
Predicting Dynamic Properties of Heap Allocations
using Neural Networks Trained on Static Code

An Intellectual Abstract

Christian Navasca
University of California, Los Angeles

Los Angeles, USA

Martin Maas
Google

Mountain View, USA

Petros Maniatis
Google

Mountain View, USA

Hyeontaek Lim
Google

Mountain View, USA

Guoqing Harry Xu
University of California, Los Angeles

Los Angeles, USA

Abstract

Memory allocators and runtime systems can leverage dy-
namic properties of heap allocations – such as object life-
times, hotness or access correlations – to improve perfor-
mance and resource consumption. A signi�cant amount of
work has focused on approaches that collect this information
in performance pro�les and then use it in new memory allo-
cator or runtime designs, both o�ine (e.g., in ahead-of-time
compilers) and online (e.g., in JIT compilers). This is a special
instance of pro�le-guided optimization.
This approach introduces signi�cant challenges: 1) The

pro�ling oftentimes introduces substantial overheads, which
are prohibitive in many production scenarios, 2) Creating
a representative pro�ling run adds signi�cant engineering
complexity and reduces deployment velocity, and 3) Pro�les
gathered ahead of time or during the warm-up phase of a
server are often not representative of all workload behavior
and may miss important corner cases.

In this paper, we investigate a fundamentally di�erent ap-
proach. Instead of deriving heap allocation properties from
pro�les, we explore the ability of neural network models
to predict them from the statically available code. As an
intellectual abstract, we do not o�er a conclusive answer
but describe the trade-o� space of this approach, investi-
gate promising directions, motivate these directions with
data analysis and experiments, and highlight challenges that
future work needs to overcome.

CCSConcepts: •Computingmethodologies→Machine

learning; • Software and its engineering→ Allocation

/ deallocation strategies.

ISMM ’23, June 18, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0179-5/23/06.

h�ps://doi.org/10.1145/3591195.3595275

Keywords: Machine Learning, Pro�le-guided Optimization,
Lifetime Prediction, Memory Management

ACM Reference Format:

Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim,

and Guoqing Harry Xu. 2023. Predicting Dynamic Properties of

Heap Allocations using Neural Networks Trained on Static Code:

An Intellectual Abstract. In Proceedings of the 2023 ACM SIGPLAN

International Symposium on Memory Management (ISMM ’23), June

18, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 15 pages.

h�ps://doi.org/10.1145/3591195.3595275

1 Introduction

Memory allocators and runtime systems often rely on pre-
dicted properties of heap allocations to maximize perfor-
mance. For example, HALO [52] uses memory access pro�l-
ing to identify related data accesses, which can be used for
heap-layout optimizations. MaPHeA [45] places data based
on allocations’ memory access frequencies (hotness). The
LLAMA C++ memory allocator [41] and the ROLP Java
garbage collector [11] rely on predicted object lifetimes.
These approaches have parallels to pro�le-guided opti-

mization (PGO), which in this paper, we take to refer to both
o�ine (e.g., ahead-of-time) and online (e.g., JIT-compiled)
approaches. For example, both static ahead-of-time compil-
ers [14] and JIT compilers [24] can leverage branch pro�les
to optimize code. While branch pro�les are cheap to col-
lect [14], heap allocation properties such as object lifetimes,
data hotness, or memory access correlations are often much
more expensive to pro�le. For example, ROLP reports up
to 6% runtime overheads for pro�ling even coarse-grained
lifetimes, and DJXPerf [38] reports 8.5% overheads even with
statistical sampling. While these overheads may not seem
large, they are prohibitive in production deployments where
even 1% performance degradation is substantial [36].
A common approach is to collect these pro�les during a

pro�ling phase: In ahead-of-time compiled languages such
as C++, benchmark runs on an instrumented binary are used
to collect a performance pro�le that is then used during
the compilation of the �nal binary. Meanwhile, managed
runtimes such as Java Virtual Machines spend a signi�cant

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

43

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3591195.3595275
https://doi.org/10.1145/3591195.3595275
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591195.3595275&domain=pdf&date_stamp=2023-06-06

ISMM ’23, June 18, 2023, Orlando, FL, USA Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu

amount of time on warm-up [39] during which they collect
initial performance pro�les and use them to JIT-compile code.
These approaches introduce signi�cant challenges:

1. Deployment Velocity: Pro�le collection introduces
a long delay into the deployment process. In ahead-
of-time compilation, this results in a large number of
additional steps before a �nal binary can be produced.
In JIT compilation, it reduces elasticity by requiring
services to warm up for longer.

2. Deployment Complexity: Setting up PGO pipelines
can be very complex, requiring the development of
representative benchmarks and �ows to runworkloads
automatically with instrumentation. For JIT compilers,
ensuring that the initial load that (e.g.,) a server sees
is representative is challenging as well.

3. Non-representative Pro�les: If the workload used
to generate the pro�le is not representative of the real
workload, results will be suboptimal. It is very di�cult
to ensure that benchmarks are fully representative.

4. Incomplete Pro�les: Individual workloads often do
not exercise every corner case in the code, which
means that pro�les will often be incomplete.

In this paper, we investigate an experimental and radically
di�erent approach to solving these problems: Can we train
a machine learning model that can predict heap allocation
properties such as lifetimes or object hotness for future work-
loads from the statically available program code alone, with-
out running an instrumented build or a warm-up phase?
As an intellectual abstract, this paper does not o�er a

conclusion to this question but instead lays out the trade-o�
space of such an approach, investigates promising directions
that suggest such an approach is feasible, and highlights the
challenges that need to be collectively overcome to enable it.
Our speci�c contributions are as follows:

• We introduce a framework to reason about the design
space for predicting heap allocation properties using
machine learning.

• We gather and analyze a data set derived from the
DaCapo benchmarks [7] that combines static codewith
dynamic heap allocation properties.

• We introduce a range of model architectures to predict
heap allocation properties from code, and characterize
their trade-o� space.

• We provide a detailed discussion of challenges to mak-
ing this approach work in practice, and highlight fu-
ture research direction.

Our goal is to open up a new research direction for the ISMM
community, combining research on ML models for code with
research on data-driven memory allocators.

2 Background & Related Work

We provide an overview of approaches for predicting heap
allocation properties and related work in this area.

Figure 1. Predicting heap allocation properties from stack
traces using the LLAMA [41] approach.

2.1 Predicting Heap Allocation Properties

Leveraging heap allocation properties to improve memory
allocation has been a long-standing topic of interest. A classic
example is pre-tenuring in managed runtimes such as JVMs,
which relies on predicted object lifetimes [9]. Other examples
include the prediction of object a�nity [52], hotness [38, 45],
and container sizes for presizing optimizations [19].

What these approaches have in common is that they need
to make predictions at the time a heap allocation is per-
formed. Such predictions are usually performed based on
the allocation context, namely the program counter of the
allocation site and the current stack trace (Figure 1). Note
that the allocation site alone is often insu�cient to uniquely
identify an allocation context [6]. For example, an allocation
performed in a string constructor does not provide much
information about the allocation’s lifetime, but the frame on
the stack where the string is allocated might.
Once an allocation can be attributed to a particular al-

location context, the second question is how to pro�le the
relevant property. There are a range of di�erent methods. For
example, Harris [27] introduced an approach that samples
objects and keeps information in a separate data structure.
V8 uses "memento" objects that contain an additional pointer
back to the allocation site [19], and when these objects are re-
cycled by the garbage collector, it attributes any accumulated
pro�ling information back to the allocation site. TCMalloc
[32] samples a small fraction of allocations and collects pro-
�ling information just for these objects. This pro�ling may
not always be active.

A signi�cant amount of work in this space has focused on
e�ective ways to summarize the stack trace at the time of
allocation to enable suchmethods, including keeping track of
the current calling context in a bit vector [52] or using stack
hashing strategies [43]. There has also been work on trying
to leverage data on the stack tomake these predictions, rather
than program counters [20]. However, such approaches are
rare and not widely used in practice.

2.2 Pro�le Guided Optimization

Collecting pro�les for each allocation context and using
them for optimizing memory allocation is a special instance
of pro�le-guided optimization (PGO). Here, we use this term

44

Predicting Dynamic Properties of Heap Allocations using Neural Networks Trained on Static Code ISMM ’23, June 18, 2023, Orlando, FL, USA

to describe two di�erent types of setup1: 1) Collecting pro-
�le data from previous, specially instrumented, runs of an
application and using this data to improve performance in
future builds of this application. 2) The analogous approach
in JIT compilers, where pro�le data may either stem from an
instrumented run [8] or the same run [24] of the application.
In the latter case, most JIT pro�ling data is collected at the
beginning of the execution, resulting in a period when the
JVM runs more slowly, known as warmup [39].

PGO has been used to great success in tasks such as cache
miss reduction [52], receiver class prediction [25], and I/O
partitioning [56]. However, collecting the pro�ling data re-
quired by PGO is often expensive and complex. Generat-
ing this pro�ling data typically requires running an instru-
mented (and hence, slower) version of the application. For
example, techniques such as hot datastream pro�ling [16]
or value pro�ling [12] can achieve speedups as high as 20%,
but require pro�ling runs that can be tens to hundreds of
times slower than the original program.

