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Abstract

Background: Accurate identification of potential interactions between drugs and protein targets is a critical step to

accelerate drug discovery. Despite many relative experimental researches have been done in the past decades,

detecting drug-target interactions (DTIs) remains to be extremely resource-intensive and time-consuming. Therefore,

many computational approaches have been developed for predicting drug-target associations on a large scale.

Results: In this paper, we proposed an deep learning-based method to predict DTIs only using the information of

drug structures and protein sequences. The final results showed that our method can achieve good performance with

the accuracies up to 92.0%, 90.0%, 92.0% and 90.7% for the target families of enzymes, ion channels, GPCRs and

nuclear receptors of our created dataset, respectively. Another dataset derived from DrugBank was used to further

assess the generalization of the model, which yielded an accuracy of 0.9015 and an AUC value of 0.9557.

Conclusion: It was elucidated that our model shows improved performance in comparison with other

state-of-the-art computational methods on the common benchmark datasets. Experimental results demonstrated

that our model successfully extracted more nuanced yet useful features, and therefore can be used as a practical tool

to discover new drugs.

Availability: http://deeplearner.ahu.edu.cn/web/CnnDTI.htm.
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Introduction
Exploring a chemical compound which selectively binds

to potential target is a highly challenging and extremely

expensive work in drug development process. Only small

amount of candidate chemical molecules have been iden-

tified to be approved drugs, while massive compounds

still have unknown interaction profiles with proteins
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[1–3]. The identification of drug-target interactions

(DTIs) is imperative for new drugs, as this would aid

to narrow down the amount of prospective drug candi-

dates and detect side effects in advance [4]. Detecting

such interactions between drugs and targets also provides

insights into experimental design of drug discovery [5].

In the past decades, in silico approaches have been reg-

ularly developed to complement drug discovery research,

which are capable of speeding up the experimental wet

lab research and reduce tedious and laborious work [6–9].

These approaches play a vital role in discriminating

potential associations between drugs and targets, which

provides a clue to uncover the underlying functions of

many classes of pharmaceutically useful protein targets
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including enzymes, ion channels, G protein-coupled

receptors(GPCRs) and nuclear receptors [10].

Significant computational methods have been devel-

oped to predict DTIs, which are mainly categorized into

three strategies: ligand-based approaches [11], docking

approaches[12, 13] and chemogenomic approaches. The

prerequisite of docking methods is the available 3D struc-

ture of a drug or a protein; while ligand-based methods

often produce unreliable results when the number of

known binding ligands of a target protein is insufficient

[14]. Thus, many studies have focused on chemogenomic

methods, which can be used to yield successful predic-

tions of DTIs on widely abundant biological data.

Most of chemogenomic methods are based on a key

assumption that similar drugs may bind to similar tar-

gets, and vice versa [15]. For example, Chen et al. [16]

proposed an ensemble system to predict protein ligand

binding sites in DTI. Yamanishi et al. [17] developed a new

unified framework integrated with chemical, genomic and

pharmacological spaces to increase research productiv-

ity toward genomic drug discovery. It was elucidated

that pharmacological effect similarity is more important

than chemical structures similarity in the prediction of

unknown DTIs. Keiser et al. [18] used a chemical simi-

larity method following the underlying assumption that

similar drugs usually interact with similar protein tar-

gets for each drug-protein connection. However, limited

known small molecules and different protein families

render it unsuitable for large-scale applications. A semi-

supervised learning approach, a new kernel from known

drug-target interaction network based on the standard

Laplacian regularized least square [19], exploited not only

small amount of labeled data but also sufficient unlabeled

data in order to obtain the maximum generalization abil-

ity from heterogeneous biological spaces. A systematic

approach based on both Random Forest (RF) and Sup-

port Vector Machine (SVM) classifier took into accounts

the structural and physicochemical properties of proteins

derived from primary sequences of proteins, which was a

robust and efficient tool to distinguish the novel scaffold

hopping ligands of the receptors [20].

