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Abstract

Background: In the context of drug discovery, drug target interactions (DTIs) can be predicted based on observed

topological features of a semantic network across the chemical and biological space. In a semantic network, the

types of the nodes and links are different. In order to take into account the heterogeneity of the semantic network,

meta-path-based topological patterns were investigated for link prediction.

Results: Supervised machine learning models were constructed based on meta-path topological features of an

enriched semantic network, which was derived from Chem2Bio2RDF, and was expanded by adding compound and

protein similarity neighboring links obtained from the PubChem databases. The additional semantic links significantly

improved the predictive performance of the supervised learning models. The binary classification model built upon the

enriched feature space using the Random Forest algorithm significantly outperformed an existing semantic link

prediction algorithm, Semantic Link Association Prediction (SLAP), to predict unknown links between compounds and

protein targets in an evolving network. In addition to link prediction, Random Forest also has an intrinsic feature

ranking algorithm, which can be used to select the important topological features that contribute to link prediction.

Conclusions: The proposed framework has been demonstrated as a powerful alternative to SLAP in order to predict

DTIs using the semantic network that integrates chemical, pharmacological, genomic, biological, functional, and

biomedical information into a unified framework. It offers the flexibility to enrich the feature space by using different

normalization processes on the topological features, and it can perform model construction and feature selection at

the same time.
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Background

Chemogenomics [1, 2] and chemical systems biology [3, 4]

aim to accelerate drug discovery inexpensively through in

silico predictions, based on a network with enriched drug-

target-disease relationships [5]. Integrated chemical and

biological networks can be used to hypothesize new clin-

ical indications for approved drugs with desired safety

profiles, and to propose new combination therapy design

[6, 7]. Drug-target interaction networks can also be uti-

lized to interpret clinical side effects by revealing modes of

drug actions [8]. Semantic standards and technologies fa-

cilitate seamless data integration across multiple domains,

and enable the construction of a heterogeneous network

consisting of various biological entities of different types,

such as compounds, proteins, and genes [9]. Several se-

mantically linked datasets, such as PubChemRDF [10],

Chem2Bio2Rdf [11], Bio2RDF [12], Open PHACTS [13],

and ChEMBL RDF [14], have been published to promote

large-scale data mining in drug discovery. A statistical

model, called Semantic Link Association Prediction

(SLAP), has been applied to Chem2Bio2RDF to predict dir-

ect links between compounds and proteins based on their

indirect links or paths with other biological objects, such

as substructures, diseases, side effects, and pathways [15].

It has been demonstrated that SLAPas a novel and vali-

dated approach to predict drug-target interactions (DTIs)

outperformed existing alternatives.

Predicting DTI is equivalent to link prediction, which

is a fundamental problem and long-standing challenge

in complex network analysis [16]. In social networks,

topological proximity, measured based on observed net-

work data, can be used to suggest future interactions
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between individuals [17]. In the context of drug discov-

ery, biological networks can be similarly leveraged to

identify potential associations between compounds and

protein targets. Typical network-based DTI predictions

are often based on similarity profiles calculated from

common neighbors or direct connections, and are usually

limited to bipartite networks [18–21]. However, most

similarity-based link prediction algorithms designed for

homogeneous networks cannot take into account the het-

erogeneous types and relations defined in semantic net-

works; furthermore, it is fairly challenging to consider the

long paths connecting two end nodes (indirect connec-

tions), which can significantly increase large volumes of

randomness in the connectivity. Therefore, we incorpo-

rated meta-path topological features [22] for link predic-

tion. A meta-path is a composite relation, denoting a

sequence of adjacent links between any two objects in a

heterogeneous network. Adjacent links are defined with

distinct semantics, so different combinations of adjacent

links in sequences contribute distinguishably for link pre-

diction. It has been proven that meta-path-based similarity

can improve the performance of information retrieval in

heterogeneous information networks [23].

