
Predicting Dynamic Embedding Trajectory in Temporal
Interaction Networks

Srijan Kumar,
Stanford University, USA and Georgia Institute of Technology, USA

Xikun Zhang,
University of Illinois, Urbana-Champaign, USA

Jure Leskovec
Stanford University, USA

Abstract

Modeling sequential interactions between users and items/products is crucial in domains such as e-

commerce, social networking, and education. Representation learning presents an attractive

opportunity to model the dynamic evolution of users and items, where each user/item can be

embedded in a Euclidean space and its evolution can be modeled by an embedding trajectory in

this space. However, existing dynamic embedding methods generate embeddings only when users

take actions and do not explicitly model the future trajectory of the user/item in the embedding

space. Here we propose JODIE, a coupled recurrent neural network model that learns the

embedding trajectories of users and items. JODIE employs two recurrent neural networks to

update the embedding of a user and an item at every interaction. Crucially, JODIE also models the

future embedding trajectory of a user/item. To this end, it introduces a novel projection operator

that learns to estimate the embedding of the user at any time in the future. These estimated

embeddings are then used to predict future user-item interactions. To make the method scalable,

we develop a t-Batch algorithm that creates time-consistent batches and leads to 9× faster training.

We conduct six experiments to validate JODIE on two prediction tasks— future interaction

prediction and state change prediction—using four real-world datasets. We show that JODIE
outperforms six state-of-the-art algorithms in these tasks by at least 20% in predicting future

interactions and 12% in state change prediction.

1 INTRODUCTION

Users interact sequentially with items in many domains such as e-commerce (e.g., a

customer purchasing an item) [48], education (a student enrolling in a MOOC course) [31],

and social and collaborative platforms (a user posting in a group in Reddit) [19, 24]. The

same user may interact with different items over a period of time and these interactions

change over time [4, 5, 17, 21, 34, 37, 48]. These interactions create a network of temporal
interactions between users and items. Figure 1 (left) shows an example network between

users and items, with each interaction marked with a time stamp tr and a feature vector fr

srijan@cs.stanford.edu.

HHS Public Access
Author manuscript
KDD. Author manuscript; available in PMC 2019 September 19.

Published in final edited form as:
KDD. 2019 August ; 2019: 1269–1278. doi:10.1145/3292500.3330895.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(such as the review text or the purchase amount). Accurate real-time recommendation of

items and predicting change in the state of users are fundamental problems in these domains

[5, 6, 22, 30, 36, 40, 43]. For instance, predicting when a student is likely to drop out of a

MOOC course is important to develop early intervention measures [23, 46] and predicting

when a user is likely to turn malicious on social platforms, like Reddit and Wikipedia,

ensures platform integrity [9, 25, 26].

Representation learning, or learning low-dimensional embeddings of entities, is a powerful

approach to represent the evolution of users’ and items’ properties [8, 11, 13, 14, 48, 50].

However, the recent methods that generate dynamic embeddings suffer from four

fundamental challenges. First, a majority of the existing methods generate an embedding for

a user only when she takes an action [8, 11, 47, 48, 50]. However, consider a user who

makes a purchase today and its embedding is updated. The embedding will remain the same

if it returns to the platform on the next day, a week later, or even a month later. As a result,

the same predictions and recommendations will be made to her regardless of when she

returns. However, a user’s intent changes over time [10] and thus her embedding needs to be

updated (projected) to the query time. The challenge here is how to accurately predict the

embedding trajectories of users/items as time progresses. Second, entities have both

stationary properties that do not change over time and time-evolving properties. Some

existing methods [11, 44, 48] consider only one of the two when generating embeddings.

However, it is essential to consider both in a unified framework to leverage information at

both scales. Third, many existing methods predict user-item interactions by scoring all

items for each user [8, 11, 48, 50]. This has linear time complexity and is not practical in

scenarios with millions of items. Instead, methods are required that can recommend items in

near-constant time. Fourth, most models are trained by sequentially processing the

interactions one at a time, so that the temporal dependencies between the interactions are

maintained [11, 44, 48]. This prevents such models from scaling to datasets with millions of

interactions. New methods are needed that can be trained with batches of data to generate

embedding trajectories.

Present work.

Here we present JODIE which learns to generate embedding trajectories of all users and

items from temporal interactions1. The embedding trajectories of the example network are

shown in Figure 1 (right). The embeddings of the user and item are updated when a user

takes an action and a projection operator predicts the future embedding trajectory of the user.

Present work:

JODIE.—Each user and item has two embeddings: a static embedding and a dynamic

embedding. The static embedding represents the entity’s long-term stationary property,

while the dynamic embedding represents time-varying property and is learned using the

JODIE algorithm. Both embeddings are used to generate the trajectory. This enables JODIE
to make predictions from both the stationary and time-varying properties of the user.

1JODIE stands for Joint Dynamic User-Item Embeddings.

Kumar et al. Page 2

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The JODIE model consists of two major components: an update operation and a projection

operation.

The update operation of JODIE has two Recurrent Neural Networks (RNNs) to generate

user and item embeddings. Crucially, the two RNNs are coupled to explicitly incorporate the

interdependency between users and items. After each interaction, the user RNN updates the

user embedding by using the embedding of the interacting item. Similarly, the item RNN

uses the user embedding to update the item embedding. The model also has the ability to

incorporate feature vectors from the interaction, for example, the text of a Reddit post. It

should be noted that JODIE is easily extendable to multiple types of entities by training one

RNN for each entity type. In the current work, we show how to apply JODIE to the case of

bipartite interactions between users and items.

A major innovation of JODIE is that it also uses a projection operation that predicts the

future embedding trajectory of the users. Intuitively, the embedding of a user will change

slightly after a short time elapses since her previous interaction (with any item), while the

embedding can change significantly after a long time elapses. As a result, JODIE trains a

temporal attention layer to project the embedding of users after some time Δ elapses since its

previous interaction. The projected user embedding is then used to predict the item that the

user is most likely to interact with.

To predict the item that a user will interact with, an important design decision is to output

the embedding of an item, instead of an interaction probability. Current methods generate a

probability score of interaction between a user and an item, which takes linear time to find

the most likely item because probability scores for all items have to be generated first.

Instead, by directly generating the item embedding, we can recommend the item that is

closest to the predicted item in the embedding space. This can be done efficiently in constant

time using the locality sensitive hashing (LSH) techniques [27].

Present work:

t-Batch.—Most existing models learn embeddings from a sequence of interactions by

processing one interaction after the other, in increasing order of time to maintain the

temporal dependency among the interactions [11, 44, 49]. This makes such algorithms

unscalable to real datasets with millions of interactions. Therefore, we create a batching

algorithm, called t-Batch, to train JODIE by creating training batches of independent

interactions such that the interactions in each batch can be processed in parallel. To do so,

we iteratively select independent edge sets from the interaction network. In every batch,

each user and item appears at most once and the temporally-sorted interactions of each user

(and item) appear in monotonically increasing batches. Experimentally, we show that t-
Batch makes JODIE 9.2× faster than its most similar dynamic embedding baselines.