It is well known that traditional machine learning

approaches have achieved remarkably successful applica-

tions in different fields, but at the expense of manually

selected and tuned features [21]. Deep learning tech-

niques have attracted growing attention for the ability

of automatically learning informative features. The rea-

son for this is in that deep learning method simplifies

the progress of manual feature selection and outperforms

other competitive methods. In recent years, deep learn-

ing has been a promising and attractive tool for dealing

with large, high-dimensional, and complex biological and

chemical data. A multi-scale feature deep representations

(MFDR) inferring interactions firstly reconstructed drug

and protein features with low-dimensional vectors by

Auto-Encoders and then these features was used to train a

prediction model by SVM [22]. Wen et al. [23] developed

a model termed as DeepDTIs to accurately identify drug-

target associations. It was the first time to exploit deep-

belief network to automatically extract meaningful fea-

tures from simple chemical substructures and sequence

order information.

In this paper, we proposed an deep-learning-based

predictive model to discriminate potential associations

between drugs and target proteins. The features of a

drug-target pair were characterized as two parts. One

consists of target descriptors that are encoded by amino

acid physicochemical properties extracted from AAin-

dex1 database. The other consists of drug descriptors that

are computed by a PaDEL-Descriptor toolbox. The con-

catenated vectors of pairs of drugs and targets were pro-

jected into a 784-dimensional subspace by random projec-

tion methodology and sequently they were reshaped into

a 28×28 matrix. Thereafter the predictive deep-learning-

based model was built using different types of image-like

matrices generated by random matrices. The final results

were the ensemble of several predictors by majority vot-

ing technique on the same drug-target pairs. The method

was evaluated by several different benchmark datasets and

showed significant performance.

Methods
Datasets

In this work, potential interactions between drugs and

target proteins were investigated on three benchmark

datasets. Two datasets were derived from KEGG DRUG

database while the other one was built from DrugBank

database (http://www.drugbank.ca/). KEGG DRUG cap-

tures abundant approved drugs in Japan, USA and Europe

based on the chemical structure andmolecular interaction

network information, of which most drugs reported cor-

responding the information of target proteins [24]. While

DrugBank offers an appealing freely available resource to

the public, including 2555 approved small molecule drugs

and 5121 detailed non-redundant sequences of target

proteins [25].

The first dataset is provided from reference [26], called

as Dataset1. In Dataset1, 4797 drug-target pairs were

regarded as positive samples, where are 2719 pairs for

enzymes, 1372 for ion channels, 630 for GPCRs and 86

for nuclear receptors. The corresponding negative sam-

ples were generated by random selection. The detailed

progress is described in the following steps: (i) re-coupling

all drugs and targets in the benchmark dataset into pairs

after removing those known drug-target interactions in

the positive samples. (ii) randomly selecting negative

samples until the number of negative samples reached

exactly two times as many as that of positive samples.

http://www.drugbank.ca/
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The second dataset of DTIs, called Dataset2, was

manually collected. Protein kinases were integrated into

enzymes in the database. Besides, drugs without struc-

tural information and target proteins without primary

sequence were discarded in the dataset. The drug-target

pairs in Dataset2 which is redundant and overlapping

with Dataset1 were also omitted. As like Dataset1, the

number of corresponding negative samples in Dataset2 is

twice asmany as positive samples. Ultimately, 16140 drug-

target pairs were obtained in Dataset2, where 3627 for

enzymes, 5511 for ion channels, 5955 for GPCRs and 1047

for nuclear receptors. Figure 1 illustrates the number of

drugs, target proteins as well as drug-target pairs on both

Dataset1 and Dataset2. The detailed information can be

referred to Additional file 1.

The last dataset is from reference [23] , called Dataset3,

where inorganic compounds or very small molecule com-

pounds were omitted. The dataset consists of 6262 posi-

tive samples, and negative samples with the same number

as that of positive samples which were generated by ran-

dom selection. Thus, 12524 potential drug-target pairs

were used in this work.