A meta-path defines a certain type of paths linking the

starting and ending objects. The total number of paths

belonging to a specific meta-path is animportant topo-

logical feature to evaluate the strength of associations

between starting and ending objects, which is often

called path count. For instance, a compound and a pro-

tein target can be connected through multiple paths

of different types: (A) compound→similar to compound

→

binds to protein; (B) compound→binds to protein→binds to

compound→binds to protein; and (C) compound→has part

substructure→part of compound→binds to protein→similar to

protein. Three meta-paths connect the starting com-

pound to the ending protein: meta-path (A) indicates

that the compound most likely binds to a protein to

which another structurally similar compound binds;

meta-path (B) shows that two compounds sharing an

observed protein target may share another protein

target as well; meta-path (C) specifies that two com-

pounds sharing a common substructure may bind to

two different protein targets that have similar protein

sequences. SLAP employs a statistical model to evalu-

ate the importance of each meta-path in link predic-

tion, which is evaluated individually based on the

distribution of its connectivity property over a set of

randomly sampled drug-target pairs. Several meta-

paths are selected according to their statistical signifi-

cances, and the aggregated connectivity properties of

the selected meta-paths are used to predict DTI.

The present work provides an alternative DTI approach

to SLAP. Rather than using a statistical model to study

the significance of meta-path topological features, we

propose a framework to take advantage of machine learn-

ing algorithms, including Random Forest (RF) and

Support Vector Machine (SVM), to construct binary

classification models to predict DTI. A more complete

drug-target connectivity map can be constructed using

the predicted links. By using machine learning models,

feature importance (i.e., the contributions of different

meta-paths to the link prediction) can be calculated at the

same time as the classification models are built. Addition-

ally, SLAP only considers path counts as a topological

feature; whereas our approach can apply different kinds of

normalization processes to path counts, including random

walk, normalized path count, and symmetric random walk

[23] to further enrich the topological feature space. In

order to compare our approach with SLAP, we have

carried out link prediction experiments on a semantic

network, called Chem2Bio2Rdf, which focuses on drug

candidates and their biological annotations. Although the

proposed approach was just used to construct a more

complete drug-target connectivity map in the present

study, it can be generalized as a framework to leverage

machine learning algorithms to study the topological

features of the heterogeneous network for link prediction.

Structural similarity links between compounds and se-

quence similarity links between proteins were added to

expand the semantic network. The usefulness of similarity

neighboring links from PubChem resources [24] is exam-

ined in the context of semantic link prediction.

Methods

Semantic network

In the Chem2Bio2RDF semantic network, nine distinct

semantic types are presented, including compounds,

proteins, adverse side effects, Gene Ontology (GO) an-

notations, ChEBI types, substructures, tissues, biological

pathways, and diseases; ten different semantic links are

incorporated, including links from compounds to ChEBI

types, from compounds to proteins, from compounds to

substructures, from adverse side effects to compounds,

from diseases to compounds, from proteins to proteins

(referring to protein-protein interactions), from proteins

to GO annotations, from diseases to proteins, from path-

ways to proteins, and from tissues to proteins. In order to

enhance link prediction performance, we enriched the

linked dataset by adding two more semantic links: com-

pound neighboring links based on 2D structural similarity,

and protein neighboring links, based on sequence similar-

ity. The similarity neighboring links were obtained from

PubChem databases [25, 26]. A total of twelve adjacency

matrixes were computed based on the semantic links be-

tween any two objects. The elements of the adjacency ma-

trixes have two values: ‘0,’ indicating unobserved links, and

‘1,’ indicating observed links. The semantics and statistics

of adjacency matrixes were enumerated in Table 1; these
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were used to calculate the meta-path-based topological

features. It is noteworthy that all the semantic links in the

Chem2Bio2RDF dataset are reversible, and the adjacency

matrix for the reverse semantic links can be obtained

through a transpose of the original adjacency matrix.

Meta-path-based topological features

The meta-path topological features were encoded in

commuting matrixes, calculated by multiplying several

adjacency matrixes. To predict the links from com-

pounds to proteins, we exhaustively enumerate all the

possible meta-paths, yielding a total of 51 meta-paths.