Our proposed approach takes the place of a PGO optimiza-
tion pass, but instead of relying on pro�les collected in a
previous run, it tries to predict these properties from pro-
gram code. This approach has similarities to LLAMA [41], a
recently introduced approach for lifetime prediction in C++.

2.3 LLAMA

LLAMA is a memory allocator that uses a neural network to
predict lifetime classes of objects using a symbolized alloca-
tion context. It assumes a scenario where a partial pro�le is
available – e.g., from a previous version of the same program
or where only a subset of allocation contexts was observed
due to sampling. The authors show that pro�ling data (in
their case, lifetimes of objects) transfers between similar
binaries. For instance, LLAMA could accurately predict life-
times of unseen stack traces even after a number of code
changes or when changing compiler settings.
LLAMA performs these predictions by converting each

stack trace into a list of symbols and treating this represen-
tation as natural language (Figure 1). It subdivides the stack
trace into tokens which are then passed into a Long Short-
term Memory Network (LSTM) [31]. This model is trained
against known stack traces and associated object lifetimes.
A caching mechanism is used to run this model only the �rst
time a particular stack trace is encountered.

The key idea of LLAMA is to use ML to extract program-
mer intent by treating the symbols of the program as lan-
guage. While this work takes a step towards generality, it
is rather limited. For example, LLAMA cannot generalize to
completely di�erent programs, primarily because the calling
contexts were represented only by function names. While
LLAMA performs well on a single program, it is not applica-
ble to a new program full of di�erent function names, as the

1The terminology di�ers and sometimes only refers to the �rst as PGO.

function names in the training set might not appear in this
new program. Furthermore, the approach is not amenable
to even the same application with all of the function names
changed (e.g., due to refactoring or obfuscation), even if pro-
gram behavior has not changed.

2.4 ML for Code and Programming Languages

There has been a large amount of work on ML for code in re-
cent years. Allamanis et al. [2] provide a survey. A signi�cant
portion of this work looks at the problem from a software
engineering perspective — such as neural code completion
[22, 46] and �nding bugs in code [49, 54].
There have been uses of ML for compiler optimizations

[37], but they are less common. MLGO trains models to
make inlining and register allocation decisions within LLVM
[53] (the latter is a problem that sometimes uses PGO). Au-
tophase [26] learns anML policy for ordering compiler passes
that generalizes to unseen programs, but makes decisions at
the granularity of entire compiler passes, rather than indi-
vidual objects or their pro�les. Rotem and Cummins show
that instead of relying on PGO pro�les for branches, they
can be predicted with learned decision trees [51], which re-
semble a complex, learned compiler heuristic for branches.
None of this work looks at properties of heap allocations,
which are more complex and di�cult to predict. Source code
could provide the necessary signal for these predictions to
the model, even without pro�ling data for a calling context.

3 High-Level Overview

We now provide an overview of our approach. We start with
a conceptual framework how to reason about the general
problem of predicting heap allocation properties. We then
describe the intuition behind our proposed ML approach.

3.1 Conceptual Framework

At a high level, prediction of heap allocation properties can
be performed using a broad range of methods, including
pro�le-guided optimizations, program analysis and heuris-
tics. The lines between these methods can be blurry. We
therefore start by introducing a conceptual framework to
reason about these problems and the associated challenges.
We classify approaches addressing this problem along

three dimensions: Data, Model, and Application. Data de-
scribes the input used to drive predictions (such as the in-
struction pointer of the allocation site, symbolized stack
traces, or an abstract syntax tree of the code).Model describes
the mechanism by which the data is used to determine a la-
bel, such as object lifetime – this could be any function and
does not have to be an ML model. Application describes how
the predictions made by the model are used (e.g., how code
is compiled di�erently based on this prediction, or how a
memory allocator may leverage it). Many di�erent strategies
map to this conceptual framework:

45

ISMM ’23, June 18, 2023, Orlando, FL, USA Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu

Pro�le-guided optimization. Depending on the speci�c
optimization, the data the prediction is based on is code
locations of a particular allocation site or on the call stack.
The model is a lookup table that maps these call stacks to
previously measured values. This approach may be applied
o�ine or online, at compile time or at run time.

Static analysis. The data is typically some form or in-
termediate representation (e.g., LLVM IR). The model is an
algorithm that processes this IR symbolically (e.g., by apply-
ing escape analysis) to make a prediction. The application of
this prediction occurs usually within the compiler.

LLAMA. The data LLAMA uses are symbolized stack
traces rather than the instruction pointers. The model is
an LSTM neural network that maps these stack traces to
lifetime classes. The application is to make these predictions
online in the context of a custom lifetime-aware memory
allocator.

The part of the design space explored in this paper is one
where the data spans all code that is statically available with-
out running the application, models capture a wide range of
di�erent machine learning methods, and applications con-
tain a range of o�ine and online methods. We now motivate
why we believe this is a promising design space to explore.

3.2 Our Approach

Instead of collecting pro�ling data through expensive in-
strumentation like PGO, we could predict it using machine
learning. A strawman approach would be to train a model
on pro�ling data from a set of binaries, and use this model
to predict the pro�ling data for new, unseen binaries. If the
accuracy is high enough, we could use these predictions in
the same way as pro�les, but without the overheads.
LLAMA took a �rst step in this direction, by training a

model on a subset of allocation contexts in one binary and
using this model to predict unseen allocation contexts in a
potentially di�erent version of the same program. LLAMA
showed that symbolized calling contexts are su�cient to
perform these predictions with high accuracy.
However, we �nd that the same approach does not work

well across programs. We recreated a LLAMA model and
attempted to predict object lifetimes on DaCapo [7] bench-
marks. When predicting across benchmarks, we �nd that
this model performs only one percentage point better than
random prediction (we discuss this further in Section 5).
Intuitively, the function names contained in the symbol-

ized calling context capture the behavior of the functions. A
model can learn that when certain names appear in a certain
order in a calling context, the corresponding object will be
long or short-lived. However, since we want to predict on
unseen binaries, it is likely that the model will encounter
many unknown names, or a new and unusual combination
of names, in unseen calling contexts.

To address these problems, we propose to move beyond
just function names and instead consider the whole source
code, which could capture program behavior from code struc-
ture, variable names, and even comments (although we do
not currently explore the latter in this work).

3.3 Intuition

Source code de�nes the program behavior and could thus
be used to predict heap allocation properties, which are de-
termined by this behavior. There have been a number of
works that predict many di�erent properties of code, such as
security vulnerabilities [15], performance [13], bugs [49, 54],
types [28], summarization [23], and other static program
properties [50]. There is also work on representing code
in other ways, such as graph representations [3]. However,
prediction of dynamic properties has seen less attention.

Listing 1a shows a strawman example of the intuition why
code structure is predictive of heap allocation properties,
such as object lifetimes. We can see two allocation sites, one
de�ning a variable x, and another de�ning y. When looking
at the source code, we can see that y will outlive x, as it exists
throughout the execution of the main function. On the other
hand, the variable x will live only as long as one iteration of
the inner for loop. In this way, we can compare the lifetimes
of the two variables, based on the source code, and conclude
that y will have a longer lifetime than x. A model could learn
a general pattern that variables de�ned in the inner-most
part of a nested loop are likely short-lived, and variables
de�ned in the main function are likely long-lived.
Additionally, the variable names themselves can provide

useful information [5, 34]. For example, variable names may
contain short descriptive atoms such as tmp, or suggest a
relative lifetime ordering between variables. Consider, for
instance, requestBatch, which hints at an object that encom-
passes multiple requests, versus requestStatus, which hints
at an object with a lifetime shorter than that of a request.
A more concrete example is shown in Listing 1b. In this

example, taken from the FOP benchmark in DaCapo, we can
see an array named tmp that is used only for constructing
the String and nothing else. Here, the variable name signals
intent that it is not used in other places.

Another useful variable naming pattern is that short-lived
objects often have short names. An example is shown in List-
ing 1c. This method is found in the source code for ANTLR2,
a parser generator written in Java. In this example, we can
see a number of variables with short names: f, fr, br. Each of
them is used locally and does not outlive the method call.
Finally, when available, code comments, literals, and log-

ging statements can provide hints about lifetimes of objects.
Some of these properties could be exploited without learn-

ing. In fact, we could manually construct a very large number
of such rules, which is similar to how compiler heuristics

2https://github.com/antlr/antlr4

46

Predicting Dynamic Properties of Heap Allocations using Neural Networks Trained on Static Code ISMM ’23, June 18, 2023, Orlando, FL, USA

void doWork () {

for (int i = 0; i < ... ; ++i) {

for (int j = 0; j < ... ; ++j) {

Bar x = new Bar();

doTask ();

}

}

}

void main() {

Foo y = new Foo();

doWork ();

}

(a) Strawman: Code structure provides hints about object lifetime.

public final String readTTFString ()

throws IOException {

int i = current;

while (file[i++] != 0) {

...