Drug representations

Molecular descriptor is indeed a series of fixed-length

number to represent the effective chemical informa-

tion encoded within a symbolic representation of small

molecule [27]. Currently, it has been routinely applied

in cheminformatics area such as QSAR analysis, vir-

tual screening and drug ADME/T prediction, as well as

other drug discovery processes. PaDEL-Descriptor is an

appealing graphical user interface (GUI) toolbox using

Java language to calculate the descriptors of chemical

small molecules, which can work on different platforms.

It currently involves 1444-dimensional 1D, 2D descrip-

tors, 134-dimensional 3D descriptors and 10 kinds of

fingerprints [28]. In this study, 1444-dimensional 1D

and 2D descriptors were employed to represent the

drug candidates, which can be formulated as D =

[D1,D2,D3, . . . ,D1444].

Protein representations

For predicting DTIs, the sequences of target proteins

are encoded by different physicochemical properties of

amino acids. In order to improve the final predictive per-

formance, 34 properties were extracted from AAindex1

database with the correlation coefficient less than 0.5 [29].

In this process, the correlation coefficients between two

properties were calculated and ranked in order. Then,

for each property, the number of correlation coefficients

more than 0.5 between the property and the other prop-

erties was recorded. These properties were ranked in

descend order. Beginning from the top property to the

lowest one, other properties having correlation coefficient

with the beginning property were subsequently removed

if the value is more than 0.5. Finally, 34 properties are

retained when the process was completed. Protein targets

were encoded using these properties by Moran autocor-

relation descriptors algorithm [30, 31]. Moran autocorre-

lation has been widely applied in the prediction of helix

contents, and it mainly takes account of the influence of

neighboring amino acids around a certain central amino

acid[32]. The encoded Moran autocorrelation descriptors

of target proteins, called as T, is formulated as follows:

T(d) =

1
N−d

∑N−d
i=1 (Pi − P)(Pi+d − P)

1
N

∑N−d
i=1 (Pi − P)2

(1)

where Pi and Pi+d are property values in one of 34 amino

acid properties at sequence positions i and i+d, respec-

tively; d is the distance between the i-th residue and neigh-

boring residue; N is the length of the protein sequence;

P is the average value of Pi , i.e. P =

(

∑N
i=1 Pi

)

/N , and

d is set as 13 in this work. Therefore, for each of the 34

Fig. 1 Data statistics. The distribution of the numbers of drugs, targets and drug-target pairs on two benchmark datasets (Dataset1 and Dataset2)
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properties, one protein is represented by vector Tm
=

[T1,T2,T3, . . . ,T13] ,m = 1 ∼ 34. Then 34 vectors are

concatenated so that target descriptors are characterized

by vector Tp =[T1,T2,T3, . . . ,T442].

Convolutional neural network

An effective deep learning architecture called Convo-

lutional Neural Network (CNN) was widely applied in

many areas involving image and video recognition, rec-

ommender systems and natural language processing [33].

In addition, a growth number of interesting results has

been seen in biomedical applications such as neuronal

membrane segmentation and drug discovery. CNN is

well-known as feed-forward artificial neural networks

inspired by biological processes in that the connectivity

pattern between neurons simulates the cognition function

of human neural systems [34]. Compared with traditional

multilayer perceptron (MLP), the training parameters of

CNN are immensely reduced, allowing the network to

be deeper with fewer parameters. Thus, CNN can effec-

tively address the problem of vanishing or exploding gra-

dients in the progress of back propagation [35, 36]. A

CNN architecture is formed by a stack of distinct lay-

ers including convolutional layers, pooling layers and fully

connected layers. The convolutional layer represents the

core building block of a CNN topology, which is param-

eterized by a set of learnable filters (or kernels) sliding

over a vector or matrix and the result of each filter is

called a feature map [37]. Pooling is an operation mostly

applied after each convolutional layer, which combines

responses at different locations and adds robustness to

small spatial variations. Thus, it speeds up the conver-

gence and reduces the amount of computation of neural

networks. The outputs of the l-th layer and its previ-

ous layer are respectively denoted as Vl, Vl−1, involving

only two parts of trainable parameters ( i.e. the weight

matrix Wl and the bias vector bl). The process can be

formulated as:

Vl = pool(f (Vl−1 ∗ Wl + bl)), (2)

where ∗ represents the convolution operation, pool

denotes the max-pooling operation, and f (·) is the activa-

tion function.