Present work:

Experiments.—We conduct six experiments to evaluate the performance of JODIE on two

tasks: predicting the next interaction of a user and predicting the change in state of users

(when a user will be banned from social platforms and when a student will drop out from a

Kumar et al. Page 3

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

MOOC course). We use four datasets from Reddit, Wikipedia, LastFM, and a MOOC course

activity for our experiments. We compare JODIE with six state-of-the-art algorithms from

three categories: deep recurrent recommender algorithms [8, 45, 52], temporal node

embedding algorithm [33], and dynamic co-evolution models [11]. JODIE improves over the

baseline algorithms on the interaction prediction task by at least 20% in terms of mean

reciprocal rank and 12% in AUC on average for predicting user state change. We further

show that JODIE is robust to the percentage of training data and the size of the embeddings.

Overall, in this paper, we make the following contributions:

•Embedding algorithm: We propose a coupled recurrent neural network model called

JODIE to learn embedding trajectories of users and items. Crucially, JODIE also learns a

projection operator to predict the embedding trajectory of users and predicts future

interactions in constant time.

•Batching algorithm: We propose the t-Batch algorithm to create independent but

temporally consistent training data batches that help to train JODIE 9.2× faster than the

closest baseline.

•Effectiveness: JODIE outperforms six state-of-the-art algorithms in predicting future

interactions and user state change predictions, by performing at least 20% better in

predicting future interactions and 12% better on average in predicting user state change.

The code and datasets are available on the project website:https://snap.stanford.edu/jodie.

2 RELATED WORK

Here we discuss the research closest to our problem setting spanning three broad areas.

Table 1 compares their differences.

Deep recurrent recommender models.

Several recent models employ recurrent neural networks (RNNs) and variants (LSTMs and

GRUs) to build recommender systems. RRN [45] uses RNNs to generate dynamic user and

item embeddings from rating networks. Recent methods, such as Time-LSTM [52] and

LatentCross [8] learn how to incorporate features into the embeddings. However, most of

these methods suffer from two major shortcomings. First, they take the one-hot vector of the

item as input to update the user embedding. This only incorporates the item id and ignores

the item’s current state. The second shortcoming is that some models, such as Time-LSTM

and LatentCross, generate dynamic embeddings only for users and not for items.

JODIE overcomes these shortcomings by learning embeddings for both users and items

using mutually-recursive RNNs. In doing so, JODIE outperforms these methods by at least

20% in predicting the next interaction and 12% on average in predicting user state change,

while having comparable running time as these methods.

Kumar et al. Page 4

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://snap.stanford.edu/jodie

Dynamic co-evolution models.

Methods that jointly learn representations of users and items have recently been developed

using point-process modeling [41, 44] and RNN-based modeling [11]. The basic idea behind

these models is similar to JODIE —user and item embeddings influence each other

whenever they interact. However, the major difference between JODIE and these models are

that JODIE trains a project operation to forecast the user embedding at any time, outputs

item embeddings instead of interaction probability, and trains the model using batching. As a

result, we observe that JODIE outperforms DeepCoevolve by at least 44.8% in predicting

the next interaction and 14% in predicting state change. In addition, most of these existing

models are not scalable because they process interactions in a sequential order to maintain

temporal dependency. JODIE overcomes this limitation by creating efficient training data

batches which makes JODIE 9× faster than these baselines.

Temporal network embedding models.

Several models have recently been developed that generate embeddings for the nodes (users

and items) in temporal networks. CTDNE [33] is a state-of-the-art algorithm that generates

embeddings using temporally-increasing random walks, but it generates one final static

embedding of the nodes. Similarly, IGE [49] generates one final embedding of users and

items from interaction graphs. Therefore, both these methods (CTDNE and IGE) need to be

re-run for every new edge to create dynamic embeddings. Another recent algorithm,

Dynamic-Triad [50] learns dynamic embeddings but does not work on bipartite interaction

networks as it requires the presence of triads. Other recent algorithms such as DDNE [29],

DANE [28], DynGem [15], Zhu et al. [51], and Rahman et al. [38] learn embeddings from a

sequence of graph snapshots, which is not applicable to our setting of continuous interaction

data. Recent models such as NP-GLM model [39], DGNN [32], and DyRep [42] learn

embeddings from persistent links between nodes, which do not exist in interaction networks

as the edges represent instantaneous interactions.

Our proposed model, JODIE overcomes these shortcomings by generating and predicting the

trajectories of users and items. In doing so, JODIE performs 4.4× better than CTDNE in

predicting the next interaction, while having comparable running time.

3 JODIE: JOINT DYNAMIC USER-ITEM EMBEDDING MODEL

In this section, we propose JODIE, a method to learn embedding trajectories of users

u(t) ∈ ℝn∀u ∈ 𝒰 and items i(t) ∈ ℝn∀i ∈ ℐ, ∀t ∈ [0, T] from an ordered sequence of temporal

user-item interactions Sr = (ur, ir, tr, fr). An interaction Sr happens between a user ur ∈ 𝒰 and

an item ir ∈ ℐ at time tr ∈ ℝ+, 0 < t1 ≤ t2 … ≤ T. Each interaction has an associated feature

vector fr (e.g., a vector representing the text of a post). Table 2 lists the symbols used. For

ease of notation, we will drop the subscript r in the rest of the section.

Our proposed model, called JODIE, learns an embedding trajectory for users and items and

is reminiscent of the popular Kalman Filtering algorithm [20].2 JODIE uses the interactions

to update the state of the interacting users and items via a trained update operation. JODIE
trains a projection operation that uses the previous observed state and the elapsed time to

Kumar et al. Page 5

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

predict the future embedding of the user. When the user’s and item’s next interactions are

observed, their embeddings are updated again. We illustrate the model in Figure 2 and the

projection operation in Figure 3.

Static and Dynamic Embeddings.

Each user and item is assigned two embeddings: a static and a dynamic embedding. We use

both embeddings to encode both the long-term stationary properties of the entities and their

dynamic properties.

Static embeddings, u ∈ ℝd ∀u ∈ 𝒰 and i‒ ∈ ℝd ∀i ∈ ℐ, do not change over time. These are

used to express stationary properties such as the long-term interest of users. We use one-hot

vectors as static embeddings of all users and items, as advised in Time-LSTM [52] and

TimeAware-LSTM [7]. Using node2vec [16] gave empirically similar results, so we use one-

hot vectors.

On the other hand, each user u and item i is assigned a dynamic embedding represented as

u(t) ∈ ℝn and i(t) ∈ ℝn at time t, respectively. These embeddings change over time to model

their time-varying behavior and properties. The sequence of dynamic embeddings of a user/

item is referred to its trajectory.

