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Abstract
As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to under-

stand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the tempo-

ral variability of community biomass from the properties of individual component species in monoculture.

Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in

species’ responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding

in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameter-

ised with empirical data from four long-term grassland biodiversity experiments, our prediction explained

22–75% of the observed variability, and captured much of the effect of species richness. Richness stabilised

communities mainly by increasing community biomass and reducing the strength of demographic stochas-

ticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on

ecosystem stability.
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INTRODUCTION

Ecosystems are subject to temporal variations in environmental

conditions and various stressors, and an important aspect of their

functioning is their temporal stability in response to these extrinsic

factors. The intuitive idea that biodiversity allows different species

to compensate for each other and thereby stabilises communities

and ecosystems (MacArthur 1955; Elton 1958) was challenged by

theoretical work in the 1970s (May 1973), leading to a long-standing

debate on the relationship between diversity and stability in ecology

(McNaughton 1977; McCann 2000; Ives & Carpenter 2007; Loreau

2010, p. 124). This debate can be partly resolved by the fact that

diversity often has a dual effect on stability: it stabilises total com-

munity biomass, while at the same time destabilising individual spe-

cies abundances (Tilman 1996; Tilman et al. 2006; Roscher et al.

2011). Many experiments have confirmed the stabilising effects of

biodiversity on ecosystem properties (Hooper et al. 2005; Tilman

et al. 2006; van Ruijven & Berendse 2007; Isbell et al. 2009; Hector

et al. 2010; Proulx et al. 2010; Allan et al. 2011).

A number of theories have been developed recently to explain

the stabilising effect of diversity on aggregate ecosystem properties.

These theories have followed four main approaches (Loreau 2010,

p. 128): (1) a statistical approach based on the phenomenological

mean–variance scaling relationship, which considers neither popula-

tion dynamics nor species interactions explicitly but which is easily

applied to empirical data (Doak et al. 1998; Tilman 1999); (2) a sto-

chastic, dynamical approach that describes population dynamical

responses to environmental fluctuations but does not explicitly con-

sider species interactions (Yachi & Loreau 1999); (3) a general pop-

ulation dynamical approach that includes a deterministic component

describing species interactions and a stochastic component describ-

ing environmental fluctuations (Hughes & Roughgarden 1998, 2000;

Ives et al. 1999; Ives & Hughes 2002); and (4) specific models of

interspecific competition in which trade-offs lead to coexistence

(Tilman 1999; Lehman & Tilman 2000). Although each of these

approaches sheds some light on the effects of species diversity on

ecosystem stability, the underlying mechanisms that drive these

effects have not been elucidated and remain contentious (Loreau

2010, ch. 5). So far, none of these approaches has been able to pre-

dict ecosystem stability from the properties of component species.

Here, we expand previous theory following the population

dynamical approach (Ives et al. 1999; Lehman & Tilman 2000;

Loreau & de Mazancourt 2008) to more realistic communities in

which species are affected by a combination of intra- and interspe-

1Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal,

Quebec, H3A 2K6, Canada
2Department of Biology, McGill University, 1205 avenue Docteur Penfield,

Montreal, Quebec, H3A 1B1, Canada
3Department of Ecology, Evolution and Behavior, University of Minnesota,

St. Paul, Minnesota, 55108, USA
4Nature Conservation and Plant Ecology Group, Wageningen University, PO

Box 47, 6700 AA, Wageningen, The Netherlands
5Institute of Evolutionary Biology and Environmental Studies, University of

Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
6US Geological Survey, 700 Cajundome Blvd, Lafayette, LA, 70506, USA
7INRIA research team MODEMIC, UMR MISTEA, 2 place Viala, 34060,

Montpellier, France

8USDA Agricultural Research Service, Grassland, Soil and Water Research

Laboratory, 808 East Blackland Road, Temple, Texas, 76502, USA
9UFZ, Helmholtz Centre for Environmental Research, Department of

Community Ecology, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
10Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103,

Leipzig, Germany
11Department of Ecology, Evolution, and Organismal Biology, Iowa State

University, Ames, Iowa, 50011, USA
12Centre for Biodiversity Theory and Modelling, Experimental Ecology Station,