}

byte[] tmp = new byte [...];

System.arraycopy(file , current ,

tmp , 0,...);

return new String(tmp , ...);

}

(b) Apache FOP: Variable names provide hints about lifetime.

public Grammar getRootGrammar (...)

throws IOException {

...

File f = null;

if (haveInputDir)

f = new File (...);

else

f = new File (...);

fr = new FileReader(f);

br = new BufferedReader(fr);

grammar.parseAndBuildAST(br)

...

br.close();

fr.close();

return grammar;

}

(c) ANTLR: Short-named variables have short lifetime.

Listing 1.Motivating code examples.

are often designed. However, such rules would be brittle and
shift over time. Machine learning provides a way to “gener-
ate these rules automatically”, by having a model learn them
instead of deriving and encoding them by hand.

In the following sections, we discuss the potential design
space, challenges, and potential solutions associated with
such a machine-learning based approach. To support our
exploration, we developed an end-to-end implementation
of the approach for object lifetimes. While our experiments

Figure 2. An example of a stack trace with associated pro-
�ling data and source code

show evidence that an ML approach is able to learn heap
allocation properties, we also �nd that its current accuracy
is limited. In each of the following sections, we describe the
trade-o�s and challenges that contribute to these limitations,
and the research problems that we believe need to be solved
to further increase accuracy. Following our framework, we
will discuss the underlying Data (including training data
collection),Model (including a range of di�erent designs) and
Application. We focus on Java, but our approach is generally
applicable to other languages such as C++.

4 Part 1: Data

Training a heap allocation property model requires two types
of information: static information and dynamic information.
The static information can be found in code, while the dy-
namic information must be found through pro�ling. Related
work has mostly looked at either one or the other. Code mod-
els look at large amounts of code, but do not connect them
to object lifetimes or other dynamic properties. PGO collects
such dynamic properties, but only minimally connects them
to code, usually via stack traces.
Similar to LLAMA, we collect stack traces that represent

allocation contexts, the calling context under which particular
objects are allocated. Each stack frame of the stack trace
represents a certain function, centered around a callsite or an
allocation site (in the case of the topmost frame). Each stack
trace is associated with the distribution of object lifetimes. In
contrast to LLAMA, we also collect the appropriate source
code corresponding to each stack frame. An example of a
single stack trace is shown in Figure 2.We collected this stack
trace from the avrora benchmark in the DaCapo benchmark
suite [7]. On the left side, we can see a sequence of function
calls. Each stack frame is quali�ed with the full classname
of the function (although some are omitted here for the
sake of clarity). The stack frames are also associated with a
particular �le and line number. For example, the �rst stack
frame, representing an allocation site, corresponds to line 326
of the �le AtmelInterpreter.java. Note that some stack frames
are missing source code locations. We discuss this problem
in Section 4.4. Lastly, the entire stack trace is associated with

47

ISMM ’23, June 18, 2023, Orlando, FL, USA Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu

our object lifetime pro�ling data. We now describe one way
of collecting this dataset, and challenges that we encounter.

4.1 Collecting Dynamic Properties of Objects

While lifetime predictions are a language-agnostic problem,
in this work we collected a Java dataset. To this end, we
modify OpenJDK11 to perform �ne-grained pro�ling of ob-
ject lifetimes. While OpenJDK does not have an easy way
of collecting �ne-grained object lifetimes, there are several
approaches in the literature on how to collect object lifetimes
in Java. Naively, it would be possible to measure lifetime as
the number of garbage collections that an object survived.
However, object lifetime granularity would be determined
by the frequency of GC passes. Since a full garbage collection
can take milliseconds or even minutes, this is much more
coarse-grained than the lifetimes that we wish to capture.

Alternative approaches include algorithms such as Merlin
[30] and Resurrector [57]. The general approach in these
cases is to track incoming references to objects and deter-
mine the time at which an object dies, either retroactively
during GCs (Merlin) or during execution (Resurrector). We
add a simpler version of the latter approach to OpenJDK, by
adding reference counts to each object, to detect when it be-
comes unreachable. We modify the object header to include
a counter and modify relevant instructions (aload, astore,
areturn, new, athrow) to update these reference counts. Ad-
ditionally, when an object is allocated, we walk the stack
to �nd the object’s allocation context. Like Resurrector, our
approach cannot detect cycles and ignores them.
For each object, our instrumentation must collect a life-

time. We defer the de�nition of our units of lifetime to Sec-
tion 4.4.2 but for clarity in this section, we track lifetime as
a logical duration, i.e., a di�erence between values of logical
time. We maintain a global, monotonically increasing logical
clock. Each object tracks its initial allocation time (i.e., the
logical clock at the time of its allocation). When an object’s
reference count reaches zero, we �nd its logical lifetime by
subtracting the current logical clock by the object’s logical
allocation time. Because we care about allocation context
(rather than individual objects), we aggregate this lifetime
information by allocation stack trace.

It would be prohibitively expensive to store the individual
lifetimes of each object at full granularity. Instead, we clas-
sify each object into lifetime classes separated by orders of
magnitude: < 10 time units, 100 time units, 1,000 time units,
etc. This mirrors LLAMA’s bucketing of object lifetime, how-
ever in our case the bucketing is based on logical lifetime,
rather than wall clock time. For each observed allocation site,
we then store only ∼ 10 integers: a histogram of the number
of observed objects with each lifetime class. While this does
lose some speci�c per-object information, it is a good trade-
o� between collecting lifetimes and saving memory. Because
we eventually classify stack traces based on this bucketing
scheme, this granularity of data collection is su�cient.

4.2 Collecting Source Code

In order to use source code as input for our models, we need
to collect the source code of our target application and any
third party libraries it uses. We need all of this code, as some
stack frames will be calls to these third party libraries.
Depending on the code base, this may be di�cult to do

automatically. We target the DaCapo benchmarks, which
are built using tools such as Ant and Maven. We manually
inspect the Ant build �le and record the necessary third
party dependencies that are downloaded. It is important to
point out that not every dependency has a readily available
source code download, even if many are hosted on the central
Maven repository. This is particularly challenging aswemust
also use the exact same version of the source code that the
compiled dependency uses, as using the wrong version of
the source code could degrade the quality of the dataset.
We then manually create a source code repository con-

taining all of the application code, Java standard library
code, and third party dependency code. We organize the
�les by package, as Java code is typically organized. For
example, the source code for the class java.lang.String
will be in the �le java/lang/String.java. This approach
works well for Java code, as each source �le will contain a
single outer-level class and and we can �nd the source �le
for java.lang.String within the folder java/lang.

4.3 Contextualizing Stack Traces

After collecting the necessary source code �les, we need to
connect them to our stack traces. We call this process con-
textualizing the stack traces, as it connects the source code
context to each stack frame of the stack trace. Each stack
frame contains a line number (representing a call or alloca-
tion site) as well as a fully quali�ed method name. Using the
fully quali�ed method name, we can �nd the appropriate �le
in the aforementioned source code repository, as the method
name (with periods replaced with slashes) will point to a
particular �le. We then associate every stack frame of every
stack trace with the entire source code of the appropriate
method. This is a very large number of tokens for a model
to handle. We discuss this challenge in Section 5.

4.4 Challenges

We now describe important research questions that need to
be addressed to improve the approach.

4.4.1 Finding All Source Code. In many scenarios, not
all source code is available. At least in Java code bases, it is
rare for all third party library source code to be in the same
repository as the application code. Additionally, because of
the multitude of Java build tools (e.g., Gradle, Maven, Ant),
it would be di�cult to gather code on a large scale (e.g., on
all of GitHub) since the process would be di�erent for every
repository.

48

Predicting Dynamic Properties of Heap Allocations using Neural Networks Trained on Static Code ISMM ’23, June 18, 2023, Orlando, FL, USA

In this work, we give a special “...” token to such stack
frames (instead of source code) as a way to inform the model
that the source code was missing. Although missing source
code of a stack frame robs the data representation of code-
speci�c nuance, at least a partial stack trace is visible to the
model, and missing frames are represented the same way
(albeit with a di�erent function signature), akin to the way
that ML vocabularies represent an “unknown” token.

Future work could look at more sophisticated techniques,
such as imputing unknown code, decompiling byte code, or
approximately adapting prior code versions to �ll gaps.

4.4.2 The Right Logical Clock. Traditionally, allocation
lifetimes in memory managers are measured in terms of a
logical clock, usually the total number of allocated bytes [6].
The reason is that such a clock is more stable than wall clock
time in light of performance variations (e.g,. due to sharing
a machine between di�erent workloads). Given that instru-
mentation is often expensive, logical time may sometimes
be the only option – e.g., we observed more than two or-
ders of magnitude slow-down in our instrumentation, and
Merlin reports up to 300× slowdown [30]. Wall clock times
would be meaningless in such a scenario and we therefore
use allocated bytes as logical time.
However, a logical time base is speci�c to a particular

workload. For example, an image processing workload with
MB-sized allocations may have entirely di�erent allocation
sizes than a text processor with KB-sized allocations, and the
same library code behaving in the exact same way in both
applications may result in orders of magnitude of di�erence
in logical lifetimes. When used in the context of training
a model across workloads, this means that these lifetimes
may not be comparable and thus not learnable – an e�ect
we observed in our own experiments.