Next, we describe the update and projection operations. Then, we will describe how we

predict the future interaction item embeddings and how we train the model.

3.1 Embedding update operation

In the update operation, the interaction S = (u, i, t, f) between a user u and item i at time t is

used to generate their dynamic embeddings u(t) and i(t). Fig. 2 illustrates the update

operations.

Our model uses two recurrent neural networks for updates— RNNU is shared across all

users to update user embeddings, and RNNI is shared among all items to update item

embeddings. The hidden states of the user RNN and the item RNN represent the user and

item embeddings, respectively.

The two RNNs are mutually-recursive. When user u interacts with item i, RNNU updates the

embedding u(t) by using the embedding i(t−) of item i right before time t as an input. i(t−) is

the same as item i’s embedding after its previous interaction with any user. Notice that this

design decision is in stark contrast with the popular use of items’ one-hot vectors to update

user embeddings [8, 45, 52], which has the following two disadvantages: (a) one-hot vector

only contains the information about the item’s id and not the item’s current state, and (b) the

dimension of the one-hot vector becomes very large when real datasets have millions of

items, making the model challenging to train and scale. Instead, we use the dynamic

embedding of an item as it reflects the item’s current state leading to more meaningful

dynamic user embeddings and easier training. For the same reason, RNNI updates the

2Kalman filtering is used to accurately measure the state of a system using a combination of system observations and state estimates
given by the laws of the system.

Kumar et al. Page 6

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dynamic embedding i(t) of item i by using the dynamic user embedding u(t−) (which is u’s

embedding right before time t). This results in mutually recursive dependency between the

embeddings. More formally,

u(t) = σ(W1
uu(t−) + W2

ui(t−) + W3
u f + W4

uΔu)

i(t) = σ(W1
i i(t−) + W2

i u(t−) + W3
i f + W4

i Δi)

where Δu denotes the time since u’s previous interaction (with any item) and Δi is the time

since item i’s previous interaction (with any user). f is the interaction feature vector. The

matrices W1
u, …W4

u are the parameters of RNNU and matrices W1
i , …W4

i are the parameters

of RNNI. σ is a sigmoid function to introduce non-linearity. The matrices are trained to

predict the embedding of the item at u’s next interaction as explained later in Section 3.3.

Variants of RNNs, such as LSTM, GRU, and T-LSTM [52], gave experimentally similar and

sometimes worse performance, so we use RNNs in our model to reduce the number of

trainable parameters.

3.2 Embedding projection operation

Here we explain one of the major contributions of our algorithm, the embedding projection

operator, which predicts the future embedding trajectory of the user. This is done by

projecting the embedding of the user at a future time. The projected embedding can then be

used for downstream tasks, such as predicting items the user will interact with at a given

query/prediction time in the future.

Figure 3 visualizes the main idea of projecting a user’s embedding trajectory. The operation

projects the embedding of a user after some time has elapsed since its last interaction at time

t. To give an example, a short duration Δ1 after time t, the user u’s projected embedding

u(t + Δ1) is close to its previously observed embedding u(t). As more time Δ > Δ2 > Δ1

elapses, the projected embeddings drift farther to u(t + Δ2) and u(t + Δ). When the next

interaction is observed at time t + Δ, the user’s embedding is updated to u(t + Δ) using the

update operation.

Two inputs are required for the projection operation: u’s embedding at time t and the elapsed

time Δ. We follow the method suggested in LatentCross [8] to incorporate time into the

projected embedding via Hadamard product. We do not simply concatenate the embedding

and the time and pass them through a linear layer as prior research has shown that neural

networks are inefficient in modeling the interactions between concatenated inputs. Instead,

we create a temporal attention vector as described below.

We first convert Δ to a time-context vector w ∈ ℝn using a linear layer (represented by vector

Wp): w = WpΔ. We initialize Wp by a 0-mean Gaussian. The projected embedding is then

Kumar et al. Page 7

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

obtained as an element-wise product of the time-context vector with the previous embedding

as follows:

u(t + Δ) = (1 + w) ∗ u(t)

The vector 1 + w acts as a temporal attention vector to scale the past user embedding. When

Δ = 0, then w = 0 and the projected embedding is the same as the input embedding vector.

The larger the value of Δ, the more the projected embedding vector differs from the input

embedding vector and the projected embedding vector drifts over time.

We find that a linear layer works the best to project the embedding as it is equivalent to a

linear transformation in the embedding space. Adding non-linearity to the transformation

makes the projection operation non-linear, which we find experimentally to reduce the

prediction performance. Thus, we use the linear transformation as described above.

Next, we describe how we train the model to efficiently project user embeddings such that

they are useful in predicting the next item with which the user will interact.

3.3 Training to predict next item embedding

Let u interact with item i at time t and then with item j at time t + Δ. Right before t + Δ, can

we predict which item u will interact with? We use this task to train the update and

projection operations in JODIE. We train JODIE to make this prediction using u’s projected

embedding u(t + Δ).

A crucial design decision here is that JODIE directly outputs an item embedding vector,

j (t + Δ), instead of an interaction probability between u and item j. This has the advantage of

reducing the computation at inference time from linear (in the number of items) to near-

constant. Most existing methods [8, 11, 12, 45] that output an interaction probability need to

do the expensive neural-network forward pass ∣ ℐ ∣ times (once for each of item ∈ ℐ) to find

the item with the highest probability score. In contrast, JODIE only needs to do forward-

pass of the prediction layer once and output a predicted item embedding. Then the item with

the closest embedding can be returned in near-constant time by using Locality Sensitive

Hashing (LSH) techniques [27]. To maintain the LSH data structure, we update it whenever

an item’s embedding is updated.

Thus, we train JODIE to minimize the L2 difference between the predicted item embedding

j (t + Δ) and the real item embedding [j, j(t + Δ−)] as follows: ‖ j (t + Δ) − [j, j(t + Δ−)]‖2.

Here, [x, y] represents the concatenation of vectors x and y, and the superscript ‘-’ indicates

the embedding immediately before the time.

We make this prediction using the projected user embedding u(t + Δ) and the embedding i(t

+ Δ−) of item i (the item from u’s previous interaction) immediately before time t + Δ. The

reason we include i(t + Δ−) is two-fold: (a) i may interact with other users between time t
and t + Δ, and thus the embedding contains more recent information, and (b) users often

interact with the same item consecutively (i.e., i = j) and including the item embedding helps

Kumar et al. Page 8

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to ease the prediction. We use both the static and dynamic embeddings to predict the static

and dynamic embedding of the predicted item j. The prediction is made using a fully

connected linear layer as follows:

j (t + Δ) = W1u(t + Δ) + W2u + W3i(t + Δ−) + W4i‒ + B

where W1,… W4 and the bias vector B make the linear layer.