A dropout layer as a regularization strategy is designed

to alleviate the overfitting issue by the means that stochas-

tically adds noise to the hidden layers. The nodes defined

as ’dropped out’ do not contribute to the forward pass and

do not participate in backpropagation. Fully connection

layer usually represents the final layers of a deep neu-

ral network topology, of which each neuron is completely

connected to all of the nodes in previous and the next

layers [38].

Figure 2 illustrates the CNN-based prediction model,

which resembles the LeNet-5 framework, adding only one

convolutional layer and one pooling layer. In this work,

LeNet-5 is considered as a baseline for the comparison of

deep learning algorithms due to containing small amount

of parameters.

The construction of CNN-based model

Since small dataset used for deep learning model may

reduce the generalization ability of the model, data aug-

mentation schema was adopted. First, let’s see one poten-

tial drug-target pair that was represented by [D,T],

where the vectors is simply a concatenation of 342-

dimensional drug vectors D =[D1,D2,D3, . . . ,D342] and

442-dimensional vectors of protein descriptors T =

[T1,T2,T3, . . . ,T442]. In this way, the input vectors of

our training model comprehensively consider the infor-

mation of small chemical molecules and target pro-

teins. Additionally, drug vectors with almost the same

number of target vectors, which decrease the biases

caused by the different amount of vectors. So it makes

easier and fairer to train an appropriate model to

identify DTIs. As shown in Fig. 3, 342-dimensional

drug vectors of each drug-target pair (i.e. [D,T]=

[D1,D2,D3, . . . ,D342,T1,T2,T3, . . . ,T442]) were gener-

ated by random selection. Then the process was repeated

n times and n sets of drug vectors were respectively joined

to the 442-dimensional target descriptors. That is to say,

Fig. 2 The architecture of our convolutional neural networks. This topology is similar to LeNet-5 networks which contains three convolutional layers,

two pooling layers and one fully connected layer
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Fig. 3 The flowchart of the CNN-based DTI predictions. The final result is represented by 0 or 1 which means non-DTI or DTI

one drug-target pair was represented by n sets of gener-

ated drug-target pair (Vn =[Dn,T]
1×784, n=1,2,. . . ) which

involving n different randomly selected drug vectors. The

progress is terminated until the number of all drug-target

pairs is around 40000 ∼ 50000. Thus, the n-times pairs

were regarded as the characterization of one drug-target

pair.

After that, the features of each drug-target pair were

reshaped into a 28 × 28 matrix, which is similar to digi-

tal image recognition and easily used to train a predictive

model through CNN algorithm. The final predictions

were yielded by the ensemble of n-times pairs’ predic-

tion values. In the ensemble, one drug-target pair is

predicted to be interacting if at least half of the n-pairs

were predicted as positive samples, otherwise it is a non-

interaction pair. The construction of our model pipeline is

illustrated in Fig. 3.

Measurement of prediction quality

In this work, four metrics, accuracy (Acc), sensitivity

(Sen), precision (Pre) and F1 score (F1), were exploited

to evaluate whether the candidate drug and a target pro-

tein are interacting. Specifically, F1 score comprehensively

measures the rate of sensitivity and precision which is

proved to be more credible and objective[39, 40]. Mean-

while, area under the receiver operator characteristic

curve (AUC) value is also a common evaluation met-

ric used in machine learning and data mining research

to check the ability of a binary classifier system, as its

discrimination threshold is varied [41]. The following for-

mulas illustrate the detailed calculation of these metrics.