This creates a dilemma:While wall clock timemay bemore
stable during learning and enables better transfer across
workloads, it is more sensitive to local performance varia-
tions and instrumentation e�ects. Meanwhile, logical time
is more stable within an individual workload, but does not
transfer well across workloads.

We believe there are several directions of addressing this
problem. For example, LLAMA enables the use of wall clock
time by introducing a cheap, sampling-based approach for
C++, at the cost of not capturing all allocation contexts and
sensitivity to performance variations due to compiler settings
[41]. Another approach may be to develop new logical time
bases that are consistent across workloads.

4.4.3 Missing Context. Even with wall clock time and in
the absence of performance variations, lifetimes may not be
stable across di�erent binaries – or even the same binarywith
di�erent inputs. For example, imagine two server workloads
that use the same server framework to process requests,
and where the lifetime of an object is identical to that of its
request. If the timescale of work within each request is very

di�erent (e.g., microseconds vs. seconds), the lifetime cannot
be statically predicted without analyzing the unrelated code
that performs the actual operation within the request. This
code may not be anywhere near the allocation site and is
thus not included in our contextualization approach.

As in the previous section, logical time bases that are less
dependent on such variations may alleviate the problem.
Another approach may be to de�ne a context and express
lifetimes with respect to this context rather than in absolute
terms (e.g., that the lifetime of an object does not exceed a
partcular request or subportion of a program). A third option
may be to expand the scope of the data set to include code
that is not involved in the allocation itself.

4.4.4 Data-Dependent Lifetimes. Objects with the same
allocation site may have di�erent pro�ling data, but are
represented by the same stack trace. For example, the lifetime
of an allocation may be determined by a dynamic input
parameter and is thus di�erent for every input. Because we
want to assign a single label to each allocation context, we
must choose a single value from the distribution of pro�ling
data. In our dataset, 72% of the stack traces observed objects
with more than one lifetime class.

Choosing the right label in such cases is an important
challenge. We currently assign a label to each input exam-
ple based on the most common lifetime class found among
objects allocated at the stack trace. For example, if a stack
trace observed objects of every lifetime class, but had mostly
lifetimes in the range 0 to 9 bytes, then it is assigned a label
of 0. However, in some cases it may be preferable to pick
the extreme labels (i.e., the max observed or min observed
lifetime), but this is best determined by the downstream task.

Additionally, di�erent inputsmight result in entirely di�er-
ent stack traces, so it is important to collect a representative
dataset during pro�ling.

4.4.5 Ambiguous Allocation Sites. Each allocation con-
text represents a di�erent number of objects and thus life-
times. Some represent a single object, while others may rep-
resent millions of objects. In our dataset, on average, an
allocation site represents about 2,000 objects. This may af-
fect the best labelling strategy, as the most common label
may be incorrect for thousands of objects, even if it is the
most common label for the stack trace.

There are a number of potential strategies to address this
issue. One approach would be to introduce additional fea-
tures into the model to facilitate di�erentiation between al-
location sites. Another approach is to de�ne lifetime classes
in such a way that allocation sites are more likely to only
have one label. Finally, Zhou and Maas investigated a sim-
ilar problem in storage systems and proposed predicting a
distribution of lifetimes rather than a single value [58].

49

ISMM ’23, June 18, 2023, Orlando, FL, USA Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu

5 Part 2: Model

We now turn to our exploration of learning the lifetime of
objects. In all cases, we attempt to learn a function 5 that
predicts a lifetime label: predicted_label = 5 (stack_trace).

In this exploration, we are probing the ability to generalize
a lifetime model beyond the binary it was trained on. We
compare LLAMA as a baseline (Section 5.2), to techniques
that enhance generalization of function-signature models
(Section 5.3), as well as techniques that utilize more of a stack
frame, such as code tokens (Section 5.4) and code structure
(Section 5.5) or their combination (Section 5.6). We see that
model generalization improves, but our results are only a
hint that more work in this space is desirable. Section 5.7
suggests future directions.

5.1 Training Details

We convert our lifetime class pro�ling data into a binary
classi�cation task, where logical lifetimes < 100 Bytes are
“short” and higher logical lifetimes are “long”.

We split our DaCapo dataset by benchmark, and arbitrarily
choose three sets of benchmarks: 1 benchmark for validation
(fop), 1 for testing (h2), and the rest for training. We perform
the split this way as it most closely aligns with our goal
of predicting across binaries. The alternative is to mix all
stack traces into one dataset, then create splits. However, this
would be more akin to a single-binary prediction task (with
incomplete pro�les) rather than cross-binary prediction.
We focus on classi�cation accuracy as our target metric.

Our datasets have high skew between the short and long
lifetime classes. Roughly 90% of stack traces have the short
label, while the remaining 10% have the long label. So, if a
model simply predicted “short” for every example, it would
achieve a vacuous 90% accuracy. We combat this skew in two
ways: (a) we subsample the majority class to have a similar
size to the minority class during training, and (b) we use
Mean Per-Class Accuracy (MPCA) on the (non-subsampled)
validation and test datasets. In the pathological example
above, if a model predicted “short” for every stack trace, it
would only achieve 50% MPCA (100% accuracy on “short”
and 0% accuracy on “long”). We do not subsample the test
split, because we wish to control for a task with skewed
labels in practice, although during training it is important to
teach the model with enough emphasis on both labels.

We implement thesemodels using TensorFlow andKeras [1,
18]. We train our models using TPUv2s and TPUv3s on
Google Cloud Platform. For the Transformer-based models,
we use the Transformer implementation found in the BERT
repository [21]. We perform a hyperparameter search for
each model. For the simple LSTM models, we vary learning
rate, sequence length, embedding size, and LSTM cell size.
During training, we utilize recurrent dropout in the LSTM
cell. For the Transformer-based models, we vary learning

rate, hidden size, and number of layers. Due to memory con-
straints, we use only the top 32 frames of a stack trace in the
Transformer models. A single con�guration for the LLAMA-
like models takes roughly an hour to train, while a single
con�guration for our Transformer-based models �nishes
training in roughly 22 hours.
We train by minimizing the binary cross-entropy loss

on predicted_label compared to the ground truth we col-
lected (Section 4). Speci�cally, we try to minimize function

! = − 1
#

∑
#

8=1 [C8 log(?8) + (1− C8) log(1−?8)], where # is the
number of examples, C8 is the ground-truth of the 8-th exam-
ple (0 for “short” and 1 for “long”), and ?8 is the predicted
probability that example 8 is “long”. For each hyperparame-
ter con�guration, we select the checkpoint that achieves the
highest MPCA. For each model type, we report the MPCA
of the best checkpoint of the best con�guration.

5.2 Baseline: LLAMA

LLAMA treats each stack frame in the stack trace as a string
and tokenizes function signatures on special characters such
as , and ::. It then separates the tokenized stack frames
with a special @ token. These tokens are then encoded using
a vocabulary to map each token to a speci�c vocabulary
ID. The tokens of the entire stack trace are then fed into
an embedding layer, then this sequence of embeddings is
fed into an LSTM recurrent neural network, resulting in an
embedding of the entire stack trace. The �nal embedding is
then used to predict a lifetime label for the stack trace. This
relatively straightforward model performs very well in their
task of predictions on a similar binary to the training data.
LLAMA used only function signature tokens in its repre-

sentation. However, this information is not enough to gen-
eralize. To demonstrate this experimentally, we recreate a
LLAMA-like model and try to predict object lifetimes on our
DaCapo dataset. Since our dataset is in Java, we tokenize our
stack traces in similar ways to LLAMA’s C++ tokenization.
We train this model in two di�erent scenarios. First, we

train on the entirety of our DaCapo dataset and test on the en-
tirety of the dataset. This scenario parallels perfect coverage
in LLAMA’s data collection (LLAMAneeds to use predictions,
as not all stack traces can be covered by their sampling-based
data collection). In this experiment, this LLAMA-like model
for Java achieves 92% MPCA, meaning that this LSTM model
could mostly lookup this previous pro�ling data.

The more interesting case is when we attempt this across
benchmarks. When we train on only the training set, the
model is not able to predict well on the test set. It achieves an
MPCA of 51% on the held out test dataset (recall that random
prediction would be 50%).

There are a few potential explanations for this result. First,
it could be that out-of-vocabulary words can have a big im-
pact. While our vocabulary of 5,000 tokens covers more than
99% of tokens (i.e., less than 1% of tokens must be encoded as

50

Predicting Dynamic Properties of Heap Allocations using Neural Networks Trained on Static Code ISMM ’23, June 18, 2023, Orlando, FL, USA

a special out-of-vocabulary token), it might be the case that
these tokens are very important for generalization. Second,
function names may just not be representative of object life-
time across benchmarks. One potential solution is subword
tokenization [10], which we address next.