Training the model.—JODIE is trained to minimize the L2 distance between the

predicted item embedding and the ground truth item’s embedding at every interaction. We

calculate the total loss as follows:

Loss = ∑
(u, j, t, f) ∈ S

‖ j (t) − [j, j(t−)]‖2

+ λU‖u(t) − u(t−)‖2 + λI‖ j(t) − j(t−)‖2

(1)

The first loss term minimizes the predicted embedding error. The last two terms are added to

regularize the loss and prevent the consecutive dynamic embeddings of a user and item to

vary too much, respectively. λU and λI are scaling parameters to ensure the losses are in the

same range. It is noteworthy that we do not use negative sampling during training as JODIE
directly outputs the embedding of the predicted item.

Extending the loss for categorical prediction.—In certain prediction tasks, such as

user state change prediction, additional training labels may be present for supervision. The

user state change labels are binary (categorical). In those cases, we can train another

prediction function Θ:ℝn + d 𝒞 to predict the label using the embedding of the user after

an interaction. We calculate the cross-entropy loss for categorical labels and add the loss to

the above loss function with another scaling parameter. We explicitly do not just train to

minimize only the cross-entropy loss to prevent overfitting.

3.4 t-Batch: Training data batching

Here we explain the batching algorithm we propose to parallelize the training of JODIE. It is

important to maintain temporal dependencies between interactions during training, such that

interaction Sr is processed before Sk ∀r < k.

Existing methods that use a single RNN, such as T-LSTM [52] and RRN [8], split users into

different batches and process them in parallel. This is possible because these approaches use

one-hot vector encodings of items as inputs and can thus be trained using the standard Back

Propagation Through Time (BPTT) mechanism.

However, in JODIE, the mutually-recursive RNNs enable us to incorporate the item’s

embedding to update the user embedding and vice-versa. This creates interdependencies

between two users that interacted with the same item and this prevents us from simply

splitting users into separate batches and processing them in parallel.

Kumar et al. Page 9

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Most existing methods that also use two mutually-recursive RNNs [11, 49] naively process

all the interactions one at a time in sequential order. However, this is not scalable to a large

number of interactions as the training process is very slow. Therefore, we train JODIE using

a training data batching algorithm that we call t-Batch. This leads to an order of magnitude

of speed-up in JODIE compared to most existing training approaches.

Creating the training batches is challenging because it has two requirements: (1) all

interactions in each batch should be processed in parallel, and (2) processing the batches in

increasing order of their index should maintain the temporal ordering of the interactions and

thus, it should generate the same embedding as without any batching.

To overcome these challenges, t-Batch creates each batch by selecting independent edge sets

of the interaction network, i.e., two interactions in the same batch do not share any common

user or item. JODIE works iteratively in two steps: the select step and the reduce step. In the

select step, a new batch is created by selecting the maximal edge set such that each edge (u,

i) is the lowest time-stamped edge incident on both u and i. This trivially makes the batch an

independent edge set. In the reduce step, the selected edges are removed from the network.

JODIE iterates the two steps till no edges remain in the graph. Thus, each batch is

parallelizable and processing batches in order maintains the sequential dependencies.

In practice, we implement t-Batch as a sequential algorithm as follows. The algorithm

assigns each interaction Sr to a batch Bk, where k ∈ [1, ∣ ℐ ∣]. We initialize ∣ ℐ ∣ empty

batches (in the worst case scenario that each batch only has one interaction). We iterate

through the temporally-sorted sequence of interactions S1…S ∣ ℐ ∣ and add each interaction to

a batch Bk. Let maxBatch(e, r) be the batch with the largest index that has an interaction

involving an entity e till interaction Sr. Then, the interaction Sr+1 (say, between user u and

item i) is assigned to the batch with index = max(1 + maxBatch(u, r), 1 + maxBatch(i, r)).
The complexity of creating the batches is 𝒪(∣ S ∣), i.e., linear in the number of interactions,

as each interaction is used once.

It is trivial to verify that t-Batch algorithm satisfies the two requirements. t-Batch ensures

that each user and item appears at most once in every batch and thus, each batch can be

parallelized. In addition, the rth and r + 1st interactions of every user and every item are

assigned to batches Bk and Bl, respectively, such that k < l. So, JODIE can process the

batches in increasing order of their indices to ensure that the temporal ordering of the

transactions is respected.

We do not predetermine the number and size of the batches because it depends on the

interactions in the dataset. The number of batches can range between 1 and ∣ ℐ ∣. Let us

illustrate these two extreme cases. When all interactions have unique users and items, then

only one batch is created that has all the interactions. On the other extreme, if all interactions

are associated to the same user or the same item, then ∣ ℐ ∣ batches are created. Therefore,

we initialize ∣ ℐ ∣ batches and discard all trailing empty batches after assignment.

Kumar et al. Page 10

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.5 Differences between JODIE and DeepCoevolve

DeepCoevolve is the closest state-of-the-art algorithm to JODIE because it also trains two

mutually-recursive RNNs to generate embedding trajectories. However, the key differences

between JODIE and DeepCoevolve are the following: (i) JODIE uses a novel project

function to predict the future trajectory of users. Instead, DeepCoevolve maintains the same

embedding of a user between two of its consecutive interactions. Predicting the trajectory

enables JODIE to make more effective predictions. (ii) JODIE predicts the embedding of the

next item that a user will interact with. In contrast, DeepCoevolve predicts the probability of

interaction between a user and an item. During inference time, DeepCoevolve requires ∣ ℐ ∣
forward passes through the inference layer (for ∣ ℐ ∣ items) to recommend the item with the

highest score. On the other hand, JODIE takes near-constant time. (iii) JODIE is trained with

batches of interaction data, as opposed to individual interactions.

As a result, as we will see in the experiments section, JODIE significantly outperforms

DeepCoevolve both in terms of performance and training time. JODIE is 9.2× faster, 45%

better in predicting future interactions, and 13.9% better in predicting user state change on

average.

4 EXPERIMENTS

In this section, we experimentally validate the effectiveness of JODIE on two tasks: future

interaction prediction and user state change prediction. We conduct experiments on three

datasets each and compare with six strong baselines to show the following:

1. JODIE outperforms the baselines by at least 20% in terms of mean reciprocal

rank in predicting the next item and 12% on average in predicting user state

change.

2. We show that JODIE is 9.2× faster than DeepCoevolve and comparable to other

baselines.

3. JODIE is robust in performance to the availability of training data and the

dimension of the embedding.

4. Finally, in a case study on the MOOC dataset, we show that JODIE can predict

student drop-out five interactions in advance.

We first explain the experimental setting and the baseline methods and then describe the

experimental results.

Experimental setting.

We train all models by splitting the data by time to simulate the real situation. Thus, we train

all models on the first τ% interactions, validate on the next τv %, and test on the last

remaining interactions.