Each commuting matrix represents a certain type of

meta-path of a given length. The length of the meta-

paths equals the number of multiplied adjacency ma-

trixes. Out of 51 commuting matrixes, 4 meta-paths are

of length 2; 11 meta-paths are of length 3; and 36 meta-

paths are of length 4. The meta-paths with length

greater than 4 are considered to be too long to make a

significant contribution to link prediction. The elements

in the commuting matrix indicate the number of path

instances linking compounds to proteins, and have non-

negative integer values. The semantics and statistics of

commuting matrixes were enumerated in Table 2. For

instance, the commuting matrix C15 represents a meta-

path: compound→similar to compound→binds to protein

→

similar to protein, which was calculated by multiplying

three adjacency matrixes: A2, A11, and A12 (Fig. 1). All

of the matrix multiplications were carried out using the

Armadillo C++ linear algebra library [27], and all of the

adjacency and commuting matrixes were encoded as

sparse matrixes to reduce memory consumption.

Two measures of topological features were calculated.

Path count (PCi,j) measures the number of path instances

between nodes i and j, which corresponds to the value of

element in the commuting matrix. We also applied

Random Walk (RW) as a normalization process to the

number of path instances, based on the overall connectivity

of the network. RW was calculated as PCi;j

�

P
Ci;• , where

PCi,• are row-wise summations.

Machine learning dataset

In order to build supervised learning models, both po-

sitive and negative labels are required. We treated

observed links between compounds and protein targets

as positive labels. A total of 5,387 positively labeled links

from Drugbank were collected, which were used to

evaluate the predictive performance of the SLAP algo-

rithm [15]. The unobserved links in the dataset can be

either spurious links or potential future links. In order

to obtain experimental evidence for the negative labels,

we surveyed the PubChem BioAssay database [28]: if the

experimental bioactivity value is greater than 10 μM, the

link of a compound protein pair is negatively labeled.

Accordingly, we obtained 26,682 negative labels out of

over 5.6 billion unobserved links between compounds

and proteins in the Chem2Bio2RDF semantic network.

In order to assess predictive performance without prior

knowledge, the positively labeled links were removed

from Chem2Bio2RDF when the meta-path-based topo-

logical features were calculated. The positively and

negatively labeled links were combined and randomly

split into training and test sets by a ratio of 2:1. In

the training set, there are 3,591 positively labeled

links and 17,788 negatively labeled links. In the test

set, there are 1,796 positively labeled links and 8,894

negatively labeled links.

The network evolves as new links are identified over

time. In order to further examine the ability of the pro-

posed framework to identify the evolution of network

Table 1 The semantics and statistics of adjacency matrixes

Index Semantics From Number of Rows To Number of Colums Counta

A1 has ChEBI type compound 258030 ChEBI type 2777 14633

A2 binds to compound 258030 protein 22056 528831

A3 has part compound 258030 substructure 290 6127

A4 induced by adverse side effect 1051 compound 258030 9004

A5 treated by disease 1284 compound 258030 927

A6 interacts with protein 22056 protein 22056 72773

A7 has GO annotation protein 22056 GO annotation 9710 89688

A8 caused by disease 1284 protein 22056 2676

A9 has participants pathway 192 protein 22056 10796

A10 expresses tissue 507 protein 22056 9905

A11 similar to compound 258030 compound 258030 6184722

A12 similar to protein 22056 protein 22056 261158

aThe number of non-zero elements in adjacency matrix
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Table 2 The semantics and statistics of commuting matrixes

Index Semantics Counta Maxb

C1 compound→similar to compound→binds to protein 1995778 395

C2 compound→binds to protein→interacts with protein 4878633 20

C3 compound→binds to protein→similar to protein 30665527 84

C4 compound→treats disease→
caused by protein 6178 3

C5 compound→similar to compound→binds to protein→interacts with protein 15086309 934

C6 compound→similar to compound→binds to protein→similar to protein 49226573 1163