5.3 Subtokenization of Function Names

Subword tokenization is a middle ground between word-
based and character-based tokenization. Commonwords will
be included in the subword vocabulary, while rare words can
be losslessly encoded using subword tokens. This removes
the out-of-vocabulary problem, as in the worst case, even
unseen function names can be encoded (as single characters).
Another potential bene�t is that some subword tokens

in class or method names might be helpful for the learning
task. Simpler token encoding would consider an entire name
at once. This means that three method names called get,
getBestPlanItem, and getErrorListener would each receive an
unrelated, di�erent ID. However, their names all contain
get. With subtokenization, these methods could all share a
get subtoken, followed by a BestPlanItem or ErrorListener
subtoken if needed. Stack traces that share a descriptive
subtoken might behave in a similar way. For example, in our
DaCapo dataset, stack traces that contain a get subtoken in
the top-most frame observe long-lived objects 39% of the
time. Stack traces without such a subtoken observe long
lived objects 8% of the time, which is much closer to the
distribution of lifetimes as a whole.

However, this still is not enough signal for the model. We
again create a LLAMA-like model, but this time we use sub-
word tokenization. We use the CuBERT [35] Java tokenizer
to tokenize our function signatures, ignoring whitespace
tokens. We then encode these tokens using CuBERT’s Java
subword vocabulary and the Tensor2Tensor library [55] to
produce a sequence of IDs. Using the same model archi-
tecture as in section 5.2, we embed the IDs and produce a
prediction. On the same DaCapo train/test split, this model
achieves an MPCA of 53%, which is only 2 percentage points
higher than the non-subtokenization model.
One possible explanation could be that subtokenization

adds more tokens, but perhaps not enough extra signal.
While subword tokens might be useful information, since
we can only process a limited number of tokens, adding
more tokens might reduce useful signal as some tokens must
be pushed out. It could also be the case that these “helpful”
subword tokens are simply not enough signal.
From these experiments, it is possible to conclude that

function names, even when encoded in di�erent ways, do
not seem to provide much signal to the model for this lifetime
prediction. We therefore turn to a di�erent feature: code.

5.4 Featurizing Stack Traces with Code

Code may o�er the signal that we need for this prediction. As
mentioned in Section 3, code de�nes program behavior, and

Figure 3.Mean per-class accuracy on the DaCapo holdout
test set. Note that random predictions are 50% MPCA, so the
di�erence between 51 and 59% is larger than it may appear

Figure 4.Multi-modal stack frame embedding (left). Lifetime
prediction model with several frame embeddings (right).

should bemore useful for generalization than function names
across binaries. We thus apply code embedding models.

As described in Section 4, we associate every stack frame
with the source code of the appropriate function. Addition-
ally, each stack frame has a line number, representing an
allocation site (in the case of the topmost frame) or a call site.
Onemajor challenge is selectingwhat code to embed for each
stack frame. It is di�cult to train long sequence lengths on
traditional Transformer-based language models. For exam-
ple, pre-trained BERT models are often limited to sequence
lengths of 512 tokens. However, even a single function in
our dataset could have thousands of tokens.
When combined with the fact that our stack traces have

tens or even hundreds of stack frames, we can easily run
out of token budget. This problem is exacerbated by the fact
that many code-embedding models focus on embedding a
single code snippet or context. However, in our case, we need
to look at many snippets at once, which may even be from
separate code bases when considering third-party libraries.
Given these uniquely di�cult code embedding challenges,
we believe that there is room to improve code featurization.

We must select a subset of code tokens for each frame
in order to satisfy our token budget. In this work, we take
a simple approach: in each stack frame, take a window of

51

ISMM ’23, June 18, 2023, Orlando, FL, USA Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu

tokens around line number of the call or allocation site. Start-
ing at the center token of the given line, we simply add one
token from the left of the current window, then one from
the right, and so forth until the per-frame budget is reached.
If one side reaches the beginning or end of the function, we
gather tokens from the non-exhausted side until we reach
the per-frame budget, or the entirety of the function is se-
lected. We are then left with a (smaller) sequence of code
tokens for each stack frame. The tokens are then encoded
using a subword vocabulary, leaving us with a sequence of
subword token IDs for each frame.
In addition to limiting budget per-frame, we must also

pick certain frames to include. These are related budgets:
increasing one causes us to decrease the other to maintain
a memory budget. In our experiments, we choose to keep
the top 32 frames, and set a per-frame token budget of 256
tokens. We then embed these tokens using a Transformer-
based model. Using a Transformer (of max sequence length
256 tokens), we embed each stack frame’s code tokens to
produce 32 Transformer embeddings, one for each frame.
Next, we pass these Transformer embeddings through an
LSTM to produce a single embedding of the entire stack trace.
Finally, we apply a last Dense layer and a softmax to produce
a lifetime label of the entire stack trace.

We train and test this code-only model with the same Da-
Capo training/test split. It slightly outperforms our simple
LLAMA-like models, and achieved 54% MPCA on the test
dataset, only 3 percentage points higher than the LLAMA-
like model and 1 percentage point higher than the subto-
kenized LLAMA-like model. Note that this representation
does not cleanly supersede that of Section 5.3: the function
signature does not always �t in the per-frame token budget.
One potential validity sanity-check is that it is not the

code that is causing improvement, but the model size. This is
a valid concern, as the 32-frame Transformer model (188M
parameters) is much larger than a small embedding layer and
LSTM (4M parameters). So, we create a comparable signature-
only 32 frame Transformer model. Given the same token and
frame budgets (i.e., 32 frames, 256 tokens per frame), we
subtokenize and embed the signatures of each frame, rather
than code. Interestingly, this Transformer-based signature-
only model outperforms the code model by achieving 57%
MPCA on the holdout dataset, 3 percentage points higher
than the code version of the model.
A major problem is the number of code tokens. While a

window of code around the call site is straightforward to
collect, it may not be the right set of tokens. Tokens that are
lexically far away from the callsite (e.g., control �ow such as
for or while) may have a large impact on the prediction, but
will not be captured by the window. This has been observed
before [3, 4, 29, 48] and motivates the next approach.

Figure 5. A code snippet and associated AST

5.5 Representing Code with Abstract Syntax Trees

Another potential direction is to represent code using Ab-
stract Syntax Trees (ASTs). ASTs are a tree representation of
source code structure. As opposed to concrete syntax trees,
or parse trees, ASTs do not capture every detail of the source
code, but do capture important structural details. For exam-
ple, an AST might represent an if statement with a handful
of nodes: a node for the if-statement itself, and three child
nodes, representing the condition, then branch, and else

branch. We parse our source code using javalang3, an open
source Python library providing a lexer and parser for Java.
An example of this representation is shown in Figure 5.

Note that some details are omitted from the �gure for clarity.
To represent an allocation site, we �nd the path to the allo-
cation site on the AST. For stack frames that represent a call
site, we instead �nd the appropriate method invocation node.
To generate a token sequence, we simply use the names of
the nodes on the AST. So, the foo allocation site would be rep-
resented by the tokens: CompilationUnit, ClassDeclaration,
MethodDec, ForStmt, BlockStmt, VariableDec.
While this approach might lose some �ner-grained in-

formation about the code, namely the variable names, the
AST nodes may be useful for capturing high-level structural
information, such as loop keywords. We train and test the
same 32 frame model on the same DaCapo dataset as before,
but using AST tokens. It achieves 55% MPCA, which is in
between the code and signature performance.

5.6 Multi-modal Features

LLAMA showed that function names are su�cient in some
cases. Code precisely de�nes program behavior and captures
programmer intent (with variable names), but is verbose.
ASTs are concise but lose �ne-grained information.

Instead of using a single representation, we can try to
combine them in an attempt to capture the best properties
of each representation. This model is shown in Figure 4. We
instantiate 3 Transformers, with sequence lengths 176, 16,
and 64 for code, AST, and signature tokens, respectively. At
each frame, the three Transformers produce one embedding
each, representing their speci�c token-type embedding for

3https://github.com/c2nes/javalang

52

Predicting Dynamic Properties of Heap Allocations using Neural Networks Trained on Static Code ISMM ’23, June 18, 2023, Orlando, FL, USA

the frame. The 3 embeddings are then max-pooled to pro-
duce a single embedding of the frame. We repeat this for
each of the 32 frames, and use an LSTM to produce a single
embedding, followed by a Dense layer and a softmax to pro-
duce a prediction. While this multi-modal model processes
the same number of tokens per frame (256) as the single type
model, it has about 190M trainable parameters, compared to
the 70M parameters of the previous single-type models.
We train and test this combined-embeddings model on

our DaCapo dataset, and �nd that it achieves 59% MPCA on
the holdout dataset. While it is not by much, it was the best
performing model by a couple of percentage points.

5.7 Challenges

Despite the extra signal we provide the model, and despite
out-performing signature-only methods, this prediction ac-
curacy is still not high enough to be usable. The challenges
in Section 4 are also relevant here, as a dataset can strongly
a�ect a model’s performance. However, there are also a num-
ber of challenges speci�c to this family of models.
A major open question is how to solve the context se-

lection process. Due to memory constraints in large Trans-
former models, selecting the right tokens is paramount. Even
with TPUv3s, we found it di�cult to train on more than 32
frames, even with tiny batch sizes, and had to ignore the
excess frames. However, almost 93% of the stack traces we
collect have more than 32 frames, meaning that almost every
stack trace has frames missing in its representation. Addi-
tionally, some individual frames are very large and must be
trimmed down. Of the stack frames that have source code
(78% of frames), 18% have too many tokens, and must lose
some of their tokens before being presented to the model.