For a fair comparison, we use 128 dimensions as the dimensionality of the dynamic

embedding for all algorithms and one-hot vectors for static embeddings. All algorithms are

Kumar et al. Page 11

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

run for 50 epochs, and all reported numbers for all models are for the test data corresponding

to the best performing validation set.

Baselines.

We compare JODIE with six state-of-the-art algorithms spanning three algorithmic

categories:

1. Deep recurrent recommender models: in this category, we compare with RRN

[45], LatentCross [8], Time-LSTM [52], and standard LSTM. These algorithms

are state-of-the-art in recommender systems and generate dynamic user

embeddings. We use Time-LSTM-3 cell for Time-LSTM as it performs the best

in the original paper [52], and LSTM cells in RRN and LatentCross models. As

is standard, we use the one-hot vector of items as inputs to these models.

2. Dynamic co-evolution models: here we compare with the state-of-the-art

algorithm, DeepCoevolve [11], which has been shown to outperform other co-

evolutionary point-process algorithms [41, 44]. We use 10 negative samples per

interaction for computational tractability.

3. Temporal network embedding models: we compare JODIE with CTDNE [33]

which is the state-of-the-art in generating embeddings from temporal networks.

As it generates static embeddings, we generate new embeddings after each edge

is added. We use uniform sampling of neighborhood as it performs the best in the

original paper [33].

4.1 Experiment 1: Future interaction prediction

The prediction task here is: given all interactions till time t, which item will user u interact

with at time t (out of all ∣ ℐ ∣ items)?

We use three datasets in this experiments:

•Reddit post dataset: this public dataset consists of one month of posts made by users on

subreddits [2]. We selected the 1,000 most active subreddits as items and the 10,000 most

active users. This results in 672,447 interactions. We convert the text of each post into a

feature vector representing their LIWC categories [35].

•Wikipedia edits: this public dataset is one month of edits made by edits on Wikipedia

pages [3]. We selected the 1,000 most edited pages as items and editors who made at least 5

edits as users (a total of 8,227 users). This generates 157,474 interactions. Similar to the

Reddit dataset, we convert the edit text into a LIWC-feature vector.

•LastFM song listens: this public dataset has one month of who-listens-to-which song

information [18]. We selected all 1000 users and the 1000 most listened songs resulting in

1,293,103 interactions. In this dataset, interactions do not have features.

We select these datasets such that they vary in terms of users’ repetitive behavior: in

Wikipedia and Reddit, a user interacts with the same item consecutively in 79% and 61%

interactions, respectively, while in LastFM, this happens in only 8.6% interactions.

Kumar et al. Page 12

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Experimental setting.—We use the first 80% data to train, next 10% to validate, and the

final 10% to test. We measure the performance of the algorithms in terms of the mean

reciprocal rank (MRR) and recall@10—MRR is the average of the reciprocal rank and

recall@10 is the fraction of interactions in which the ground truth item is ranked in the top

10. Higher values for both are better. For every interaction, the ranking of ground truth item

is calculated with respect to all the items in the dataset.

For JODIE, items are ranked based on their L2 distance from the predicted item embedding.

The rank of the ground truth item is calculated in this ranked list.

Results.—Table 3 compares the results of JODIE with the six state-of-the-art methods. We

observe that JODIE significantly outperforms all baselines in all datasets across both metrics

on the three datasets. Among the baselines, there is no clear winner—while RRN performs

the better in Reddit and Wikipedia, LatentCross performs better in LastFM. As CTDNE

generates static embedding, its performance is low. We calculate the percentage

improvement of JODIE over the baseline as (performance of JODIE minus performance of

baseline)/(performance of baseline). Across all datasets, the minimum improvement of

JODIE is at least 20% in terms of MRR and 14% in terms of recall@10. Please note that

JODIE outperforms DeepCoevolve, the closest baseline in terms of the algorithm, by at least

44.8% in MRR across all datasets.

Noticeably, we observe that JODIE performs well irrespective of how repetitive users are—

the MRR at least 20.4% higher in Wikipedia and Reddit (high repetition datasets), and at

least 31.75% higher in LastFM (low repetition dataset). This means JODIE is able to learn to

balance personal preference with users’ non-repetitive interaction behavior.

4.2 Experiment 2: User state change prediction

In this experiment, the task is to predict if an interaction will lead to a state change in user,

particularly in two use cases: predicting if a user will be banned and predicting if a student

will drop-out of a course. Till a user is banned or drops-out, the label of the user is ‘0’, and

their last interaction has the label ‘1’. For users that are not banned or do not drop-out, the

label is always ‘0’. This is a highly challenging task as less than 1% of the labels are ‘1‘.

We use three datasets for this task:

•Reddit bans: Reddit post dataset (from Section 4.1) with ground-truth labels of banned

users from Reddit This gives 366 true labels among 672,447 interactions (= 0.05%).

•Wikipedia bans: Wikipedia edit data (from Section 4.1) with public ground-truth labels of

banned users [3]. This results in 217 positive labels among 157,474 interactions (= 0.14%).

•MOOC student drop-out: this public dataset consists of actions, e.g., viewing a video,

submitting an answer, etc., done by students on a MOOC online course [1]. This dataset

consists of 7,047 users interacting with 98 items (videos, answers, etc.) resulting in over

411,749 interactions. There are 4,066 drop-out events (= 0.98%).

Kumar et al. Page 13

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Experimental setting.—In this experiment, we train the models on the first 60%

interactions, validate on the next 20%, and test on the last 20% interactions. We evaluate the

models using the area under the curve metric (AUC), a standard metric in the tasks with

highly imbalanced labels.

For the baselines, we train a logistic regression classifier on the training data using the

dynamic user embedding as input. As always, for all models, we report the test AUC for the

epoch with the highest validation AUC.

Results.—Table 4 compares the performance of JODIE on the three datasets with the

baseline models. We see that JODIE outperforms the baselines by at least 12% on average in

predicting user state change across all datasets. JODIE outperforms RRN, the closest

competitor in the ban prediction task, by at least 2.2% while it outperforms RRN by 28% in

the student drop-out task. Note that DeepCoevolve, which is the most similar baseline

algorithmically, is outperformed by 13.9% by JODIE on average. Thus, JODIE consistently

performs the best across various datasets.

4.3 Experiment 3: Runtime experiment

Here we compare the running time of JODIE with the baseline algorithms. Algorithmically,

the DeepCoevolve is the closest to JODIE as it also trains two mutually-recursive RNNs.

The other methods train only one RNN and are therefore easily scalable.

Figure 4 shows the running time (in minutes) of one epoch of the Reddit dataset.3 We find

that JODIE is 9.2× faster than DeepCoevolve (its closest algorithmic competitor). At the

same time, the running time of JODIE is comparable to the other baselines that only use one

RNN in their model. This shows that JODIE is able to train the mutually-recursive model in

equivalent time as non-mutually-recursive models, because of the use of the t-Batch training

batching algorithm.