C7 compound→binds to protein→binds to compound→binds to protein 126339670 30400

C8 compound→has part substructure→part of compound→binds to protein 922056 202

C9 compound→has type ChEBI type→type of compound→binds to protein 709802 324

C10 compound→induces adverse side effect→induced by compound→binds to protein 420616 194

C11 compound→treats disease→treated by compound→binds to protein 68479 25

C12 compound→binds to protein→has annotation GO annotation→annotation of protein 316095950 335

C13 compound→binds to protein→
participates in pathway→

has participants protein 82834409 328

C14 compound→binds to protein→expressed in tissue→expresses protein 53586080 76

C15 compound→binds to protein→causes disease→caused by protein 1360337 10

C16 compound→binds to protein→binds to compound→binds to protein→interact with protein 522513250 142290

C17 compound→binds to protein→binds to compound→treats disease→caused by protein 12963831 498

C18 compound→binds to protein→binds to compound→similar to compound→binds to protein 201052081 777576

C19 compound→binds to protein→binds to compound→binds to protein→similar to protein 356122463 445332

C20 compound→type of ChEBI type→type of compound→binds to protein→interacts with protein 2333739 2711

C21 compound→type of ChEBI type→type of compound→treats disease→
caused by protein 190923 194

C22 compound→type of ChEBI type→type of compound→binds to protein→similar to protein 1463743 8639

C23 compound→type of ChEBI type→type of compound→similar to compound→binds to protein 922257 8402

C24 compound→treats disease→treated by compound→binds to protein→interacts with protein 371971 162

C25 compound→treats disease→treated by compound→treats disease→
caused by protein 38708 91

C26 compound→treats disease→treated by compound→binds to protein→similar to protein 493976 400

C27 compound→treats disease→treated by compound→similar to compound→binds to protein 106013 710

C28 compound→induces adverse side effect→induced by compound→binds to protein→interacts with protein 1766464 1622

C29 compound→induces adverse side effect→induced by compound→treats disease→
caused by protein 168841 106

C30 compound→induces adverse side effect→induced by compound→binds to protein→similar to protein 1193429 5571

C31 compound→induces adverse side effect→induced by compound→similar to compound→binds to protein 765725 2744

C32 compound→has part substructure→part of compound→binds to protein→interacts with protein 3465967 902

C33 compound→has part substructure→part of compound→treats disease→
caused by protein 355993 96

C34 compound→has part substructure→part of compound→binds to protein→similar to protein 2175094 2753

C35 compound→has part substructure→part of compound→similar to compound→binds to protein 1206786 12048

C36 compound→binds to protein→interacts with protein→
has annotation GO annotation→

annotation of protein 1064451402 1929

C37 compound→treats disease→
caused by protein→has annotation GO annotation→annotation of protein 2280505 136

C38 compound→binds to protein→similar to protein→
has annotation GO annotation→annotation of protein 1480055439 50667

C39 compound→similar to compound→binds to protein→has annotation GO annotation→annotation of protein 582316693 7765

C40 compound→binds to protein→interacts with protein→participates in pathway→has participants protein 246398750 2989

C41 compound→treats disease→caused by protein→participates in pathway→has participants protein 486267 183

C42 compound→binds to protein→similar to protein→participates in pathway→has participants protein 358346529 73327

C43 compound→similar to compound→binds to protein→participates in pathway→has participants protein 149299008 7543

C44 compound→binds to protein→interacts with protein→causes disease→caused by protein 7603639 44
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connectivity, a much larger set of DTIs were collected