We choose to use the top of the stack as these stack frames
are “closer” to the allocation site, and may be more relevant.
However, it could be the case that other frames (or even
auxiliary features like its height) might be predictive as well.
For example, objects allocated with a certain library call on
the bottom of the stack are possibly longer-lived.
Code selection within individual frames is important as

well.While ASTsmight help alleviate the problem of lexically-
far tokens, it is not perfect. Carefully selecting the “impor-
tant” code tokens could greatly improve model performance,
as the “non-important” tokens can almost be considered
noise that hurts the model. We are considering techniques
that prioritize tokens the model is likely to consider “impor-
tant” (in Transformer parlance, have high attention scores),
based on an Expectation-Maximization formulation akin to
CodeTrek [47].

6 Part 3: Application

Our proposed approach could be used for a number of opti-
mization tasks. While we show how it can be used to predict

object lifetimes, it could also be used for predicting proper-
ties such as object hotness. In general, the predictions are not
the end goal: the predictions themselves are used by some
downstream task. In the case of our lifetime predictions, this
could be deciding to pre-tenure [8, 9] or stack allocate an
object [17]. LLAMA used object lifetime predictions to cre-
ate a memory manager that organized its heap into lifetime
classes, rather than size classes. Analogously, object hot-
ness predictions could be used for learned remote-memory
prefetching. While there are works that improve prefetching
in this setting [42], there may be good opportunities for ML-
based approaches because accurate predictions could reduce
very expensive remote memory fetches.

An important consideration is the required accuracy of
the downstream task. Before modifying an existing system,
it is useful to �rst quantify potential speedups and required
model accuracy. As a thought experiment, we can take the
example of learned remote-memory prefetching. Before mod-
ifying the prefetching system, we can simulate the e�ect of
a model. First, for some application, we could collect a repre-
sentative sequence of memory accesses, using a tool such as
Intel’s Pin [40]. Given the sequence of memory accesses, we
can compare the page fault rate of the existing system and
a model. We might hypothetically observe that the existing
prefetching system addresses 65% of page faults, i.e., 35% of
requests must fetch remote memory, while the rest avoids
a page fault because of the prefetching. If a model could
accurately predict 50% of pages to prefetch, the ML-based
prefetching would perform worse than the existing system,
as it would have a higher page fault rate. If a model could
accurately predict 65% of pages to prefetch, it still may per-
form worse than the existing system because of the cost of
running the model. We might then �nd that, given the cost
of a remote-memory page fault, and the cost of running the
model online, that the ML-based system breaks even when
the accuracy is 75%. A user might then decide that the ML-
based system is only worth implementing if they can train a
model that achieves 85% accuracy.
Assuming a model achieves su�cient accuracy, we can

integrate its predictions into a system in a number of ways,
each making a tradeo� between richness of input features
and the e�ect of model overhead.

6.1 Online Prediction

In this approach, we run the model at the time a decision is
made. For example, at the time an object is allocated, a run-
time system could run a model to make the online decision
to pre-tenure an object. While this approach was suitable
to LLAMA, it may not be possible with our larger code-
embedding models. Object allocations are latency-sensitive
and must �nish in nanoseconds, which is not enough time
to run a large model. LLAMA proposes amortizing the cost
of running the model by caching model predictions and only
running the prediction if the result is not already cached.

53

ISMM ’23, June 18, 2023, Orlando, FL, USA Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu

However, Transformer-based models, such as the ones we
use, can easily take milliseconds to run. Even with caching,
this may be too expensive to run online in some applications.

One important bene�t is that it may be possible to include
other live state (e.g. the value of certain variables, cache-line
state) as a feature to the model. These features would not be
available to non-online predictions.

6.2 Prediction in JIT Compilers

Another possible use case could be during JIT compilation.
For example, OpenJDK runs interpreted bytecode, but when
a method is executed enough times, will pro�le it at run time
and compile it with increasing amounts of optimizations.
Since a JITed method is hot, any performance optimizations
will have a large e�ect. Because the JIT compilation typi-
cally occurs in the background, running a model for some
milliseconds could have less of an overhead than running it
on the critical path, as an object is allocated. Similar to on-
line prediction, live program state could be used as a feature
in the prediction. However, managed runtimes have been
tuned for decades and might already do a “good enough” job
with their online-pro�ling and optimizations, even if they
are simpler than stack trace predictions we could produce.

6.3 O�line Prediction

On the other end of the spectrum is moving the prediction
completely o�ine. The bene�t in this case is that there is no
runtime overhead to run an expensive model. One way to
use this type of prediction is to generate annotations that
can be used by the runtime system [8, 44] or optimizations
like ThinLTO [33]. However, these predictions can only use
source code features, as dynamic state is not available.

7 Discussion

While the multi-modal representation of stack traces seems
like a promising direction, the accuracy that these models
achieve is not yet usable. We see a number of opportunities
for improvement.

7.1 Token selection

One major open problem is selecting code tokens. There are
far too many tokens in a stack trace to include them all. We
could try to solve this problem at a function granularity, or
by selecting only certain stack frames, or combining the two.

Within a single function, the most valuable tokens might
be lexically far from the allocation site, and are missed by
our simple window of code selection. One potential direc-
tion is to augment the stack traces using static analysis. For
example, the code that de�nes and uses the object, may be
more important than lexically-nearby code. These def-use
chains may point to the most useful source code statements:
the ones that actually a�ect the object. However, def-use (es-
pecially inter-procedural) chains may be di�cult to gather

on a large scale. This is a trade-o�: using an analysis has a
time cost, but may produce better predictions.

We select a �xed number of stack frames from the top of
the stack, but other stack frames may be more important.
Per-frame token budgets also do not need to be �xed. If could
rank every token’s importance, and we see that a certain
function contains many useful tokens, we could increase the
frame’s token budget (at the expense of another frame).
Finally, we currently ignore comments because of token

budget constraints. However, they may provide useful natu-
ral language hints to the model.

7.2 Modalities

Token-based representations are not the only option. Given
recent success in graph neural networks (GNNs) and GNN-
based code embeddings, including a graph embedding of the
code might prove very useful. Additionally, there might be
better ways of handling the di�erent modalities. For example,
we used separate Transformers for each embedding type,
then a maxpool operation to combine the embeddings per-
frame. However, an attention model might be better than a
maxpool, or it might be better to keep all of the embeddings
rather than aggregating them per-frame. There is a large
design space still to be explored.

7.3 Labelling Examples

Stack trace-based representation can be ambiguous. Many
objects can be allocated at the same site, and will be repre-
sented by the same stack trace even if they behave di�erently.
While some tasks might be able to tolerate this label ambigu-
ity by choosing one label (e.g. most common or max), others
might not. One idea is to augment the data with some dy-
namic features, for example, GC-related data, current CPU
load, or current memory load. While not available to o�ine-
only predictions, this would be a useful way to disambiguate
object behavior, even if they come from the same stack trace.

8 Conclusion

In this paper, we present a framework for reasoning about
the design space of predicting heap allocation properties
with machine learning. We believe that our paper provides
evidence that this is a promising approach, but a number of
challenges need to be solved to make it practical. We hope
that this intellectual abstract opens up a new research direc-
tion for the ISMM community and that our discussions of
challenges and trade-o�s in the design space of this problem
will lead to more work that takes advantage of advancements
in code embedding models within memory managers.

Acknowledgments

We thank the anonymous reviewers for their insightful and
thorough comments.Wewould also like to thank Steve Black-
burn and Chandu Thekkath for their feedback.

54

Predicting Dynamic Properties of Heap Allocations using Neural Networks Trained on Static Code ISMM ’23, June 18, 2023, Orlando, FL, USA

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Je�rey Dean,Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey

Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-

aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. h�ps://www.tensorflow.org/ Software

available from tensor�ow.org.

[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles

Sutton. 2018. A survey of machine learning for big code and natural-

ness. ACM Computing Surveys (CSUR) 51, 4 (2018), 81.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.

2018. Learning to Represent Programs with Graphs. In International

Conference on Learning Representations. h�ps://openreview.net/forum?

id=BJOFETxR-

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq:

Generating Sequences from Structured Representations of Code.

arXiv:1808.01400 [cs.LG]

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018.

code2vec: Learning Distributed Representations of Code. h�ps:

//doi.org/10.48550/ARXIV.1803.09473

[6] David A. Barrett and Benjamin G. Zorn. 1993. Using Lifetime Predic-

tors to Improve Memory Allocation Performance. In Proceedings of

the ACM SIGPLAN 1993 Conference on Programming Language Design

and Implementation (Albuquerque, New Mexico, USA) (PLDI ’93). As-

sociation for Computing Machinery, New York, NY, USA, 187–196.

h�ps://doi.org/10.1145/155090.155108

[7] S. M. Blackburn, R. Garner, C. Ho�man, A. M. Khan, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.

Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis.

InOOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference

on Object-Oriented Programing, Systems, Languages, and Applications

(Portland, OR, USA). ACM Press, New York, NY, USA, 169–190. h�ps:

//doi.org/10.1145/1167473.1167488

[8] Stephen M. Blackburn, Matthew Hertz, Kathryn S. Mckinley, J. Eliot B.

Moss, and Ting Yang. 2007. Pro�le-Based Pretenuring. ACM Trans.

Program. Lang. Syst. 29, 1 (jan 2007), 2–es. h�ps://doi.org/10.1145/

1180475.1180477

[9] Stephen M. Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S.

McKinely, and J. Eliot B. Moss. 2001. Pretenuring for Java. In Pro-

ceedings of the 16th ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (Tampa Bay, FL, USA)

(OOPSLA ’01). Association for Computing Machinery, New York, NY,

USA, 342–352. h�ps://doi.org/10.1145/504282.504307

[10] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov.

2016. Enriching Word Vectors with Subword Information. CoRR

abs/1607.04606 (2016). arXiv:1607.04606 h�p://arxiv.org/abs/1607.

04606

[11] Rodrigo Bruno, Duarte Patricio, José Simão, Luis Veiga, and Paulo

Ferreira. 2019. Runtime Object Lifetime Pro�ler for Latency Sensi-

tive Big Data Applications. In Proceedings of the Fourteenth EuroSys

Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for

Computing Machinery, New York, NY, USA, Article 28, 16 pages.

h�ps://doi.org/10.1145/3302424.3303988

[12] Brad Calder, Peter Feller, and Alan Eustace. 1999. Value Pro�ling and

Optimization. Journal of Instruction Level Parallelism 1 (1999).

[13] Binghong Chen, Daniel Tarlow, Kevin Swersky, Martin Maas, Pablo

Heiber, Ashish Naik, Milad Hashemi, and Parthasarathy Ranganathan.

2022. Learning to Improve Code E�ciency. arXiv:2208.05297 [cs.SE]

[14] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:

Automatic Feedback-Directed Optimization for Warehouse-Scale Ap-

plications. InCGO 2016 Proceedings of the 2016 International Symposium

on Code Generation and Optimization. New York, NY, USA, 12–23.

[15] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2021. Neural

Transfer Learning for Repairing Security Vulnerabilities in C Code.

arXiv:arXiv:2104.08308

[16] Trishul M. Chilimbi and Martin Hirzel. 2002. Dynamic Hot Data

Stream Prefetching for General-Purpose Programs. In Proceedings of

the ACM SIGPLAN 2002 Conference on Programming Language De-

sign and Implementation (Berlin, Germany) (PLDI ’02). Association

for Computing Machinery, New York, NY, USA, 199–209. h�ps:

//doi.org/10.1145/512529.512554

[17] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C.

Sreedhar, and Samuel P. Midki�. 2003. Stack Allocation and Synchro-

nization Optimizations for Java Using Escape Analysis. ACM Trans.

Program. Lang. Syst. 25, 6 (nov 2003), 876–910. h�ps://doi.org/10.1145/

945885.945892

[18] François Chollet et al. 2015. Keras. h�ps://keras.io.

[19] Daniel Cli�ord, Hannes Payer, Michael Stanton, and Ben L. Titzer.

2015. Memento Mori: Dynamic Allocation-Site-Based Optimizations.

SIGPLAN Not. 50, 11 (jun 2015), 105–117. h�ps://doi.org/10.1145/

2887746.2754181

[20] David Cohn and Satinder Singh. 1996. Predicting Lifetimes in Dy-

namically Allocated Memory. In Advances in Neural Information

Processing Systems, M.C. Mozer, M. Jordan, and T. Petsche (Eds.),

Vol. 9. MIT Press. h�ps://proceedings.neurips.cc/paper/1996/file/

a9078e8653368c9c291ae2f8b74012e7-Paper.pdf

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. arXiv preprint arXiv:1810.04805 (2018).

[22] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Ab-

del rahman Mohamed, and Pushmeet Kohli. 2017. RobustFill: Neural

Program Learning under Noisy I/O. In Proceedings of the 34th Interna-

tional Conference on Machine Learning (Proceedings of Machine Learn-

ing Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR,

990–998. h�ps://proceedings.mlr.press/v70/devlin17a.html

[23] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2021.

Structured Neural Summarization. arXiv:1811.01824 [cs.LG]

[24] Andreas Gal, Christian W. Probst, and Michael Franz. 2006. Hot-

pathVM: An E�ective JIT Compiler for Resource-Constrained De-

vices. In Proceedings of the 2nd International Conference on Virtual

Execution Environments (Ottawa, Ontario, Canada) (VEE ’06). Asso-

ciation for Computing Machinery, New York, NY, USA, 144–153.

h�ps://doi.org/10.1145/1134760.1134780

[25] David Grove, Je�rey Dean, Charles Garrett, and Craig Chambers. 1995.

Pro�le-Guided Receiver Class Prediction. SIGPLAN Not. 30, 10 (Oct.

1995), 108–123. h�ps://doi.org/10.1145/217839.217848

[26] Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, WilliamMoses, Krste

Asanovic, John Wawrzynek, and Ion Stoica. 2020. Autophase: Jug-

gling hls phase orderings in random forests with deep reinforcement

learning. Proceedings of Machine Learning and Systems 2 (2020), 70–81.

[27] Timothy L. Harris. 2000. Dynamic Adaptive Pre-Tenuring. In Pro-

ceedings of the 2nd International Symposium on Memory Management

(Minneapolis, Minnesota, USA) (ISMM ’00). Association for Computing

Machinery, New York, NY, USA, 127–136. h�ps://doi.org/10.1145/

362422.362476

[28] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Alla-

manis. 2018. Deep Learning Type Inference. In Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (Lake Buena

55

https://www.tensorflow.org/
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://arxiv.org/abs/1808.01400
https://doi.org/10.48550/ARXIV.1803.09473
https://doi.org/10.48550/ARXIV.1803.09473
https://doi.org/10.1145/155090.155108
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1180475.1180477
https://doi.org/10.1145/1180475.1180477
https://doi.org/10.1145/504282.504307
https://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://doi.org/10.1145/3302424.3303988
https://arxiv.org/abs/2208.05297
https://arxiv.org/abs/arXiv:2104.08308
https://doi.org/10.1145/512529.512554
https://doi.org/10.1145/512529.512554
https://doi.org/10.1145/945885.945892
https://doi.org/10.1145/945885.945892
https://keras.io
https://doi.org/10.1145/2887746.2754181
https://doi.org/10.1145/2887746.2754181
https://proceedings.neurips.cc/paper/1996/file/a9078e8653368c9c291ae2f8b74012e7-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/a9078e8653368c9c291ae2f8b74012e7-Paper.pdf
https://proceedings.mlr.press/v70/devlin17a.html
https://arxiv.org/abs/1811.01824
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/217839.217848
https://doi.org/10.1145/362422.362476
https://doi.org/10.1145/362422.362476

ISMM ’23, June 18, 2023, Orlando, FL, USA Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu

Vista, FL, USA) (ESEC/FSE 2018). Association for ComputingMachinery,

New York, NY, USA, 152–162. h�ps://doi.org/10.1145/3236024.3236051

[29] Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Ma-

niatis, and David Bieber. 2020. Global Relational Models of Source

Code. In International Conference on Learning Representations. h�ps:

//openreview.net/forum?id=B1lnbRNtwr

[30] Matthew Hertz, Stephen M Blackburn, J Eliot B Moss, Kathryn S.

McKinley, and Darko Stefanović. 2002. Error-Free Garbage Collection

Traces: How to Cheat and Not Get Caught. SIGMETRICS Perform. Eval.

Rev. 30, 1 (jun 2002), 140–151. h�ps://doi.org/10.1145/511399.511352

[31] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term

memory. Neural computation 9, 8 (1997), 1735–1780.

[32] A.H. Hunter, Chris Kennelly, Paul Turner, Darryl Gove, Tipp Moseley,

and Parthasarathy Ranganathan. 2021. Beyond malloc e�ciency to

�eet e�ciency: a hugepage-aware memory allocator. In 15th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 21).

USENIX Association, 257–273. h�ps://www.usenix.org/conference/

osdi21/presentation/hunter

[33] Teresa Johnson, Mehdi Amini, and Xinliang David Li (Eds.). 2017.

ThinLTO: Scalable and incremental LTO.

[34] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.

2020. Learning and Evaluating Contextual Embedding of Source Code.

h�ps://doi.org/10.48550/ARXIV.2001.00059

[35] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.

2020. Learning and evaluating contextual embedding of source code.

In Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 12-18 July 2020 (Proceedings of Machine Learning Research).

PMLR.