In addition, we find that JODIE without t-Batch took 43.53 minutes while JODIE with t-
Batch took 5.13 minutes. Thus, t-Batch results in 8.4× speed-up.

4.4 Experiment 4: Robustness to the proportion of training data

In this experiment, we validate the robustness of JODIE by varying the percentage of

training data and comparing the performance of the algorithms in both the tasks of future

interaction prediction and user state change prediction.

For the next item prediction, we vary the training data percentage from 10% to 80%. In each

case, we take the 10% interactions after the training data as validation and the next 10%

interactions next as testing. This is done to compare the performance on the same testing

data size. Figures 5(a-c) show the change in mean reciprocal rank (MRR) of all the

algorithms on the three datasets, as the training data size is increased. We note that the

performance of JODIE is stable and does not vary much across the data points. Moreover,

3We ran the experiment on one NVIDIA Titan X Pascal GPUs with 12Gb of RAM at 10Gbps speed.

Kumar et al. Page 14

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

JODIE consistently outperforms the baseline models by a significant margin (by a maximum

of 33.1%).

We make similar observations in user state change prediction task. Here, we vary training

data percents to 20%, 40%, and 60%, and in each case take the following 20% interactions

as validation and the next 20% interactions as the test. Figure 5(d) shows the AUC of all the

algorithms on the Wikipedia dataset. Other datasets have similar results. Again, we find that

JODIE is stable and consistently outperforms the baselines, irrespective of the training data

size.

4.5 Experiment 5: Embedding size

Finally, we validate the effect of the dynamic embedding size on the predictions. To do this,

we vary the dynamic embedding dimension from 32 to 256 and calculate the mean

reciprocal rank for interaction prediction on the LastFM dataset. The effect on other datasets

is similar. The resulting figure is showing in Figure 6. We find that the embedding

dimension size has little effect on the performance of JODIE and it performs the best

overall. Interestingly, improvement in JODIE is higher for smaller embedding dimensions.

This is because JODIE uses both the static and the dynamic embedding for prediction, which

gives it the power to learn from both parts.

5 CONCLUSIONS

In this paper, we proposed a coupled recurrent neural network model called JODIE that

learns dynamic embeddings of users and items from a sequence of temporal interactions.

JODIE learns to predict the future embeddings of users and items, which leads it to give

better prediction performance of future user-item interactions and change in user state. We

also presented a training data batching method that makes JODIE an order of magnitude

faster than similar baselines.

There are several directions for future work. Learning embeddings for individual users and

items is expensive, and one could learn trajectories for groups of users or items to reduce the

number of parameters. Another direction is characterizing the trajectories to cluster similar

entities. Finally, an innovative direction would be to design new items based on missing

predicted items that many users are likely to interact with.

Acknowledgements.

JL is a Chan Zuckerberg Biohub investigator. This research has been supported in part by NSF OAC-1835598,
DARPA MCS, DARPA ASED, ARO MURI, Amazon, Boeing, Docomo, Hitachi, JD, Siemens, and Stanford Data
Science Initiative. We thank Sagar Honnungar for help with the initial phase of the project.

A: APPENDIX

Here we describe some technical details of the model.

The code and datasets are available on the project website: https://snap.stanford.edu/jodie.

Kumar et al. Page 15

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://snap.stanford.edu/jodie

We coded all the models and the baselines in PyTorch. Table 6 mentions the dataset details

and Table 5 mentions the model parameters.

REFERENCES

[1]. Kdd cup 2015 https://biendata.com/competition/kddcup2015/data/.

[2]. Reddit data dump. http://files.pushshift.io/reddit/.

[3]. Wikipedia edit history dump. https://meta.wikimedia.org/wiki/Data_dumps.

[4]. Agrawal D, Budak C, El Abbadi A, Georgiou T, and Yan X. Big data in online social networks:
user interaction analysis to model user behavior in social networks. In DNIS, 2014.

[5]. Arnoux T, Tabourier L, and Latapy M. Combining structural and dynamic information to predict
activity in link streams. In ASONAM, 2017.

[6]. Arnoux T, Tabourier L, and Latapy M. Predicting interactions between individuals with structural
and dynamical information. CoRR, 2018.

[7]. Baytas IM, Xiao C, Zhang X, Wang F, Jain AK, and Zhou J. Patient subtyping via time-aware lstm
networks. In KDD, 2017.

[8]. Beutel A, Covington P, Jain S, Xu C, Li J, Gatto V, and Chi EH. Latent cross: Making use of
context in recurrent recommender systems. In WSDM, 2018.

[9]. Cheng J, Bernstein M, Danescu-Niculescu-Mizil C, and Leskovec J. Anyone can become a troll:
Causes of trolling behavior in online discussions. In CSCW, 2017.

[10]. Cheng J, Lo C, and Leskovec J. Predicting intent using activity logs: How goal specificity and
temporal range affect user behavior. In WWW, 2017.

[11]. Dai H, Wang Y, Trivedi R, and Song L. Deep coevolutionary network: Embedding user and item
features for recommendation. arXiv:1609.03675, 2016.

[12]. Du N, Dai H, Trivedi R, Upadhyay U, Gomez-Rodriguez M, and Song L. Recurrent marked
temporal point processes: Embedding event history to vector. In KDD, 2016.

[13]. Farajtabar M, Wang Y, Gomez-Rodriguez M, Li S, Zha H, and Song L. COEVOLVE: A joint
point process model for information diffusion and network co-evolution. In NeurIPS, 2015.

[14]. Goyal P and Ferrara E. Graph embedding techniques, applications, and performance: A survey.
Knowledge Based Systems, 151:78–94, 2018.

[15]. Goyal P, Kamra N, He X, and Liu Y. Dyngem: Deep embedding method for dynamic graphs.
arXiv:1805.11273, 2018.

[16]. Grover A and Leskovec J. node2vec: Scalable feature learning for networks. In KDD, 2016.

[17]. Hamilton WL, Ying R, and Leskovec J. Representation learning on graphs: Methods and
applications. IEEE Data Engineering Bulletin, 40(3):52–74, 2017.

[18]. Hidasi B and Tikk D. Fast als-based tensor factorization for context-aware recommendation from
implicit feedback. In ECML, 2012.

[19]. Iba T, Nemoto K, Peters B, and Gloor PA. Analyzing the creative editing behavior of wikipedia
editors: Through dynamic social network analysis. Procedia-Social and Behavioral Sciences,
2(4):6441–6456, 2010.

[20]. Julier SJ and Uhlmann JK. New extension of the kalman filter to nonlinear systems. In Signal
processing, sensor fusion, and target recognition VI, volume 3068, pages 182–194, 1997.

[21]. Junuthula RR, Haghdan M, Xu KS, and Devabhaktuni VK. The block point process model for
continuous-time event-based dynamic networks. CoRR, 2017.