from the PubChem BioAssay database. PubChem Bio-

Assay categorizes depositor-provided bioactivities be-

tween compounds and protein targets into active,

inactive, and unspecified groups, according to assay

descriptions and activity values. If the interactions be-

tween compounds and protein targets are categorized as

active in PubChem BioAssay, and the active interaction

pairs have reported activity values of less than 1 μM, the

links are positively labeled; if the interactions between

compounds and proteins are categorized as inactive in

PubChem BioAssay, and there are reported activities for

the interactions, the links are negatively labeled. A set of

145,622 positively labeled links contained in the current

Chem2Bio2RDF semantic network, plus 600,000 nega-

tively labeled links, constitute a training set; another set

of 43,159 positively labeled links that are not contained

in the current Chem2Bio2RDF semantic network, but

are true positive DTIs, identified through bioassay exper-

iments, plus195,000 negatively labeled links, comprise

the test set. Since the positive DTIs in the test set were

obtained after construction of the network, this inde-

pendent test set is used to examine the ability to predict

the links in the future network based on the topological

features of the current network.

Binary classification models

In order to demonstrate how well the similarity neighbor-

ing links obtained from PubChem databases can improve

link prediction performance, we have constructed differ-

ent machine learning models, based on two sets of path

count topological features. Feature set I does not include

any meta-paths involving similarity neighboring links, so

it only contains 29 path count topological features.

Feature set II includes all of the path counts encoded in

51 commuting matrixes. We also examined the improve-

ment of predictive performance using an enriched topo-

logical feature space. RW normalization was applied to 51

path count topological features, and by combining the

path counts and random walks, we obtained feature set

III, which contains 102 topological features.

Two popular machine learning algorithms were investi-

gated. Random forest (RF) represents a collection of deci-

sion trees, which are grown from bootstrap samples of the

training data without pruning, and make predictions

based on majority votes of the ensemble trees [29]. RF

takes advantage of Out-of-Bag (OOB) error as an un-

biased estimate of generalized test error, so there is no

need to run cross-validation. RF can calculate the import-

ance of features as well. The values for a given feature are

permuted across all of the compound-protein pairs. Either

Table 2 The semantics and statistics of commuting matrixes (Continued)

C45 compound→treats disease→
caused by protein→causes disease→

caused by protein 27193 63

C46 compound→binds to protein→similar to protein→causes disease→
caused by protein 26747896 802

C47 compound→similar to compound→binds to protein→causes disease→
caused by protein 4159753 313

C48 compound→binds to protein→interacts with protein→expressed in tissue→expresses protein 222288200 453

C49 compound→treats disease→
caused by protein→expressed in tissue→expresses protein 300620 27

C50 compound→binds to protein→similar to protein→expressed in tissue→expresses protein 431134094 5974

C51 compound→similar to compound→binds to protein→expressed in tissue→expresses protein 117576353 2031

a The number of non-zero elements in commuting matrix; b the max value of element in commuting matrix.

Fig. 1 Schematic representation of calculations of commuting matrix C15 through multiplying A2, A11, and A12
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classification accuracies or node impurities (Gini indexes)

are measured before and after permutations, and the

difference in the measures is used to evaluate feature im-

portance. A default value for the number of trees was used

(ntree = 500) in the present study, which has been proven

to be satisfactory in most cases [30]. The optimal value for

tuning parameter mtry was identified by a grid search.

In contrast to the tree-based model, Support Vector

Machine (SVM) is based on a statistical learning theory

derived from the structural risk minimization principle

and Vapnik-Chervonenkis (VC) dimension [31]. A soft

margin SVM with radial basis function (RBF) kernel in

the Gaussian form was used in the present study. The

optimal values for tuning parameters (C and λ) were de-

termined by a grid search using 10-fold cross-validation.

The classification performances were evaluated using

the F1-score [32], which is the harmonic mean of preci-

sion and recall.

