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Abstract

Background: Study of drug-target interaction networks is an important topic for drug development. It is both time-
consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments
alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.

Methods/Principal Findings: To realize this, drug compounds are encoded with functional groups and proteins encoded by
biological features including biochemical and physicochemical properties. The optimal feature selection procedures are
adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as
a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and
nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their
operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the
overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%,
and 85.66%, respectively.

Conclusion/Significance: Our results indicate that the network prediction system thus established is quite promising and
encouraging.
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Introduction

Identification of drug-target interaction networks is an essential

step in the drug discovery pipeline [1]. The emergence of

molecular medicine and the completion of the human genome

project provide more opportunity to discover unknown target

proteins of drugs. Many efforts have been made to discover new

drugs in the past few years. However, the number of new drug

approvals remains quite low (around only 30 per year). This is

partially because many compounds or drug candidates have to be

withdrawn owing to unacceptable toxicity. Such failures have

wasted a lot of money. It would be beneficial to develop

computational methods for predicting the sensitivity and toxicity

before a drug candidate was synthesized [2,3,4]. However, a

number of problems need to be overcome in order to find out the

exact effects of a drug. Firstly, drugs could have numerous effects

including positive and negative effects, and it is hard to find out

and elucidate the possible effects; secondly, different people would

have completely different responses to a drug even though the

same gene products are only slightly different [5,6,7,8]; thirdly, it is

very hard to trace the drug effects since the biological interaction

pathways are extremely complicated in human beings. Therefore,

it would be very helpful for drug development if the interactions

between drugs and target proteins could be predicted more

accurately and the underlying mechanisms could be better

understood.

Several computational approaches have been developed for

analyzing and predicting drug-protein interactions. The most

commonly used are docking simulations [9,10,11,12], literature

text mining [13], and combining chemical structure, genomic

sequence, and 3D structure information [14], among others (see,

e.g., [15,16,17]).

Machine learning and data mining methods have been widely

used in the computational biology and bioinformatics area. Many

researchers have made lots of efforts to develop useful algorithms

and softwares to investigate various drug-related biological

problems, such as HIV protease cleavage site prediction [18,19],

identification of GPCR (G protein-coupled receptors) type [20,21],
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protein signal peptide prediction [22], protein subcellular location

prediction [23,24,25], analysis of specificity of GalNAc-transferase

protein [26], identification of protease type [27,28], membrane

protein type prediction [29,30,31,32], and a series of relevant web-

server predictors as summarized in a recent review [33].

Here we propose a predictor for drug-target interactions based

on the Nearest Neighbor algorithm [34]. Since biochemical and

physicochemical features [35] are important for characterizing

proteins, in this study they are used to represent proteins as done

by many previous investigators (see, e.g., [36,37,38]. To improve

the predictor’s performance, minimum Redundancy Maximum

Relevance (mRMR) algorithm [39] is used to rank the features.

Meanwhile, the Incremental Feature Selection and Forward

Feature Selection are applied for feature selection. The protein

targets for drugs are divided into enzymes, ion channels

[40,41,42,43], GPCRs [44,45], and nuclear receptors [14] in this

study. Finally, four predictors for predicting the interactions of

drugs with each of the four protein families are developed in hopes

that they can help provide useful information for drug design.

Materials and Methods

Benchmark Datasets
In addition to the dataset used by Yamanishi et al. [14],

information about drug compounds and genes can be obtained

from KEGG [46,47] by the FTP operations: ftp://ftp.genome.jp/

pub/kegg/ligand/drug/drug for the drugs, and ftp://ftp.genome.

jp/pub/kegg/genes/fasta/gene.pep for the genes. After excluding

the drug-target pairs that lack experimental information, we finally

obtained a total of 4,797 drug-target pairs, of which 2,719 for

enzymes, 1,372 for ion channels, 630 for GPCRs, and 82 for

nuclear receptors. All these datasets were used as the positive

datasets in the current study.

The corresponding negative datasets were derived from the

above positive datasets via the following steps: (1) separate the

pairs in the above positive dataset into single drugs and proteins;

(2) re-couple these singles into pairs in a way that none of them

occurs in the corresponding positive dataset; (3) randomly picked

the negative pairs thus formed until they reached the number two

times as many as the positive pairs.

The drug-target benchmark datasets thus obtained for enzymes,

ion-channels, GPCRs, and nuclear receptors are given in Online

Supporting Information S1, S2, S3, and S4, respectively.

Feature Vector Construction
Representing drugs with chemical functional groups

composition. The number of drugs is extremely large.

However, most of them are small organic molecules and are

composed of some fixed small structures, called functional groups.

Since functional groups usually represent the characteristics of a

compound as well as its reaction mechanism with other molecules,

features derived from its functional groups could be very effective in

characterizing a drug. Moreover, the number of common functional

groups is quite small, and hence it is possible to use the functional

group composition to uniquely represent a drug [48]. A number of

functional groups are available in nature, and we selected the

following 28 common groups for the current study: (1) alcohol, (2)

aldehyde, (3) amide, (4) amine, (5) hydroxamic acid, (6) phosphorus,

(7) carboxylate, (8) methyl, (9) ester, (10) ether, (11) imine, (12)

ketone, (13) nitro, (14) halogen, (15) thiol, (16) sulfonic acid, (17)

sulfone, (18) sulfonamide, (19) sulfoxide, (20) sulfide, (21) a_5c_ring,

(22) ar_6c_ring, (23) non_ar_5c_ring, (24) non_ar_6c_ring,

(25) hetero ar_6_ring, (26) hetero non_ar_5_ring, (27) hetero

non_ar_6_ring, and (28) hetero ar_5_ring. Thus, following the same

treatment as in [23], a drug compound can now be formulated as a

28-D (dimensional) vector given below:

D~ g1 g2 � � � gi � � � g28½ �T ð1Þ

where gi (i~1, 2, � � � , 28) is the occurrence frequency of the i-th
functional group in the drug D, and T the matrix transpose

operator.

Representing target proteins with pseudo amino acid

composition by incorporating biochemical and physi-

cochemical features. Now the problem is how to effectively

represent a target protein. Two kinds of representations are

generally used in this regard: the sequential representation and the

non-sequential representation. The most typical sequential

representation for a protein sample is its entire amino acid

sequence, which can contain the most complete information of a

protein. To deal with this model, the sequence-similarity-search-

based tools, such as BLAST [49], are usually used to find the

desired results. Unfortunately, this kind of approach failed to work

when the query protein did not have significant homology to the

proteins in the training dataset. Thus, various non-sequential

representations or discrete models were proposed. The simplest

discrete model was based on the amino acid composition (AAC)

(see, e.g., [50]). However, if using the AAC model to represent a

protein, all its sequence-order information will be lost. To avoid

completely losing the sequence-order information, the pseudo

amino acid composition (Pse-AAC) was proposed [36] to represent

the sample of a protein. The PseAAC can be used to represent a

protein sequence with a discrete model yet without completely

losing its sequence-order information. For further information

about PseAAC, see the web-page by clicking the link http://en.

wikipedia.org/wiki/Pseudo_amino_acid_composition. Ever since the

concept of PseAAC was introduced, it has been widely used to study

various problems in proteins and protein-related systems (see, e.g.,

[37,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66]). Meanwhile,

many different forms of discrete models were also proposed (see,

e.g., [20,30,32,51,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82]).

However, regardless of how much different these models are, they

just belong to different forms of PseAAC, as elucidated in a recent

comprehensive review [83]. Here, we are to propose a different

PseAAC to represent drug-targeted proteins in terms of their

biochemical and physicochemical features [84]. Six different types

of features were considered: (1) hydrophobicity, (2) polarizability, (3)

polarity, (4) secondary structure, (5) normalized van der Waals

volume, and (6) solvent accessibility.

Each amino acid residue in a protein sequence can be

represented by a set of different states according to its features.

For instance, its hydrophobicity feature can be marked by one of

the following three states: ‘‘polar’’, ‘‘neutral’’, or ‘‘hydrophobic’’

[85]; its solvent accessibility feature by one of the two: ‘‘buried’’ or

‘‘exposed to solvent’’, as predicted by PredAcc [35]; its secondary

structure feature by one of the three: ‘‘helix’’, ‘‘sheet’’, or ‘‘coil’’, as

predicted by the method in [86]; and so forth.

Thus, a protein sequence can be translated to a series of codes

according to the biochemical and physicochemical properties of its

constituent amino acid residues. For example, if using ‘‘P’’, ‘‘N’’ and

‘‘H’’ to represent the three states of hydrophobicity: ‘‘polar’’, ‘‘neu-

tral’’, and ‘‘hydrophobic’’, the protein sequence ‘‘DMAEIMSDKP-

QAGML’’ can be translated to ‘‘PHNPHHNPPNPNNHH’’ accord-

ing to the codes of the hydrophobic property feature. The encoded

sequences thus obtained would have different length for proteins of

different sizes, which will make the prediction engine difficult to handle.

To make the feature-encoded sequence to be a vector with a

fixed number of dimensions, three properties of a sequence was

Drug-Target Interactions
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used: composition (C), transition (T), and distribution (D). C

represents the global composition of each letter in the sequence; T,

the frequency of a code letter changing from one to another; D,

the distribution pattern of the code letters along the sequence,

measuring the percentage of the sequence length within which the

first, 25%, 50%, 75%, and 100% of the amino acids of each code

letter is located. Take the above hydrophobic property sequence as

an example: its C feature is 5/15 = 33.3% for all of P, H, and N,

while the T feature is 2/10 = 20%, 3/10 = 30% and 5/10 = 50%

for the changes between H and P, N and H, N and P, respectively.

The measurement of feature D is a little more complicated. For

the letter H, the first, 25%, 50%, 75% and 100% of Hs in the

sequence is located at the position of 2, 5, 6, 14, and 15. Thus

its D feature is (2/15 = 13.3%, 5/15 = 33.3%, 6/15 = 40%, 14/

15 = 93.3%, 15/15 = 100%). In the same way, the distributions of

letters P and N are (6.7%, 26.7%, 53.3%, 60%, 73.3%) and (20%,

46.7%, 66.7%, 80%, 86.7%), respectively. Accordingly, the three

features of the code letter sequence are: C = (33.3%, 33.3%,

33.3%), T = (20%, 30%, 50%), and D = (13.3%, 33.3%, 40%,

93.3%, 100%, 6.7%, 26.7%, 53.3%, 60%, 73.3%, 20%, 46.7%,

66.7%, 80%, 86.7%), with a total of 21 components. Likewise, for

the sequences encoded by the other four biochemical properties,

each is also corresponding to 21 components. But for the sequence

encoded by the solvent accessibility with only two states (‘‘buried’’ or

‘‘exposed to solvent’’), the encoded sequence is corresponding to

only 14 components. Finally, by adding the 20 components of AAC

[87] into the vector concerned, the total number of components

thus obtained for a given protein is 5|21z20z14~139; i.e., the

protein can be formulated as a 139-D vector given by

P~ p2 p2 � � � pi � � � p239½ �T ð2Þ

where pi (i~1, 2, � � � , 139) is the i-th component of the protein P.

Of the 139 components, 119 are derived according to the codes of

the above six biochemical and physicochemical features, and 20 are

the AAC components of P.

Nearest Neighbor Algorithm
With all samples represented by a feature vector, now it is

possible for us to construct our predictor using the machine

learning approach. The NN (Nearest Neighbor) algorithm is quite

popular in pattern recognition community owing to its good

performance and simple-to-use feature. According to the NN

rule [88], the query sample should be assigned to the subset

represented by its nearest neighbor. In this study, if the drug-target

pair with the shortest distance is a positive sample, meaning that

they can interact with each other, the sample for test is seen as a

positive drug-target pair. Otherwise, the test sample is seen as a

negative one.

There are many different definitions to measure the ‘‘nearness’’

for the NN algorithm, such as Euclidean distance, Hamming

distance [89], and Mahalanobis distance [50,90,91]. In the current

study, the following equation was adopted to measure the nearness

between samples Vx and Vy

D(Vx,Vy)~1{
Vx
:Vy

Vxk k Vy

�� �� ð3Þ

where Vx
:Vy is the dot product of the two vectors, and Vxk k and

Vy

�� �� their modulus, respectively. When Vx:Vy we have

D(Vx,Vy)~0, indicating the ‘‘distance’’ between these two sample

vectors is zero and hence they have perfect or 100% similarity.

Jackknife Cross-Validation Test
After constructing the drug-target interaction predictor, we have to

evaluate its performance. In statistical prediction, the following three

cross-validation methods are often used to examine a predictor for its

effectiveness in practical application: independent dataset test,

subsampling (K-fold cross-validation) test, and jackknife test [92].

However, as elucidated by [24] and demonstrated by Eq.50 in [93],

among the three cross-validation methods, the jackknife test is

deemed the most objective that can always yield a unique result for a

given benchmark dataset, and hence has been increasingly used and

widely recognized by investigators to examine the accuracy of various

predictors (see, e.g. [51,53,54,55,56,57,59,62,63,64,94,95,96]).’’ Ac-

cordingly, in this study the jackknife cross-validation was adopted to

calculate the success prediction rates as well.

Maximum Relevance Minimum Redundancy (mRMR)
Although we’ve constructed the drug-target predictor based on

the original feature set described above, it is possible to improve its

performance with a better feature set. Apparently, not every feature

in the feature set is equally relevant to the drug-target interaction.

What’s more, features may not be independent with each other. The

‘‘bad’’ will have negative impact on the accuracy and efficiency of

the predictor, so it is possible to do the feature selection process to

construct a more compact and effective feature set. The first step is

using Maximum Relevance Minimum Redundancy (mRMR) [36]

to do feature evaluation. Maximum Relevance Minimum Redun-

dancy (mRMR) [39] was firstly developed for analysis of microarray

data. It ranks each feature according to its relevance to the target and

redundancy to other features. The better a feature is deemed to be,

the higher the rank it will be assigned to. Mutual information (MI),

denoted by I to indicate the dependence of two features used to

quantify the relevance and redundancy. MI is defined as following:

I x,yð Þ~
ð ð

p x,yð Þ log
p x,yð Þ

p xð Þp yð Þ dxdy ð4Þ

Based on MI, we can quantify relevance (D) and redundancy (R)

as:

D~I fcandidate,cð Þ ð5Þ

R~
1

m

X
fi[Vs

I fcandidate,fið Þ ð6Þ

where fcandidate is the feature to be calculated, and c is the target

variable. By combining the above two equations to maximize

relevance and minimize redundancy, the following mRMR function

is constructed:

max
fj [ Vt

I(fj ,c){
1

m

X
fi [ Vs

I(fj,fi)

2
4

3
5(j~1, 2, :::, n) ð7Þ

where Vs and Vt are the already-selected feature set and to-be-

selected feature set, respectively, and m and n are the sizes of these two

feature sets, respectively. The earlier a feature is selected, the better it

would be though of. Finally, we can get an ordered feature list with a

rank for every feature to indicate its importance in the feature set. In

our study, the mRMR program is obtained from: http://research.

janelia.org/peng/proj/mRMR/index.htm.

Drug-Target Interactions
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To calculate MI, the joint probabilistic density and the marginal

probabilistic densities of the two vectors were used. A parameter t

is introduced here to deal with these variables. Suppose mean to

be the average value of one feature in all samples, and std to be the

standard deviation, the feature of each sample would be classified

into one of the three groups according to the boundaries:

mean+(t:std). In our study, t was assigned to be 1.

Incremental Feature Selection
As mentioned above, the importance of each feature is rated

according to its rank in the mRMR analysis. The next step is to

determine which features should be selected as the optimal feature

set for our drug-target predictor. Here the IFS (Incremental

Feature Selection) procedure is used to solve the problem. Each

feature in the mRMR feature list was added one by one, and N

different feature sets are obtained if the total feature number is N,

while the i-th feature set is:

Si~ff1, f2, :::, fig (1ƒiƒN) ð8Þ

Based on each of the N feature sets, an NN algorithm predictor

was constructed and tested with the jackknife cross-validation test.

With all the N overall accurate rates calculated, we could draw an

IFS curve with the index i to be the x-axis and the corresponding

overall accurate rate to be the y-axis. Thus, Sopt~ff1, f2, :::, fng is

regarded as the optimal feature set if the curve reach its peak

where the value of its x-axis is nƒN.

Because four independent predictors are needed for the four

different classes of drug-target pairs, the IFS analysis procedure

will be processed four times with each for a specific predictor.

Forward Feature Selection
To refine feature selection, the FFS (Forward Feature Selection)

procedure based on the result of IFS was used. FFS is a feature

selection method based on IFS results which tries every feature in

the candidate feature set and adds the feature that achieves the

highest prediction accuracy into the already-selected feature set in

each goes. Suppose the IFS curve reaches its peak with apex as its

x-axis, the initial FFS-selected feature set was constructed as:

SFFS~ff ’1, f ’1, :::, f ’kg (1ƒkƒapex) ð9Þ

More features in FFS-to-be-selected feature set would be added

into the FFS-selected feature set one by one. The FFS-to-be-

selected feature set with M features covers the features with

mRMR ranks between k+1 and k+1+M, where M is a user-defined

positive integer smaller than N{k with N to be the size of the

original feature set. In each round of FFS, each feature in FFS-to-

be-selected feature set would be taken out and added to the FFS-

selected feature set. Each predictor based on each new FFS-

selected feature set would be tested, and the feature set obtained

the highest overall accurate rate would be used as the new FFS-

selected feature set. This process would be run for M times, until

the FFS-to-be-selected feature set becomes a null set. An FFS

curve similar to the IFS curve could be drawn with x-axis as the

index and y-axis as the overall accurate rate.

In this study, FFS was run for each of the four benchmark

datasets based on the corresponding IFS result. M for all these

processes was set to 50, while k for each FFS was set to be the

index of the point with the first maximum value (i.e. the maximum

point with the smallest index) in the corresponding IFS curve.

Results and Discussion

Results of mRMR
To improve performance of the predictor of drug-target

interaction, feature selection process was carried out. The first

step of feature selection is feature evaluation. In this study, mRMR

was used to evaluate every feature in original feature set. Listed in

Online Supporting Information S5 are two kinds of outputs: the

first one is the MaxRel list which shows ranks of features for their

relevance to the target; the second is mRMR list showing the

mRMR ranks according to the feature order satisfying Eq. 3. In

this study, only the mRMR list was used as the results of feature

evaluation. Since there are four groups of samples, mRMR was

run four times with each for one of them.

Results of IFS and FFS
With the four mRMR lists, IFS was processed for each of the

four sample groups, generating four IFS curves. Based on these

results, we set k in FFS to be 16, 15, 14 and 19 for the data of

enzymes, ion channels, GPCRs and nuclear receptors, respective-

ly. Each of these figures is the index of the point of the first

maximum value in the corresponding IFS curve. Shown in Fig. 1
are the four IFS curves with their corresponding FFS curves. The

peaks of the four FFS curves finally reach the overall success rates

of 85.48% with 32 features, 80.78% with 37 features, 78.49% with

30 features, and 85.66% with 32 features for enzyme group, ion

channel group, GPCR group and nuclear receptor groups,

respectively.

Features selected by mRMR+FFS for the four different groups

are quite different from each other, showing the intrinsic

differences between them. Although there are more features for

target than those for drug in the original feature set, more drug

features were selected, showing the important role of drugs. Many

of the selected target features are for protein secondary structure,

especially for enzyme group (half of selected target features are for

this). All types of features are selected in at least one group,

showing that all biochemical and physicochemical features have

their irreplaceable positions in drug-target interaction process.

For the details of the optimal feature-set outputs by FFS

for the four benchmark datasets, see the Online Supporting

Information S6.

Discussions
For the specificity and promiscuity, we divided the drug-protein

interactions into four groups according to the targets of drugs:

enzymes, ion channels, GPCRs, and nuclear receptors. We used

all the known drugs and target proteins in the gold standard data

as training data to predict the potential interactions between all

human proteins annotated as members of the four classes in

KEGG genes and all compounds in KEGG ligands.

Enzyme recognition is the primary event involved in the

interaction of proteins with other proteins and with small

molecules such as metabolites and therapeutics. Predicting drug-

enzyme interactions has direct application for completing genome

annotations, finding enzymes for synthetic chemistry, and

predicting drug specificity, promiscuity and pharmacology. It is

suggested that the secondary structure information plays the major

role in determining the drug-enzyme interactions activity. For

example, cytochrome P450 (CYP) induction-mediated interaction

is one of the major concerns in clinical practice and for the

pharmaceutical industry [97]. Induction of CYP1A enzymes with

a specific structure-stable state may activate some xenobiotics to

their reactive metabolites, leading to toxicity [98,99]. Amino acid

composition and hydrophobicity also contribute considerably to

Drug-Target Interactions
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these interactions. An insertion/deletion (I/D) polymorphism of

the angiotensin I-converting enzyme (ACE) have an influence on

the antihypertensive response, particularly when using ACE

inhibitors (ACEI) [100], mirroring that the amino acid composi-

tion did contribute to the interactions. Hydrophobicity plays a role

in determining the coefficients of drug-enzyme interaction energy

with the application to drug screening as well as in silico target

protein screening [101,102].

The G-protein coupled receptor (GPCR) superfamily, which is

comprised of estimated 600–1,000 members, is another largest

known class of molecular targets with varieties of physiological

activities and proven therapeutic value [103]. They are integral

membrane proteins sharing a common global topology that

consists of seven transmembrane alpha helices, intracellular C-

terminal, an extracellular N-terminal, three intracellular loops and

three extracellular loops [33,44]. It is suggested that secondary

structure and polarity would play a major role in determining the

drug-GPCRs interactions activity. Small secondary structures such

as helices and loops are identified as entities potentially involved in

stabilizing interactions with ligands [33]. These motifs were

situated mainly in the apical region of transmembrane segments

and included a few extracellular residues [104]. Crystal structures

of engineered human beta 2-adrenergic receptors (ARs) in

complex with an inverse agonist ligand, carazolol, provide three-

dimensional snapshots of an important G protein-coupled receptor

(GPCR) with a beta-sheet structure and forms part of the

chromophore-binding site [105]. GLIDA provides interaction

data between GPCRs and their ligands, along with chemical

information on the ligands, as well as biological information

regarding GPCRs [106]. Some of the features reflect physical

interactions that are responsible for the structural stability of the

transmembrane, the formation of extensive networks of inter-

helical H-bonds and sulfur-aromatic clusters that are spatially

organized as ‘‘polarity’’, the close packing of side-chains through-

out the transmembrane domain. When more experimental 3D

structures become available for GPCRs in the future, this will help

Figure 1. The IFS and FFS curves of the 4 groups. The detailed IFS curve with their corresponding FFS curve for (a) enzyme group, (b) ion
channel group, (c) GPCR group, and (d) nuclear receptor group.
doi:10.1371/journal.pone.0009603.g001
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building reliable models for a wider range of GPCRs that would be

suitable for docking studies. Joint use of ligand-based chemoge-

nomic and docking would certainly improve the prediction.

Ion channels are a large superfamily of membrane proteins that

pass ions across membranes and are critical to diverse physiological

functions in both excitable and nonexcitable cells and underlie

many diseases. As a result, they are an important target class which

is proven to be highly ‘‘druggable’’. According to our analysis,

secondary structure and polarity play the major role in determining

the drug-ion channels interactions activity. Secondary structure

controls the membrane potential and interrogates ion channels in

different conformational states. The drug-ion channels interaction

needs gated state where they can switch conformation between a

closed and an open state [42,43]. Simulations on model nanopores

reveal that a narrow hydrophobic region can form a functionally

closed gate in the channel and can be opened by either a small

increase in pore radius or an increase in polarity [107,108].

Nowadays, intense research is being conducted to develop new

drugs acting selectively on ion channel subtypes and aimed at the

understanding of the intimate drug–channel interaction [109].

Nuclear receptors (NR) are ligand-activated transcription factors

that regulate the activation of a variety of important target genes,

which are the most important drug targets in terms of potential

therapeutic application. According to our results, secondary

structure and polarizability play the major role in determining the

drug-NRs interactions. The conservative motif of the NR is typically

described as three stacked alpha-helical sheets. The helices that

make up the ‘‘front’’ and ‘‘back’’ sheets are aligned parallel to one

another. The helices in the middle sheet run across the two outer

sheets and only occupy the space in the upper portion of the

domain. The space in the lower part of the domain is relatively void

of protein, and for most NRs, this creates an internal cavity for

small-molecule ligands [110]. Hydrogen bonds with polarizability

activity play a crucial role in protein-drug interactions (see, e.g.,

[11]). Our approaches and the results thus obtained could be used to

demonstrate how nuclear hormone receptors form a network of

direct interactions. And this network increases in complexity to

describe the interactions with target genes as well as small molecules

known to bind a receptor, enzyme, or transporter.

A comprehensive drug-target interaction network system has

been established that contains four classifiers for predicting the

drugable interaction of compounds with enzymes, ion-channels,

GPCRs, and nuclear receptors, respectively. It is anticipated that

the network predictor system may become a very useful tool for

drug development. Particularly it may help us find new or

potential drug-target interactions.
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positive and 2 for negative; the 2nd column shows the code of target

gene; and the 3rd column shows the code of drug. All the detailed

information for the genes and drugs listed here can be found in

KEGG via their codes (Kanehisa, M., Goto, S., Hattori, M., Aoki-
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