[22]. Junuthula RR, Xu KS, and Devabhaktuni VK. Leveraging friendship networks for dynamic link
prediction in social interaction networks. In ICWSM, 2018.

[23]. Kloft M, Stiehler F, Zheng Z, and Pinkwart N. Predicting mooc dropout over weeks using
machine learning methods. In EMNLP, 2014.

[24]. Kumar S, Hamilton WL, Leskovec J, and Jurafsky D. Community interaction and conflict on the
web. In The World Wide Web Conference, 2018.

[25]. Kumar S, Hooi B, Makhija D, Kumar M, Faloutsos C, and Subrahmanian V. Rev2: Fraudulent
user prediction in rating platforms. In WSDM, 2018.

Kumar et al. Page 16

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://biendata.com/competition/kddcup2015/data/
http://files.pushshift.io/reddit/
https://meta.wikimedia.org/wiki/Data_dumps

[26]. Kumar S, Spezzano F, and Subrahmanian V. Vews: A wikipedia vandal early warning system. In
KDD, 2015.

[27]. Leskovec J, Rajaraman A, and Ullman JD. Mining of massive datasets. Cambridge university
press, 2014.

[28]. Li J, Dani H, Hu X, Tang J, Chang Y, and Liu H. Attributed network embedding for learning in a
dynamic environment. In CIKM, 2017.

[29]. Li T, Zhang J, Yu PS, Zhang Y, and Yan Y. Deep dynamic network embedding for link prediction.
IEEE Access, 6:29219–29230, 2018.

[30]. Li X, Du N, Li H, Li K, Gao J, and Zhang A. A deep learning approach to link prediction in
dynamic networks. In SDM, 2014.

[31]. Liyanagunawardena TR, Adams AA, and Williams SA. Moocs: A systematic study of the
published literature 2008-2012. The International Review of Research in Open and Distributed
Learning, 14(3):202–227, 2013.

[32]. Ma Y, Guo Z, Ren Z, Zhao YE, Tang J, and Yin D. Dynamic graph neural networks. CoRR, abs/
1810.10627, 2018.

[33]. Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, and Kim S. Continuous-time dynamic
network embeddings. In WWW BigNet workshop, 2018.

[34]. Pálovics R, Benczúr AA, Kocsis L, Kiss T, and Frigó E. Exploiting temporal influence in online
recommendation. In RecSys, 2014.

[35]. Pennebaker JW, Francis ME, and Booth RJ. Linguistic inquiry and word count: Liwc 2001.
Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001.

[36]. Qiu J, Dong Y, Ma H, Li J, Wang K, and Tang J. Network embedding as matrix factorization:
Unifying deepwalk, line, pte, and node2vec. In WSDM, 2018.

[37]. Raghavan V, Ver Steeg G, Galstyan A, and Tartakovsky AG. Modeling temporal activity patterns
in dynamic social networks. IEEE TCSS, 1(1):89–107, 2014.

[38]. Rahman M, Saha TK, Hasan MA, Xu KS, and Reddy CK. Dylink2vec: Effective feature
representation for link prediction in dynamic networks. CoRR, 2018.

[39]. Sajadmanesh S, Zhang J, and Rabiee HR. Continuous-time relationship prediction in dynamic
heterogeneous information networks. CoRR, 2017.

[40]. Sedhain S, Sanner S, Xie L, Kidd R, Tran K, and Christen P. Social affinity filtering:
recommendation through fine-grained analysis of user interactions and activities. In COSN,
2013.

[41]. Trivedi R, Dai H, Wang Y, and Song L. Know-evolve: Deep temporal reasoning for dynamic
knowledge graphs. In ICML, 2017.

[42]. Trivedi R, Farajtbar M, Biswal P, and Zha H. Representation learning over dynamic graphs.
arXiv:1803.04051, 2018.

[43]. Walker PB, Fooshee SG, and Davidson I. Complex interactions in social and event network
analysis. In SBP-BRiMS, 2015.

[44]. Wang Y, Du N, Trivedi R, and Song L. Coevolutionary latent feature processes for continuous-
time user-item interactions. In NeurIPS, 2016.

[45]. Wu C-Y, Ahmed A, Beutel A, Smola AJ, and Jing H. Recurrent recommender networks. In
WSDM, 2017.

[46]. Yang D, Sinha T, Adamson D, and Rosé CP. Turn on, tune in, drop out: Anticipating student
dropouts in massive open online courses. In NeurIPS Data-driven education workshop, 2013.

[47]. You J, Wang Y, Pal A, Eksombatchai P, Rosenburg C, and Leskovec J. Hierarchical temporal
convolutional networks for dynamic recommender systems. In The World Wide Web Conference,
2019.

[48]. Zhang S, Yao L, and Sun A. Deep learning based recommender system: A survey and new
perspectives. arXiv:1707.07435, 2017.

[49]. Zhang Y, Xiong Y, Kong X, and Zhu Y. Learning node embeddings in interaction graphs. In
CIKM, 2017.

[50]. Zhou L.-k., Yang Y, Ren X, Wu F, and Zhuang Y. Dynamic network embedding by modeling
triadic closure process. In AAAI, 2018.

Kumar et al. Page 17

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[51]. Zhu L, Guo D, Yin J, Ver Steeg G, and Galstyan A. Scalable temporal latent space inference for
link prediction in dynamic social networks. IEEE TKDE, 28(10):2765–2777, 2016.

[52]. Zhu Y, Li H, Liao Y, Wang B, Guan Z, Liu H, and Cai D. What to do next: modeling user
behaviors by time-lstm. In IJCAI, 2017.

Kumar et al. Page 18

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Left: a temporal interaction network of three users and four items. Each arrow
represents an interaction with associated timestamp t and a feature vector f. Right:
embedding trajectory of the users and items. We predict the future trajectory of users
(the dotted line shown for one user) by training an embedding projection operator.

Kumar et al. Page 19

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
The JODIE model: After an interaction (u, i, t, f) between user u and item i, the
dynamic embeddings of u and i are updated in the update operation with RNNU and
RNNI, respectively. The projection operation predicts the user embedding at a future
time t + Δ.

Kumar et al. Page 20

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
This figure shows the key idea behind projection operation. The predicted embedding of
user u is shown for different elapsed time Δ1 < Δ2 < Δ. The predicted embedding drifts
farther as more time elapses. When the next interaction is observed, the embedding is
updated again.

Kumar et al. Page 21

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Figure compares the running time of JODIE and all baselines on the Reddit dataset.
JODIE is 9.2× faster than DeepCoevolve and is comparable to the other baselines.

Kumar et al. Page 22

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Robustness of JODIE: Figures (a–c) compare the mean reciprocal rank (MRR) of JODIE
with baselines on interaction prediction task, by varying the training data size. Figure (d)

shows the AUC of user state change prediction task by varying the training data size. We see

JODIE consistently has the highest scores.