F1 score :

2TP

2TP þ FP þ FN
ð1Þ

F1-score can be used for statistical hypothesis testing, in

particular, for imbalanced datasets. Both RF and SVM can

calculate the probabilities of classifications, and rankings can

be derived from the probability calculations. The predictive

performance on rankings was evaluated according to Re-

ceiver Operating Characteristic (ROC) and Precision Recall

(PR) curves for all of the models. The area under the curve

for ROC (AUCROC) and PR (AUCPR) were calculated

using the natural spline interpolation encoded in the R pack-

age ‘Miscellaneous Esoteric Statistical Scripts’ (MESS). The

early hit recognitions that are considered more important in

Table 3 Statistics of binary classification models built upon different

feature sets and using different machine learning algorithms

topological feature Dataset Random Forest Support Vector Machine

mtry F1-score C λ F1-score

Feature set I Training 12 0.780 8 0.250 0.766

Test 0.735 0.719

Feature set II Training 13 0.844 16 0.062 0.810

Test 0.790 0.763

Feature set III Training 13 0.859 16 0.016 0.843

Test 0.810 0.798

Fig. 2 Receiver operating characteristic curves (a) and precision/recall curves (b) for the six models using two machine learning algorithms to

build binary classification models upon three topological feature spaces. RF means Random Forest, SVM means support vector machine, FI means

feature set I, FII means feature set II, and FIII means feature set III
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virtual screening experiments were evaluated using

Boltzmann-enhanced discrimination of ROC (BEDROC),

which was calculated using the R package ‘enrichvs.’

Results and discussion

The optimal tuning parameters and the statistical re-

sults for all the binary classification models are summa-

rized in Table 3. RF outperformed SVM across all three

feature sets. Both RF and SVM yielded consistent rank-

ings of the predictive performance for the different

feature sets: feature set III > feature set II > feature set

I. The similarity neighboring links improved the link

prediction performance on test set by 5.5 % in RF

models, and by around 4.4 % in SVM models. In

combination with RW normalization, the predictive

performance of RF models was improved by 2 %, and

the predictive performance of SVM models were

boosted by 3.5 %. The differences in predictive per-

formance were consistently demonstrated by ROC and

PR curves as well (see Fig. 2). The ROC space and PR

space agreed on the rankings of different feature sets,

in terms of predictive performance. We can see that

feature set III dominated both ROC space and PR

space for both RF and SVM models, and RF models

slightly outperformed SVM models. Since we have im-

balanced distributions for positive and negative labels,

PR curves can provide better visual representations

than ROC curves to identify the difference of predictive

performance. As shown in Fig. 2, the ROC curves were

closely clustered, and the PR curves for different

models were separated to a larger extent. The differ-

ences among AUCPRs were larger than the differences

among AUCROCs, as well (see Table 4). It is clear that

similarity neighboring links are important for link pre-

diction in the semantic network, and RW normalization

can boost predictive performance by enriching feature

space. It is noteworthy that all the machine learning

models performed fairly well on both training and test

sets without over-fitting. In addition, both feature set II

and feature set III produced AUCROCs greater than

0.92, which was produced by SLAP [15]. Hence, meta-

path-based topological features have been proven to be

valuable for link prediction in complex semantic networks

using machine learning models.

In order to further compare the proposed approached

with SLAP, we carried out link predictions using both

methods on a large set of unknown links of an evolving

semantic network. The labels of those unknown links

were derived from experimental evidence deposited in

PubChem BioAssay databases after the Chem2Bio2RDF

network was constructed. Hence, these positive labels

can be viewed as experimental validations when asses-

sing link prediction performance. The proposed frame-

work, using RF to build a binary classification model

upon feature set III, yielded much better BEDROC and

AUCROC than SLAP (Table 5). BEDROC is mainly used

to compare ranking systems in terms of early recogni-

tion [33]. Our approach yielded much better AUC of

BEDROC using a default coefficient parameter (α = 20.0)

(Table 5). The difference can be seen in Fig. 3 as well.

By applying the intrinsic feature ranking algorithm of

the RF on feature set II, we can tell which meta-paths

are important for link prediction. Feature importance

can be visualized as a dot plot (Fig. 4). Two measures

evaluated before and after permutations were used for

feature ranking: decrease of classification accuracy and

decrease of Gini index. Although two measures do not

always agree on which features are important, we still

can identify some significantly important meta-paths

according to two measures. The top four important

meta-paths were C1, C19, C16, and C39, and the net-

work nodes connected by these important meta-paths

Table 4 Area under ROC curve (AUCROC) and area under PR

curve (AUCPR) of random forest and support vector machine

classification models using different feature sets

topological
feature

Random Forest Support Vector Machine

AUCROC AUCPR AUCROC AUCPR

Feature set I 0.891 0.772 0.871 0.729

Feature set II 0.927 0.826 0.905 0.768

Feature set III 0.938 0.857 0.922 0.795

Table 5 Comparing the proposed framework (random forest

classification model applied on feature set III) with existing

algorithm SLAP using Area under ROC curve (AUCROC) and

area under PR curve (AUCPR)

AUCROC BEDROC

Feature set III 0.845 0.929

SLAP 0.670 0.672

Fig. 3 ROC curves for the Random Forest model built upon feature set

III and SLAP. RF means Random Forest and FIII means feature set III
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Fig. 4 Variable importance for Random Forest model built with feature set II. The color code for feature importance according to mean decrease

accuracy: red (>70), blue (>45 and <70), green (<45); the color code for feature importance according to mean decrease Gini index: red (>240),

blue (>240 and <100), green (<100)

Fig. 5 Box plot for the variable importance varying in 1 000 Random Forest models

Fu et al. BMC Bioinformatics  (2016) 17:160 Page 8 of 10



are compounds, proteins, and GO annotations. It is

noteworthy that the top three important meta-paths

only contain semantic links between compounds and

proteins, and the top two important meta-paths contain

similarity neighboring links. Therefore, semantic links

between compounds and proteins, including similarity

neighboring links and interaction links, played a major

role in predicting CPIs.

In contrast to SLAP, that pre-calculates feature im-

portance before making predictions, the proposed

framework can evaluate feature importance and build

predictive models at the same time. The importance of a

given topological feature may vary to some extent when

different sets of training data are considered, or when

new links are added into the network as a function of

time. We carried out an experiment to demonstrate that

feature importance may vary significantly when different

sets of data are used to build predictive models. We

constructed 1,000 RF models using randomly selected

training sets with feature set II. Each training set was

compiled by 100 positively labeled links from the

DrugBank set, and 100 negatively labeled links from the

PubChem BioAssay set with experimental bioactivity

value greater than 10 μM. The changes of feature

importance in different models can be seen in Fig. 5. It

is clearly that feature importance varied a lot in different

models. Feature C4 has the smallest standard deviation

(0.828) and feature C39 has the largest standard devi-

ation (5.537). It is noteworthy that all of the top four

importance features in the aforementioned models (C1,

C16, C19, and C39) have very large standard deviations.

Even though their importance varied a lot in different

models, their mean values were well above the average

of others; in particular, the mean values of C1 and C39

were much larger than those of other topological

features. The predictive performances of those 1,000 RF

models tested against a randomly selected set of 50

positive labels and 50 negative labels (not included in

any of those 1,000 training sets) varied a lot as well. The

highest F1-score is 0.937 and the lowest F1-score is

0.667. Hence, the selection of training set is also

very important to build highly predictive machine

learning models.

Conclusions

The semantic network integrating domain knowledge

across chemical and biological space can be leveraged

for large-scale data mining. Among the different kinds

of semantic links, drug-target connectivity maps have

drawn extensive attention, since they are beneficial for

drug discovery and development, in particular, drug

repositioning and polypharmacology research. In the

present work, we have proposed a framework to con-

struct state-of-the-art machine learning models using

meta-path-based topological features for link prediction

in complex semantic networks. Supervised classification

models were shown to be powerful, based on their

predictive performance in an independent test set

containing links of an evolving network. In addition, the

intrinsic feature ranking algorithm embedded in ma-

chine learning models can be used to select the most

important topological features. Although the proposed

framework was only applied to predict DTIs in the

present work, it can definitely be used for other pur-

poses, such as to predict associations between drugs and

adverse side effects, as well as associations between

proteins and diseases. In the future, we want to study

how to select the most relevant training set for a given

prediction task, and how much training set selection can

improve predictive performance.
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