[36] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-

ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-

�ling a warehouse-scale computer. In 2015 ACM/IEEE 42nd Annual

International Symposium on Computer Architecture (ISCA). 158–169.

h�ps://doi.org/10.1145/2749469.2750392

[37] Hugh Leather and Chris Cummins. 2020. Machine Learning in Compil-

ers: Past, Present and Future. In 2020 Forum for Speci�cation and Design

Languages (FDL). 1–8. h�ps://doi.org/10.1109/FDL50818.2020.9232934

[38] Bolun Li, Pengfei Su, Milind Chabbi, Shuyin Jiao, and Xu Liu. 2023. DJX-

Perf: Identifying Memory Ine�ciencies via Object-Centric Pro�ling

for Java. In Proceedings of the 21st ACM/IEEE International Symposium

on Code Generation and Optimization (Montréal, QC, Canada) (CGO

2023). Association for Computing Machinery, New York, NY, USA,

81–94. h�ps://doi.org/10.1145/3579990.3580010

[39] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,

and Ding Yuan. 2016. Don’t Get Caught in the Cold, Warm-up Your

JVM: Understand and Eliminate JVM Warm-up Overhead in Data-

Parallel Systems. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16). USENIX Association, Savannah,

GA, 383–400. h�ps://www.usenix.org/conference/osdi16/technical-

sessions/presentation/lion

[40] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geo� Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. 2005. Pin: Building Customized ProgramAnalysis Tools withDy-

namic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (Chicago,

IL, USA) (PLDI ’05). Association for Computing Machinery, New York,

NY, USA, 190–200. h�ps://doi.org/10.1145/1065010.1065034

[41] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi

Javanmard, Kathryn S. McKinley, and Colin Ra�el. 2020. Learning-

based Memory Allocation for C++ Server Workloads. In 25th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS).

[42] Hasan Al Maruf and Mosharaf Chowdhury. 2020. E�ectively Prefetch-

ing Remote Memory with Leap. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20). 843–857.

[43] Todd Mytkowicz, Devin Coughlin, and Amer Diwan. 2009. Inferred

Call Path Pro�ling. SIGPLAN Not. 44, 10 (oct 2009), 175–190. h�ps:

//doi.org/10.1145/1639949.1640102

[44] KhanhNguyen, Lu Fang, Guoqing Xu, BrianDemsky, Shan Lu, Sanazsa-

dat Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-

Data-Friendly Garbage Collector. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Implementation (Savannah,

GA, USA) (OSDI’16). USENIX Association, USA, 349–365.

[45] Deok-Jae Oh, Yaebin Moon, Eojin Lee, Tae Jun Ham, Yongjun Park,

Jae W. Lee, and Jung Ho Ahn. 2021. MaPHeA: A Lightweight Memory

Hierarchy-Aware Pro�le-Guided Heap Allocation Framework. In Pro-

ceedings of the 22nd ACM SIGPLAN/SIGBED International Conference

on Languages, Compilers, and Tools for Embedded Systems (Virtual,

Canada) (LCTES 2021). Association for Computing Machinery, New

York, NY, USA, 24–36. h�ps://doi.org/10.1145/3461648.3463844

[46] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li,

Dengyong Zhou, and Pushmeet Kohli. 2016. Neuro-Symbolic Program

Synthesis. h�ps://doi.org/10.48550/ARXIV.1611.01855

[47] Pardis Pashakhanloo, Aaditya Naik, Hanjun Dai, Petros Maniatis, and

Mayur Naik. 2022. Learning to Walk over Relational Graphs of Source

Code. In Deep Learning for Code (DL4C) Workshop at the International

Conference on Learning Representations (ICLR). h�ps://openreview.

net/forum?id=SubGAoOWJWc

[48] Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Pet-

ros Maniatis, and Mayur Naik. 2022. CodeTrek: Flexible Modeling

of Code using an Extensible Relational Representation. In Interna-

tional Conference on Learning Representations. h�ps://openreview.net/

forum?id=WQc075jmBmf

[49] Michael Pradel and Koushik Sen. 2018. DeepBugs: A Learning Ap-

proach to Name-based Bug Detection. arXiv:arXiv:1805.11683

[50] Veselin Raychev, Martin Vechev, and Andreas Krause. 2019. Predicting

Program Properties from ’Big Code’. Commun. ACM 62, 3 (Feb. 2019),

99–107. h�ps://doi.org/10.1145/3306204

[51] Nadav Rotem and Chris Cummins. 2021. Pro�le Guided Optimization

without Pro�les: A Machine Learning Approach. h�ps://doi.org/10.

48550/ARXIV.2112.14679

[52] Joe Savage and Timothy M. Jones. 2020. HALO: Post-Link Heap-

Layout Optimisation. In Proceedings of the 18th ACM/IEEE International

Symposium on Code Generation and Optimization (San Diego, CA, USA)

(CGO 2020). Association for Computing Machinery, New York, NY,

USA, 94–106. h�ps://doi.org/10.1145/3368826.3377914

[53] Mircea Tro�n, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choro-

manski, and David Li. 2021. MLGO: a Machine Learning Guided Com-

piler Optimizations Framework. h�ps://doi.org/10.48550/ARXIV.2101.

04808

[54] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and

Rishabh Singh. 2019. Neural Program Repair by Jointly Learning

to Localize and Repair. arXiv:arXiv:1904.01720

[55] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet,

Aidan N. Gomez, Stephan Gouws, Llion Jones, Łukasz Kaiser, Nal

Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and Jakob

Uszkoreit. 2018. Tensor2Tensor for Neural Machine Translation. CoRR

abs/1803.07416 (2018). h�p://arxiv.org/abs/1803.07416

[56] Yijian Wang and David Kaeli. 2003. Pro�le-Guided I/O Partitioning. In

Proceedings of the 17th Annual International Conference on Supercom-

puting (San Francisco, CA, USA) (ICS ’03). Association for Computing

Machinery, New York, NY, USA, 252–260. h�ps://doi.org/10.1145/

782814.782850

[57] Guoqing Xu. 2013. Resurrector: A Tunable Object Lifetime Pro�ling

Technique for Optimizing Real-World Programs. In Proceedings of

the 2013 ACM SIGPLAN International Conference on Object Oriented

Programming Systems Languages & Applications (Indianapolis,

Indiana, USA) (OOPSLA ’13). Association for Computing Machinery,

New York, NY, USA, 111–130. h�ps://doi.org/10.1145/2509136.2509512

56

https://doi.org/10.1145/3236024.3236051
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://doi.org/10.1145/511399.511352
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.usenix.org/conference/osdi21/presentation/hunter
https://doi.org/10.48550/ARXIV.2001.00059
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1109/FDL50818.2020.9232934
https://doi.org/10.1145/3579990.3580010
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/lion
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/lion
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1639949.1640102
https://doi.org/10.1145/1639949.1640102
https://doi.org/10.1145/3461648.3463844
https://doi.org/10.48550/ARXIV.1611.01855
https://openreview.net/forum?id=SubGAoOWJWc
https://openreview.net/forum?id=SubGAoOWJWc
https://openreview.net/forum?id=WQc075jmBmf
https://openreview.net/forum?id=WQc075jmBmf
https://arxiv.org/abs/arXiv:1805.11683
https://doi.org/10.1145/3306204
https://doi.org/10.48550/ARXIV.2112.14679
https://doi.org/10.48550/ARXIV.2112.14679
https://doi.org/10.1145/3368826.3377914
https://doi.org/10.48550/ARXIV.2101.04808
https://doi.org/10.48550/ARXIV.2101.04808
https://arxiv.org/abs/arXiv:1904.01720
http://arxiv.org/abs/1803.07416
https://doi.org/10.1145/782814.782850
https://doi.org/10.1145/782814.782850
https://doi.org/10.1145/2509136.2509512

Predicting Dynamic Properties of Heap Allocations using Neural Networks Trained on Static Code ISMM ’23, June 18, 2023, Orlando, FL, USA

[58] Giulio Zhou and Martin Maas. 2021. Learning on Distributed

Traces for Data Center Storage Systems. In Proceedings of Ma-

chine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica

(Eds.), Vol. 3. 350–364. h�ps://proceedings.mlsys.org/paper/2021/

file/82161242827b703e6acf9c726942a1e4-Paper.pdf

Received 2023-03-03; accepted 2023-04-24

57

https://proceedings.mlsys.org/paper/2021/file/82161242827b703e6acf9c726942a1e4-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/82161242827b703e6acf9c726942a1e4-Paper.pdf

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Predicting Heap Allocation Properties
	2.2 Profile Guided Optimization
	2.3 LLAMA
	2.4 ML for Code and Programming Languages

	3 High-Level Overview
	3.1 Conceptual Framework
	3.2 Our Approach
	3.3 Intuition

	4 Part 1: Data
	4.1 Collecting Dynamic Properties of Objects
	4.2 Collecting Source Code
	4.3 Contextualizing Stack Traces
	4.4 Challenges

	5 Part 2: Model
	5.1 Training Details
	5.2 Baseline: LLAMA
	5.3 Subtokenization of Function Names
	5.4 Featurizing Stack Traces with Code
	5.5 Representing Code with Abstract Syntax Trees
	5.6 Multi-modal Features
	5.7 Challenges

	6 Part 3: Application
	6.1 Online Prediction
	6.2 Prediction in JIT Compilers
	6.3 Offline Prediction

	7 Discussion
	7.1 Token selection
	7.2 Modalities
	7.3 Labelling Examples

	8 Conclusion
	References