Kumar et al. Page 23

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Robustness to dynamic embedding size: The performance of JODIE is stable with the

change in dynamic embedding size, for the task of interaction prediction on LastFM dataset.

Please refer to the legend in Figure 5.

Kumar et al. Page 24

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kumar et al. Page 25

Table 1:

Table comparing the desired properties of the existing algorithms and our proposed JODIE algorithm. JODIE
satisfies all the desirable properties.

Property

Deep
recurrent

models

Temporal
network

embedding Co-evolution
models [11]

Proposed
model

LSTM, Time-
LSTM [52] RRN [45] LatentCross [8] CTDNE [33] IGE [49] JODIE

Predict embedding
trajectory ✓

Predict future item
embedding ✓

Train using batches of
data ✓ ✓ ✓ ✓ ✓

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kumar et al. Page 26

Table 2:

Table of symbols used in this paper.

Symbol Meaning

u(t) and i(t) Dynamic embedding of user u and item i at time t

u(t−) and i(t−) Dynamic embedding of user u and item i before time t

u and i‒ Static embedding of user u and item i

u(t) Projected embedding of user u at time t

j (t) Predicted item j embedding

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kumar et al. Page 27

Ta
b

le
 3

:

Fu
tu

re
 in

te
ra

ct
io

n
pr

ed
ic

tio
n

ex
pe

ri
m

en
t:

Ta
bl

e
co

m
pa

ri
ng

 th
e

pe
rf

or
m

an
ce

 o
f

JO
D

IE
 w

ith
 s

ta
te

-o
f-

th
e-

ar
t a

lg
or

ith
m

s,
 in

 te
rm

s
of

 m
ea

n
re

ci
pr

oc
al

 r
an

k

(M
R

R
)

an
d

re
ca

ll@
10

. T
he

 b
es

t a
lg

or
ith

m
 in

 e
ac

h
co

lu
m

n
is

 c
ol

or
ed

 b
lu

e
an

d
se

co
nd

 b
es

t i
s

lig
ht

 b
lu

e.
 T

he
 la

st
 tw

o
co

lu
m

ns
 s

ho
w

 th
e

m
in

im
um

pe
rc

en
ta

ge
 im

pr
ov

em
en

t o
f

JO
D

IE
 o

ve
r

th
e

m
et

ho
d,

 a
cr

os
s

ov
er

 a
ll

da
ta

se
ts

. W
e

se
e

th
at

 J
O

D
IE

 o
ut

pe
rf

or
m

s
al

l b
as

el
in

es
 b

y
at

 le
as

t 2
0%

 in
 M

R
R

 a
nd

14
%

 in
 r

ec
al

l@
10

.

M
et

ho
d

R
ed

di
t

W
ik

ip
ed

ia
L

as
tF

M
M

in
im

um
 %

 im
pr

ov
em

en
t

of
 J

O
D

IE
 o

ve
r

m
et

ho
d

M
R

R
R

ec
al

l@
10

M
R

R
R

ec
al

l@
10

M
R

R
R

ec
al

l@
10

M
R

R
R

ec
al

l@
10

L
ST

M
 [

52
]

0.
35

5
0.

55
1

0.
32

9
0.

45
5

0.
06

2
0.

11
9

10
4.

5%
54

.6
%

T
im

e-
L

ST
M

 [
52

]
0.

38
7

0.
57

3
0.

24
7

0.
34

2
0.

06
8

0.
13

7
87

.6
%

48
.7

%

R
R

N
 [

45
]

0.
60

3
0.

74
7

0.
52

2
0.

61
7

0.
08

9
0.

18
2

20
.4

%
14

.1
%

L
at

en
tC

ro
ss

 [
8]

0.
42

1
0.

58
8

0.
42

4
0.

48
1

0.
14

8
0.

22
7

31
.8

%
35

.2
%

C
T

D
N

E
 [

33
]

0.
16

5
0.

25
7

0.
03

5
0.

05
6

0.
01

0.
01

34
0.

0%
23

1.
5%

D
ee

pC
oe

vo
lv

e
[1

1]
0.

17
1

0.
27

5
0.

51
5

0.
56

3
0.

01
9

0.
03

9
44

.8
%

46
.0

%

JO
D

IE
 (

pr
op

os
ed

)
0.

72
6

0.
85

2
0.

74
6

0.
82

2
0.

19
5

0.
30

7
-

-

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kumar et al. Page 28

Table 4:

User state change prediction: Table comparing the performance in terms of AUC of JODIE with state of the art

algorithms. The best algorithm in each column is colored blue and the second best is light blue. JODIE
outperforms the baselines by at least 12.63% on average.

Method Reddit Wikipedia MOOC Mean improvement
of JODIE

LSTM 0.523 0.575 0.686 23.08%

Time-LSTM 0.556 0.671 0.711 12.63%

RRN 0.586 0.804 0.558 13.69%

LatentCross 0.574 0.628 0.686 15.62%

DeepCoevolve 0.577 0.663 0.671 13.94%

JODIE 0.599 0.831 0.756 -

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kumar et al. Page 29

Table 5:

Table with model parameters.

Parameter Value

Optimizer Adam

Learning rate 1e-3

Model weight decay 1e-5

Dynamic embedding size 128

Number of epochs 50

Future interaction prediction experiment

Training data percent 80%

Validation data percent 10%

Test data percent 10%

User state change experiment

Training data percent 60%

Validation data percent 20%

Test data percent 20%

KDD. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kumar et al. Page 30

Table 6:

Table with dataset information.

Data Users Items Interactions State
Changes

Action
Repetition

Reddit 10,000 984 672,447 366 79%

Wikipedia 8,227 1,000 157,474 217 61%

LastFM 980 1,000 1,293,103 - 8.6%

MOOC 7,047 97 411,749 4,066 -

KDD. Author manuscript; available in PMC 2019 September 19.

	Abstract
	INTRODUCTION
	Present work.
	Present work:
	JODIE.

	Present work:
	t-Batch.

	Present work:
	Experiments.

	RELATED WORK
	Deep recurrent recommender models.
	Dynamic co-evolution models.
	Temporal network embedding models.

	JODIE: JOINT DYNAMIC USER-ITEM EMBEDDING MODEL
	Static and Dynamic Embeddings.
	Embedding update operation
	Embedding projection operation
	Training to predict next item embedding
	Training the model.
	Extending the loss for categorical prediction.

	t-Batch: Training data batching
	Differences between JODIE and DeepCoevolve

	EXPERIMENTS
	Experimental setting.
	Baselines.
	Experiment 1: Future interaction prediction
	Experimental setting.
	Results.

	Experiment 2: User state change prediction
	Experimental setting.
	Results.

	Experiment 3: Runtime experiment
	Experiment 4: Robustness to the proportion of training data
	Experiment 5: Embedding size

	CONCLUSIONS
	APPENDIX
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:

