold # 3-fold # 4-fold # 5-fold # Average #

Enzyme 111 39 42 54 57 55 49

Pathway 173 88 74 96 88 81 85

Target 786 323 353 378 360 333 349

Transporter 72 33 34 33 41 28 34

Indication 869 407 413 414 392 409 407

Substructure 881 310 295 287 279 307 296
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Pauwels’s method [http://cbio.ensmp.fr/~yyamanishi/side-
effect/] and Mizutani’s method [http://web.kuicr.kyoto-u.
ac.jp/supp/smizutan/target-effect/] to obtain various metric
scores. We implement Liu’s method by following the details
of the publication [10]. We only utilize the drug-related
biological features and chemical features to predict side
effect profiles, and the feature ‘known side effects’ are not
used. Since benchmark methods construct the prediction
models based on specific datasets and specific features, we
construct our models based on the same datasets and the
same features for the fair comparison. In this way, our
method can be compared with benchmark methods
under the same conditions. The performances of different
methods are demonstrated in Table 7. In terms of AUPR,
our method makes obvious improvements over Pauwels’s
method, Mizutani’s method and Liu's method. Moreover,
our method produces better performances in terms of
multi-label learning metrics (Hamming Loss, ranking loss,
one error, coverage and average precision). Reducing noise
in features and combining various features are major rea-
sons for our superior performances. In conclusion, our
method can produce better performances than state-of-
the-art methods.

Independent experiment and case study
In this section, we carry out the independent experiment
to evaluate the usefulness of the proposed method for
practical applications. In the SIDER 4 dataset, 771 drugs
which are included in Liu’s dataset are used as the training
set, and 309 newly added drugs are used as the testing set.
The prediction model is trained on the training drugs, and
then makes predictions for the testing drugs.
In the training, prediction model selects 69 enzyme

dimensions, 127 pathway dimensions, 393 target dimen-
sions, 40 transporter dimensions, 372 indication dimen-
sions and 315 substructure dimensions. As mentioned,
the selected feature dimensions may indicate some close
associations between biological (or chemical) components
and drug activities. Here, we take the feature ‘transporter’
for analysis. 40 selected transporter dimensions represent
40 transporter proteins, and we manually check the se-
lected transporter proteins in the Uniprot database and
DrugBank database. We find out that 8 transporter pro-
teins have the clear drug-related annotations and may play
roles in the drug activities. For example, the transporter
protein ‘P33527’ may participate directly in the active
transport of drugs into subcellular organelles or influence
drug distribution indirectly, and confers resistance to anti-
cancer drugs. The supporting information about trans-
porter proteins is provided in the Additional file 1.
When making predictions for testing drugs, the pre-

diction model yields the AUPR score of 0.311 and AUC
of 0.872. For comparison, we also implement the 5-CV
cross validation on training drugs, producing the AUPR
score of 0.477 and AUC of 0.875. The AUPR score in
the independent experiment is less than that on the
training set. The statistics on the training drugs and testing
drugs shows that the average numbers of side effects for
two sets of drugs are 125 and 69 respectively. The newly
added drugs are recently approved drugs or experimental
drugs, and only partial side effects are known. The less
positive instances in the testing set lead to the lower AUPR
score. For this reason, we pay attention to the recall which
represents the capability of recognizing real side effects.
For each testing drug, we take the top 100 scored side
effect terms as the predicted side effects, and then compute
the recall scores. We take drug ‘4-ap’ (DB06637) as an

Fig. 5 AUPR curves of individual feature-based models and the
ensemble model on Liu’s dataset. Enzyme (0.4078), pathway (0.4210),
target (0.4575), transporter (0.4085), indication (0.4646), substructure
(0.4362) and ensemble method (0.4802)

Table 6 The weights of ensemble models on Liu’s dataset

Enzyme Pathway Target Transporter Indication Substructure

1-fold 0.009 0.002 0.265 0.023 0.515 0.185

2-fold 0.012 0.104 0.210 0.009 0.489 0.174

3-fold 0.060 0.042 0.370 0.000 0.458 0.069

4-fold 0.001 0.035 0.261 0.037 0.481 0.185

5-fold 0.001 0.035 0.261 0.037 0.481 0.185

Average 0.017 0.044 0.273 0.021 0.485 0.160
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example to demonstrate the prediction capability of the
prediction model. There are 36 known side effects for
‘4-ap’, and our model can successfully predict 32 side
effects. The average of recall scores for 309 drugs is 0.463
(0.609 for top 200). As far as we know, an important goal
of developing computational methods is to reduce candi-
dates for the wet experiment. The prediction results dem-
onstrate that we can find out 46.3 % side effects of a drug
on average by biologically verifying 100 highly scored side
effects terms. The numbers of correctly predicted side
effects for testing drugs, the recall scores and precision
scores are provided in the Additional file 1.

Conclusions
This paper transforms the side effect prediction as a
multi-label learning task. We propose a novel multi-
label learning method for side effect prediction, named
‘feature selection-based multi-label k nearest neighbor’
(FS-MLKNN). FS-MLKNN can produce high-accuracy
performances as well as the explainable results which
help to reveal potential causes of side effects. In order to
combine various features effectively, we construct indi-
vidual feature-based FS-MLKNN models and use them
as base predictors. Then, we combine base predictors by
using the weighted scoring ensemble strategy, and develop
the final prediction models for drug side effect prediction.
Compared with the state-of-the-art methods, the ensem-
ble method produces much better performances on the
benchmark datasets. In conclusion, the proposed FS-
MLKNN and the ensemble method are promising tools
for predicting drug side effects.

Availability of supporting data
Pauwels’s dataset is publicly available at [http://cbio.
ensmp.fr/~yyamanishi/side-effect/]; Mizutani’s dataset is
publicly available at [http://web.kuicr.kyoto-u.ac.jp/supp/
smizutan/target-effect/]. Liu’s dataset, SIDER 4 dataset and
Matlab source codes for our models are included in
Additional file 1.
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