Acc =
TP + TN

TP + FP + TN + FN

Pre =
TP

TP + FP

Sen =
TP

TP + FN

F1 =
2 × Sen × Pre

Sen + Pre

(3)

In which, TP (True Positive) and TN (True Negative)

respectively represent the correctly predicted drug-target

interaction pairs and non-interaction pairs. FP (False Pos-

itive) means non-interaction pairs predicted as positive

samples and FN (False Negative) is that negative instances

are wrongly predicted as DTIs pairs.

Results
Performance for predictive drug-target interactions

Since target proteins are classified into four pharmaceuti-

cally types of drug-target classes, four different predictors

using the same parameters were constructed by 10-fold

cross-validation to evaluate the performance of our mod-

els. That is to say, our dataset was randomly partitioned

into 10 disjoint subsets, where one subset is considered

as test set while the remaining subsets are regarded as

training set. This progress was repeated 10 times until all

instances are tested.

First, Dataset2 was used to train the model to distin-

guish DTIs. As shown in Table 1, the model achieves

accuracies and AUCs for four DTI classes all more than

0.90 on Dataset2. The model for enzymes yields the high-

est performance among the four DTIs classes, with an

accuracy of 0.920, a sensitivity of 0.881, a precision of

0.880, an F1 of 0.881 and an AUC value of 0.973. It is

Table 1 The detailed performance for the four protein families

on both Dataset1 and Dataset2 by 10-fold cross validation

Type Acc Sen Pre F1 AUC

Enzymes Dataset1 0.943 0.927 0.903 0.915 0.985

Dataset2 0.920 0.881 0.880 0.881 0.973

Ion channels Dataset1 0.919 0.894 0.867 0.881 0.970

Dataset2 0.900 0.948 0.792 0.863 0.949

GPCRs Dataset1 0.884 0.818 0.831 0.824 0.945

Dataset2 0.920 0.899 0.866 0.882 0.968

Nuclear receptors Dataset1 0.884 0.872 0.798 0.833 0.936

Dataset2 0.907 0.891 0.841 0.865 0.966
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noticed that both enzymes and GPCRs classes achieve the

highest accuracy values (Acc= 0.920). It is well known that

GPCRs are the most difficult cases in the identification

of DTIs due to a few of known 3D structure information

for GPCRs. That is to say, some unknown or noise fea-

tures are confused the characterization of GPCR targets.

The results indicated that our model has a strong ability

to discriminate DTIs on GPCRs.

Subsequently, Dataset1 was used to further assess the

generalization ability of our model. To fully evaluate the

performance of our proposed model, the same param-

eters and neural network topology were used in corre-

sponding experiments. In consistent with the evaluation

on Dataset2, the model on the enzymes of Dataset1

obtains the best performance again with an AUC of 0.985,

which demonstrated that our model has an advantage on

detecting drug-enzyme interactions. However, the per-

formances on nuclear receptors and GPCRs of Dataset1

are worse than those on Dataset2, whose AUC values

are respectively falling into 0.936 and 0.945. The possible

reasonmight be that the number of DTIs in nuclear recep-

tors and GPCRs classes is smaller than others, especially

for nuclear receptors with only 258 drug-target pairs.

Figure 4 shows ROC curves for the four drug-target

interaction classes on bothDataset1 andDataset2. It indi-

cates that our proposed model can catch sufficient and

effective features by deep learning method to detect true

drug-target interactions at high true-positive rates against

low false-positive rates at any threshold.

Comparison of other machine-learning-based approaches

In order to further show the robustness and reliability of

our method, we made a comparison with the state-of-

the-art machine learning methods on the type of GPCRs

in Dataset1, such as random forests (RF) and k-Nearest

Neighbor (KNN) algorithm. For each machine-learning

method, all results were obtained with the most suitable

hyper-parameters. As displayed in Table 2, our method

yields the optimal accuracy, sensitivity, F1 score and AUC

value over these machine-learning approaches, although

Fig. 4 The ROC curves of our model. ROC performance of our method for classes of DTIs: enzymes, ion channels, GPCRs, and nuclear receptors on

both Dataset1 and Dataset2
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Table 2 Comparison with other machine learning methods on

GPCRs classes

Methods Acc Sen Pre F1 AUC

Our model 0.920 0.899 0.866 0.882 0.968

KNN 0.830 0.852 0.703 0.770 0.897

Random Forests 0.912 0.856 0.878 0.867 0.958

The highest values are highlighted in bold

the RF achieves the highest precision of 0.878. How-

ever, F1 score is regarded as a more important evaluation

metric for DTIs predictions because it measures the bal-

ance between precision and sensitivity. The AUC obtained

by our method is 0.968, which is respectively 1.5% and

11.2% better than RF and KNN. In summary, under the

same dataset, our model outperformed other competitive

machine-learning methods, which suggested that deep

learning technique is an effective tool to excavate more

nuanced features to complete the classification of drug-

target interactions.

Comparison with other works

Our method was also compared with the following two

methods, namely, the work in reference [26] and Zhang’s

research [42], by testing the capabilities on Dataset1. The

comparative results showed that our model outperformed

other existing methods in accuracy, even though the accu-

racy of DrugRPE on nuclear receptors is 2.7% higher than

our model (Table 3). It may be most likely due to the

limited number of DTIs on nuclear receptors (only 258

samples), so ourmodel cannot be fully trained to reach the

optimal prediction performance of the model. For deep

learning-based model, large-scale data tends to produce

robust and powerful performance.

However, our model achieves the best results on

enzymes, ion channels and GPCRs, which is respectively

4.3%, 2.9% and 3.2% higher than DrugRPE. Compared

with the reference [26], our model obtains much higher

accuracy values on all four protein families.

Comparison with deep-belief network

More experiments were also investigated to further ver-

ify the performance of our method on different datasets.

There were many attractive implementations of deep

Table 3 Performance comparison in accuracy of our method

with two methods on Dataset1

Methods Enzymes Ion channels GPCRs Nuclear receptors

Our method 0.943 0.919 0.884 0.884

DrugRPE 0.900 0.890 0.852 0.911

Ref. [26] 0.855 0.808 0.785 0.857

The highest values are highlighted in bold

learning technique in various research areas since Hinton

et al. [43, 44] first proposed deep-belief network (DBN)

which is composed of several simple, unsupervised stack-

ing restricted Boltzmann machines (RBMs), where each

subnetwork’s hidden layer serves as the visible layer for

the next. Owing to connections between layers but not

between units within each hidden layer, DBN can be

designed more deeper than traditional artificial neural

networks. This prevailing algorithm has gradually pro-

vided potent insights in the progression of drug discovery.

At present, convolutional neural network almost has

been less applied in the identification of DTIs. Herein,

experiments of our model were made on the same dataset

(i.e. Dataset3) in comparison with reference [23]. So it

is another way to verify that convolutional neural net-

work is also an excellent deep learning technique in the

discrimination of drug-target associations. To make the

comparison fair, the experimental data for the two works

are the same as above. The performance comparison is

shown in Table 4. In Table 4, our model achieves an accu-

racy of 90.15% and an AUC of 95.57%, which are 4.30%

and 3.99% higher than baseline method, respectively. The

noticeable performance improvement of our model fur-

ther demonstrated that our model has superior ability

in DTIs predictions even though databases derived from

various resources.

The influence of hyper-parameters

Three key hyper-parameters were explored to get the

optimal performance for our CNN model, namely neural

networks topology, learning rate, and batch normalization

layer. In this work, experiments for one hyper-parameter

in a range were implemented with fixing other hyper-

parameters, and then searched the hyper-parameter for

achieving the best performance.

Neural networks topology

In this study, LeNet-5 was regarded as the baseline

method and compared with our proposed CNN archi-

tecture on the same dataset. Indeed, LeNet-5 per-

formed slightly worse (Acc=0.900, Sen=0.893, Pre=0.822,

F1=0.856 and AUC=0.958, shown in Fig. 5a) than our

model. It indicated that deeper neural network is able to

extract more useful information, which makes the accu-

racy of the model further enhanced.

Table 4 Overall performance of DBN and our method on

Dataset3

Methods TPR TNR Acc AUC

DBN 0.8227 0.8953 0.8588 0.9158

Our model 0.9482 0.8673 0.9015 0.9557

The highest values are highlighted in bold
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Fig. 5 The predictive performance with different hyper-parameters. a comparison predictive performance results of our model with LeNet-5 model

b performance of our model with different learning rates

Learning rate

Learning rates(lr) of 0.01, 0.001 and 0.0001 were also

investigated for CNN in our study. In fact, learning rate

greatly influences the final performance of CNN, and it

is worth exploring a fit value on different datasets. Large

learning rate leads to loss vanish so that valuable fea-

tures cannot be excavated; while small one results in

hardly converging for specific model which takes a long

time to train a model and makes the model yielding

slightly worse performance. Figure 5b shows the perfor-

mance comparison of model with different learning rates

on the GPCRs family of Dataset2. From the Fig. 5b, it is

noted that the model with the learning rate of 0.001 per-

forms the best as it achieved an AUC of 2.6% higher than

that with the learning rate of 0.0001. When the learn-

ing rate is set to 0.01, the loss of the model is emerged

as a vacant value, which is why it wasn’t illustrated in

this work.

Batch normalization layer

Batch normalization (BN) is a crucial trick for achiev-

ing successful performance of deep learning methods,

which allows for easily training and converging mod-

els. Models without BN layer make the output distri-

butions of models inconsistent that leads to a severe

increase in error rate. In our experiments, the CNN

architecture with BN layer yielded better generaliza-

tion ability, while that without BN may be ended up

with vacant loss. Thus, BN can effectively normalize

data into an opposite range so that our model can eas-

ily predict input instances to be either interaction or

non-interaction.

Discussion
Motivated by those above results, three common issues

which probably affected the final prediction performance

of our proposed model were raised and they are then

discussed in this section.

Are loss values reasonable for each protein family?

In the training process of CNN, loss value is usually

regarded as an essential indicator to inspect the conver-

gence of model, which means the time that our model

learns useful features to correctly predict associations

between drugs and target proteins. Since the same param-

eters were used on the four classes of DTIs, their loss

tendencies are similar (shown in Fig. 6). For the four

classes, the loss values showed the sharpest drop during

the first 1000 iterations, which achieved accuracies about

85%. However, afterwards, it decreased slowly with the

increase of iterations. At last, loss values fluctuated within

a range of 0.1 after 40000 iterations. It demonstrated that

our model for the four classes of DTIs has the advantages

of strong prediction ability and quick convergence speed.

Does the final result depend on the amount of non-DTIs

pairs?

In order to investigate whether the final results depend on

the number of sampling negative instances, the number

of non-DTIs pairs were changed to explore the variance

of prediction performance. The results with the three

different ratios of positive samples to negative samples

(1:1, 1:2 and 1:3) are shown in Fig. 7. The compari-

son of these three ratios illustrates that the AUC value

almost keeps stable with no obvious changes (shown in
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Fig. 6 The loss function curves for the four different classes of DTIs

Fig. 7b). Thus, it proved that our CNN model has a

strong and powerful classification ability to discriminate

DTIs. However, less number of negative samples repre-

sent higher Acc, Sen, Pre and F1, which is more easy

to discriminate interactions between drugs and targets

(shown in Fig. 7a). Therefore, the final results of ourmodel

are fewly concerned with the amount of non-DTIs pairs.

It also indicated that randomly selecting experimentally

unverified negative instances as non-DTIs pairs makes

little influence on the final performance of our model.

Is learning rate 0.001 optimal for our model?

Although our model performed successful performance

on the GPCRs family of Dataset2 when the learning rate

Fig. 7 Performance comparison of models with different ratios of positive samples to negative samples on the GPCRs family of Dataset2. a

prediction results for the three different ratios; b ROC curves for the three different ratios
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Fig. 8 Predictions of our model with learning rates around 0.001 on GPCRs family of Dataset2

is set to 0.001, the parameter is not fully demonstrated the

optimal one for the CNN model. Here, the parameter for

the model was investigated in two aspects. First, the learn-

ing rate around 0.001 (i.e. lr=0.0008, 0.0009, 0.001, 0.0011

and 0.0012) was explored. As shown in Fig. 8, all parame-

ters yielded nearly similar performance with no significant

difference. When the learning rate is 0.001, our model is

more benefited on the GPCRs family of Dataset2 with

slightly higher Acc, Sen, F1 and AUC values. But gener-

ally speaking, small range of learning rate values makes

few influence on the final results for our model. Subse-

quently, a series of learning rate as above were explored on

the other protein families of both Dataset1 and Dataset2

(shown in Additional file 2). Not all protein families

performed the best when the learning rate is 0.001, that is,

6 (except for enzymes and nuclear receptors of Dataset2)

of 8 protein families yielded the optimal performance. By

the comparison of all types of proteins on two datasets,

the learning rate 0.001 is still considered as the optimal

one for the CNN model.

Case study
We investigated several distinct interactions between 9

drugs and 5 targets on Dataset2. As depicted in Fig. 9,

the drug-target network contains 14 interactions, in which

5 targets belong to the same subtype of GPCRs, i.e.,

Fig. 9 One case of predicted DTIs. Visualization of the predicted interaction sub-network between drugs and GPCRs, where the purple circles and

yellow boxes indicate the targets and drugs, respectively; the gray edges indicate the correctly predicted DTIs
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somatostatin receptor, which is a type of hypothalamic

hormone. All of these target proteins participate in the

pathway of neuroactive ligand-receptor interaction, where

3 targets (somatostatin receptor 1, somatostatin receptor

2 and somatostatin receptor 5; i.e., hsa:6751, hsa:6752 and

hsa:6755) are crucial for cAMP signaling pathway. The

drugs are roughly categorized as four classes: vapreotide,

pasireotide, octreotide and Indium (111In) pentetreotide.

The 2D structures of three drugs (D10147, D10566,

D10497) interacting with target hsa:6755 are shown in

Fig. 9, which clearly reflects highly structural similarity.

Furthermore, the similarity score between D10497 and

D10147 operated by SIMCOMP is 0.8400. It’s also demon-

strated the hypothesis of similar drugs binding to similar

targets. In our study, these DTIs are all correctly predicted

using our proposed method, which provides a clue for

seeking massive similar chemical molecules binding to a

specific target. Thus, our model still has the advantage on

discriminating the case of drug-target associations where

multiple target proteins interacting with multiple chemi-

cal molecules. It will be a helpful tool in the application of

drug repositioning or drug repurposing.

Conclusion
Since experimental identification of drug-target interac-

tions is laborious and time-consuming, the in silico deter-

mination of interactions between drugs and target pro-

teins has become a significant step in the drug discovery

process for detecting new drugs or novel targets of exist-

ing drugs [45]. In this work, we proposed an intuitive

powerful CNN-based classifier that utilized only 1D, 2D

structural descriptors of drugs and sequences of proteins

as the information of DTIs to discriminate true interaction

pairs. A part of drug descriptors by randomly selection

and all target proteins encoded descriptors were concate-

nated and reshaped into an image-like matrix as input

vectors to characterize one drug-target pair. The whole

model was trained by CNN algorithm which achieved sat-

isfactory predictions than other baseline methods for the

identification of drug-target interactions on three differ-

ent benchmark datasets. Therefore, we showed that our

established CNN architecture is capable to capture more

potent and informative features among massive features.

We envisioned that deep learning technique will be a pre-

vailing algorithm in a wide range of drug research areas

to discriminate possible associations between drugs and

target proteins.

Supplementary information
Supplementary information accompanies this paper at

https://doi.org/10.1186/s12859-019-3263-x.

Additional file 1: This file records the detailed drug-target pairs on

enzymes, ion channels, GPCRs and nuclear receptors of the Dataset2.

Additional file 2: In this file, to obtain the optimal learning rate of our

model, a series of different learning rates are explored on each types of

protein families of both Dataset1 and Dataset2.
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