Centre National de la Recherche Scientifique, 09200, Moulis, France

*Correspondence: E-mail: claire.demazancourt@ecoex-moulis.cnrs.fr

© 2013 Blackwell Publishing Ltd/CNRS

Ecology Letters, (2013) 16: 617–625 doi: 10.1111/ele.12088



cific competition, environmental stochasticity and demographic sto-

chasticity, and in which they differ in all their parameters. We use

this new theory to generate a prediction of ecosystem stability that

is derived from the properties of individual species in monoculture

and that can be applied to mixed communities. We then test our

theoretical prediction with the results of four long-term grassland

biodiversity experiments in which species richness was manipulated,

and we discuss how it can elucidate the mechanisms that drive the

effects of diversity, in particular species richness, on ecosystem sta-

bility.

THEORETICAL MODEL

Materials and methods

Our theoretical model is based on a discrete-time version of the

classical Lotka–Volterra model that incorporates environmental and

demographic stochasticity (Ives et al. 1999; Loreau & de Mazancourt

2008):

~riðtÞ ¼ ln ~Niðt þ 1Þ � ln ~NiðtÞ

¼ rmi 1�
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where ~Ni tð Þ is the biomass of species i in year t, and ~riðtÞ is its

instantaneous mass-specific growth rate in year t. A tilde denotes

the real, unknown quantities, as observed biomass and growth rate

are affected by observation error (see below). rmi is species i’s intrin-

sic (maximum) rate of natural increase, Ki is its carrying capacity

and aij is the interspecific competition coefficient describing the

effect of species j on species i. Environmental stochasticity

describes a year effect on a species’ growth rate. It is incorporated

through reiuei(t), where r2ei is the environmental variance, and uei(t)

are normal variables with zero mean and unit variance that are inde-

pendent through time (white noise) but may be correlated between

species (e.g. a good year for one species may be good for another

species as well). Demographic stochasticity is the last term in Equa-

tion (1). It is due to variation in birth and death rates between indi-

viduals or independent reproductive units. Here, we incorporate it

in the form of the first order, normal approximation that is tradi-

tionally used in the theory of stochastic population dynamics (Lande

et al. 2003) to facilitate mathematical analysis. Individuals are not

well defined in grassland plants and the number of individuals (such

as the number of genets) is a poor descriptor of plant population

dynamics. The number relevant for population dynamics is the

number of plant modules, defined as demographic plant units with

a high functional independence (e.g. tillers, shoots or rosettes,

Schmid 1990). Module density is quite strongly correlated with biomass

(Marquard et al. 2009), which is why we use biomass rather than

number of individuals. r2di is the demographic variance, and udi(t)

are independent normal variables with zero mean and unit variance.

The observed biomass of species i in year t, Ni tð Þ, is estimated

through a sampling procedure that generates an observation error

due to factors such as spatial heterogeneity and variability in sample

collection and sorting. Observed biomass is the real biomass plus a

random variable representing observation error on a log scale,

roiuoi tð Þ (Ives et al. 2003), where r2oi is the observation variance, and

uoi tð Þ is the average of independent normal variables with zero

mean and unit variance across the subsamples taken in a plot in

year t:

ln Ni tð Þð Þ ¼ ln ~Ni tð Þ
� �

þ roiuoi tð Þ: ð2Þ

Community biomass is defined as the sum of the biomasses of

component species. We use our model to derive an analytical pre-

diction of the temporal coefficient of variation of community bio-

mass, as this inverse measure of ecosystem stability has been

commonly used in experiments (Tilman et al. 2006; Ives & Carpen-

ter 2007; van Ruijven & Berendse 2007; Isbell et al. 2009; Proulx

et al. 2010; Allan et al. 2011). The derivation proceeds as follows.

First, we compute the deterministic equilibrium values of model (1)

in the absence of any stochasticity. Second, we assume that the sys-

tem reaches a stationary state, and we linearise Equations (1) and

(2) around the equilibrium by representing all forms of stochasticity

as additive Gaussian variables. Third, we derive an analytical predic-

tion of the variance-covariance matrix of component species bio-

masses. Fourth, we obtain the variance of community biomass as

the sum of the variances and covariances of component species bio-

masses, from which we obtain the coefficient of variation of com-

munity biomass (see more details in Online Supporting

Information, section A).

The analytical predictions of the observed variance and coefficient

of variation (CV) of community biomass at stationary state should

hold as a first order, linear approximation for any more realistic

model (Online Supporting Information, section A). This approxima-

tion, however, is impractical because estimating the large number of

pairwise competition coefficients between species would require

longer time-series than available. Given the data limitations, we

make the simplifying assumption that interspecific competition

affects only the mean abundances of species, not their year-to-year

dynamics, that is, the abundance of species in a given year does not

predict its effect on competitors in the following year (Online Sup-

porting Information, section A). This simplifying assumption allows

us to derive a simple theoretical prediction for the CV of commu-

nity biomass that can be parameterised using existing experimental

data. Our prediction can be seen as a first, coarse approximation;

longer time-series would be required to estimate competitive effects.

If competitive effects could be estimated, the full first-order approx-

imation could be computed by solving equation (A11). We test our

prediction against simulations where species differ in all their

parameters, with high and asymmetric competition in the following.

Results

Our prediction is

CV 2
NT ¼

rNT

NT

� �2

� ueR
2
e þ

R
2
d

NT

þ k
R
2
o

nx
ð3Þ

.

In this equation, ue is a measure of the synchrony of species envi-

ronmental responses, where species environmental responses are

species-specific properties independent of species interactions and

measured by the year effect on their growth rate in monocultures;

synchrony is then computed from the variance-covariance matrix of

these environmental responses. R2
e is the mean scaled environmental

variance, R2
d is the mean scaled demographic variance, NT is mean

community biomass, k is Simpson’s (1949) concentration index

(a measure of dominance), nx is the number of subsamples taken
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within a plot and year used to estimate the CV of community bio-

mass and R
2
o is the mean observation variance (Online Supporting

Information, section A, equations A22–A26).

Equation (3) comprises three additive terms, which encapsulate

the respective influences of environmental stochasticity, demo-

graphic stochasticity and observation error on variability of total

biomass. The mean scaled environmental, mean scaled demo-

graphic, and mean observation variances are weighted means of

individual-level variances. As such they can be affected by differ-

ences in community composition and species relative abundances

across plots. However, there should be no systematic effect of spe-

cies diversity on these variances unless there is selection for species

with high or low variances in mixtures (Loreau & Hector 2001).

Equation (3) then suggests three main mechanisms through which

species diversity can stabilise community biomass: (1) by decreasing

the synchrony of species environmental responses, ue, which damp-

ens the effect of environmental stochasticity at the community level

through functional compensation between species (Gonzalez &

Loreau 2009; Loreau 2010, p. 130); this mechanism underlies the

insurance hypothesis, (2) by increasing community biomass, NT ,

which increases the number of demographic modules and thereby

reduces the strength of demographic stochasticity at the community

level and (3) by decreasing Simpson’s concentration index, k, which

reduces the impact of observation error at the community level.

Observation error probably results mainly from spatial heterogeneity

and sampling variability, whose effects tend to average out at the

community level.

NUMERICAL SIMULATIONS

Materials and methods

We first tested the accuracy of our simplified analytical prediction

(3) with numerical simulations of model (1) in which species dif-

fered in all their parameters and there was no observation error. In

the simulations, we considered four cases by varying two factors:

(1) the relative strength of environmental stochasticity vs. demo-

graphic stochasticity (two levels, in which species demographic and

environmental standard deviations were drawn from different

ranges), and (2) connectance, that is, the proportion of species com-

peting with each other (two levels). In low-connectance communi-

ties, coexistence was ensured by setting most competition

coefficients to zero, resulting in low levels of interspecific competi-

tion overall. In high-connectance communities, all species competed

with each other and coexistence was ensured by a low variability

among competition coefficients scaled (divided) by relative carrying

capacities (Jansen & Kokkoris 2003), resulting in higher levels of

interspecific competition than in low-connectance communities.

For numerical simulations, we drew parameters from random dis-

tributions to generate stable coexisting communities at 6 species

richness levels (S = 1, 2, 4, 8, 16, 32) and 11 target values of the

synchrony of species environmental responses, ue, as our analysis

above shows that this is a key factor that affects ecosystem stability.

Our measure of synchrony is bounded between 0 (perfect asyn-

chrony) and 1 (perfect synchrony). Community dynamics was simu-

lated for 2010 time-steps, and realised communities were those

where none of the species went extinct during the simulation. The

last 10 time-steps ensured that no species was on the brink of

extinction at the end of the time-series, and time-steps 1000–2000

were used to estimate the characteristics of the community and of

its component species. We simulated 1000 single-species communi-

ties. For each of the other values of species richness, we generated

200 realised communities for each target level of species synchrony

of environmental response (11 values regularly spaced between 0

and 1). We repeated the simulations for two levels of connectance

and two levels of environmental and demographic variances. More

details are provided in Online Supporting Information, section B1.

Results

Numerical simulations strongly supported our analytical prediction

at low levels of connectance as there was an excellent match

between the prediction and the realised CV of community biomass

at all levels of species diversity (Fig. 1, left panels). At high levels of

connectance and interspecific competition, the match was still pres-

ent but was less strong (Fig. 1, right panels). Recall that our predic-

tion includes the effect of interspecific competition on average

species abundances, but not its effect on year-to-year dynamics.

Although the strength of interspecific competition should not affect

community variability when communities are symmetrical (Ives et al.

2000; Loreau 2010, p. 150), it does when species differ (Fowler

2009; Loreau & de Mazancourt 2013). Our prediction then tends to

underestimate community variability, suggesting that asymmetric

competition tends to destabilise communities (Loreau & de Mazan-

court 2013).

Our theory predicts that the relative importance of the various

stabilising mechanisms at work depends on the relative strengths of

environmental stochasticity, demographic stochasticity and observa-

tion error because the three terms are additive (Equation 3). When

environmental stochasticity is the dominant force driving commu-

nity dynamics, asynchrony between species environmental responses

(mechanism 1 above) is responsible for the stabilising effect of

diversity (Fig. S1, top panels). In contrast, when demographic sto-

chasticity dominates, diversity affects stability through its effect on

community biomass (mechanism 2 above; Fig. S2, bottom panels).

APPLICATION TO FIELD DATA

Materials and methods

One attractive feature of our approach is that it can be applied

directly to empirical data. All species-specific parameters, such as

their intrinsic rate of natural increase, carrying capacity, environmen-

tal response through time and demographic variance, can be esti-

mated using replicated monoculture time-series for each species.

Observation variance requires measurements of several samples

within monoculture plots. The only information needed from mix-

tures is the time-average of the abundance of each component spe-

cies (Online Supporting Information, section B3). Equation (3) can

then be used to predict the variability of community biomass in

mixtures from independent data.

We used data from four long-term grassland biodiversity experi-

ments in Cedar Creek (Minnesota, USA), Jena (Germany), Texas

(USA) and Wageningen (The Netherlands) to assess the extent to

which our prediction matched the observed temporal variation of

community biomass (Online Supporting Information, section B2–

B4). In all experiments, diversity treatments were maintained for at

least 8 years through hand-weeding programs. More details are pro-
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vided in Online Supporting Information, section B2 and summar-

ised in Table S1.

For each data set, species parameters were estimated for each

species independently, using time-series analysis of log biomass and

growth rates in replicated monocultures. Several samples within

monoculture plots were taken in Cedar Creek and Jena; observation

variance could thus be estimated for these two experiments. Param-

eters from component species were then combined into the compo-

nents of our prediction (Equation 3), with weightings depending on

their mean abundance in mixture (Online Supporting Information

equations A22–A26). Details are provided in Online Supporting

Information, section B3. Major axis regression was performed

where explanatory variables were estimated, with the lmodel2 pack-

age in R 2.11.1 (see Online Supporting Information, section B4).

To understand the importance of the different mechanisms in

predicting community variability and the effect of species richness,

we developed two sets of structural equation models (Online Sup-

porting Information, section B5). Structural equation modelling

allows evaluation of complex causal hypotheses by translating a set

of hypothesised causal relationships into a pattern of expected sta-

tistical relationships in the data (Grace 2006). The first set of mod-

els simply related observed variability to the three additive

components of our prediction, demographic stochasticity, environ-

mental stochasticity and observation error, for the four data sets

(Fig. 2). The second set of models was designed to address the

more complex question of how each of the six individual compo-

nents of Equation (3) contributed to the overall effect of species

richness on variability in community biomass (Fig. 2).

Results

Across the four data sets, our prediction explained 22–75% of the

variance in the observed CV of aboveground community biomass

(Fig. 3). Our prediction faired in a similar way than species richness

in Cedar Creek, Wageningen and Jena, and much better in Texas

(Table 1). When the two variables were fitted together, both vari-

ables were significant (Table 1). The explanatory power, compared

to our prediction alone, increased minimally with the addition of

species richness in Cedar Creek and Texas, and moderately so in

Wageningen and Jena (Table 1). Regression lines between observed

CV of aboveground biomass and our prediction were often away

from the 1 : 1 line.

To understand how the three additive components of our predic-

tion (Equation 3) contribute to its explanatory power, we modelled

their respective effects on observed variability using structural equa-

tion modelling (Fig. 4). In this analysis, the three components were

treated as equal and separate (though intercorrelated) predictors.

Since the intercorrelation strengths among them were modest (0.06

–0.34), it is possible to interpret the standardised path coefficients,

which technically represent predicted sensitivities, as measures of

their relative importance. Demographic stochasticity was the most

Figure 2 Decomposing Equation 3 for structural equation modelling. In the first set of structural equation models (Fig. 4), the prediction was decomposed into three

additive terms, that is, environmental (orange), demographic (green) and observation (blue) terms. In the second set of structural equation models (Fig. 5), it was

decomposed into the six components shown below the equation.

Figure 1 The coefficient of variation (CV) of community biomass is well

explained by the prediction in simulated model communities. Left column: low-

connectance (low competition) communities; right column: high-connectance

(high competition) communities. Either environmental stochasticity (top row) or

demographic stochasticity (bottom row) is the main driver of community

variability. Each dot represents one community, colour indicates species richness.

A sample of 1200 of the 12 000 simulated communities was plotted for clarity.

Dashed black line represents the 1 : 1 line. Coloured solid lines represent the

regression lines for each corresponding level of species richness. Black solid line

is the regression line pooling all levels of species richness together, regression

whose R2 is shown.
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important component in three experiments (Wageningen, Jena and

Texas); environmental stochasticity also made a significant contribu-

tion in these experiments (Fig. 4). Unexpectedly, predicted observa-

tion error was the most important component at Cedar Creek.

This effect of observation error is confirmed by a direct fit of mea-

sured observation error on the observed CV of community bio-

mass, which was also significant (Cedar Creek, R2
= 0.1, P < 0.001;

Jena R2
= 0.18, P < 0.001). Correlations among components were

generally positive. A negative correlation between demographic and

environmental stochasticities was observed for Cedar Creek

(Fig. 4).

Next, we used structural equation modelling to investigate which

components of equation (3) were likely to have contributed to the

stabilising effect of species richness on community biomass. We

first consider the effect of species richness on each component.

Theory predicts that synchrony of species environmental responses,

mean community biomass and Simpson’s concentration index

should be affected by species diversity, and they always were

(Fig. 5). The mean scaled environmental, scaled demographic and

observation variances represent weighted means of individual-level

variances; they depend on community composition and species

relative abundances but we expect no systematic effect of species

richness on these variances unless there is selection for species with

either high or low variances in mixtures. These variances were

indeed not affected by species richness most of the time, with three

exceptions: demographic variance increased with species richness in

Cedar Creek and Texas, and observation variance increased with

species richness in Cedar Creek. There was thus a selection effect

for more variable species in these two experiments.

The effect of species richness on community variability was medi-

ated through community biomass in all experiments (Fig. 5). Addi-

tional effects of species richness were observed directly (in

Wageningen) or through variables that are highly correlated with

species richness, such as Simpson’s concentration index (in Cedar

Creek and Jena), or synchrony (Texas). In both Cedar Creek and

Texas, the stabilising effect of diversity was slightly counteracted by

a selection effect for species with higher demographic variances.

Figure 3 The observed coefficient of variation (CV) of community biomass in

the four experiments was relatively well predicted by the prediction. R2 and P-

values are for major axis regressions (Supplementary Information section B4).

Black dashed lines indicate 1 : 1 relationship. Grey lines indicate 95% confidence

interval for slope. Colours indicate the number of planted or sown species.

Table 1 Fractions of the variance (R2) of the CV of community biomass among

plots explained by our prediction alone (Equation 3), planted or sown species

richness alone, and both variables on a log scale: log(observed CV) ~ log (term)

Whole prediction

only

Species Richness

only

Whole prediction +

Species Richness

Cedar Creek 0.22*** 0.19*** 0.26***

Wageningen 0.30*** 0.29*** 0.41***

Jena 0.37*** 0.25*** 0.49***

Texas 0.75*** 0.13** 0.77***

Stars indicate level of significance: ***P < 0.001, **P < 0.01. Note that for each

site, the model including the whole prediction only has the same number of

degrees of freedom as the model with species richness only: both have one sin-

gle, continuous explanatory variable. Statistics for the full model (whole predic-

tion + species richness) are presented in Appendix Table S3.

Figure 4 SEM standardised results showing the contribution of each of the three

terms of our prediction (Fig. 2) to the observed coefficient of variation of

community biomass (Obs. CV). Env. term: environmental stochasticity term

ueR
2
e ; Dem. term: demographic stochasticity term

R
2
d

NT
; Obs. term: observation

error term k
R
2
o

nx
. There is no estimate for observation error in Wageningen and

Texas, where samples are always taken at the same place and represent the

quasi-totality or the totality of plots; therefore, there is no error due to partial

sampling and spatial heterogeneity. Standardised path coefficients represent

predicted sensitivities, that is, what the predicted responses would be if an

individual predictor were varied while the other variables in the model were held

constant (Grace & Bollen 2005).
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The first stabilisation mechanism we identified is reduced envi-

ronmental stochasticity at the community level because of differ-

ences between species’ responses to environmental fluctuations,

which generate decreased synchrony ue with increased diversity.

A strong negative effect of species richness on the synchrony of

species environmental responses was found in all four experiments

(Fig. 5). Surprisingly, the significant effect of species richness on

the synchrony of species environmental responses (ue) only seemed

to make a significant contribution to community stability in Texas

(Fig. 5).

The second mechanism is reduced demographic stochasticity at

the community level because of increased community biomass with

higher diversity. In all four experiments, more diverse communities

had a higher mean community biomass (Fig. 5). This second stabili-

sation mechanism is likely to have played a significant role in all

four experiments, where community biomass made a significant

contribution to community stability. However, in Cedar Creek and

Texas, this was slightly counteracted by a selection effect of more

variable species (Fig. 5). This is shown by the positive effect of spe-

cies richness on demographic variance, which in turn results in

higher community variability.

Finally, we predicted a possible effect of diversity on community

stability through reduced observation error. This seemed to be the

case in the two experiments in which multiple samples per plot

were taken, that is, Cedar Creek and Jena (Fig. 4), where the effect

was mediated through Simpson’s concentration index (Fig. 5). In

both experiments, the predicted observation error was significantly

correlated with its observed value (Online Supporting Information,

Fig. S3). Species richness also slightly affected the measured obser-

vation error (Cedar Creek: R2
= 0.08, P < 0.001; Jena: R2

= 0.02,

P < 0.05). Thus, observation error is likely to have played a minor

role in the positive relationships between biodiversity and stability

in these experiments.

DISCUSSION

The theory we have developed here makes three major contribu-

tions: first, it clarifies the nature of a number of stabilising mecha-

nisms and how they interact to drive ecosystem stability; second,

for the first time it provides a way to disentangle them quantita-

tively in field biodiversity experiments; and third, it provides the

first prediction of the stability of aggregate ecosystem properties

from the properties of individual species. Our theoretical prediction

encapsulated in Equation (3) explained 22–75% of the variance in

the observed variability of aboveground community biomass in four

long-term grassland biodiversity experiments. The percent of vari-

ance explained by our prediction was similar to that explained by

planted species richness alone, except in Texas where it was much

better (Table 1). Adding species richness to a model with our pre-

diction improved explanatory power little in two experiments (Cedar

Creek and Texas), and moderately in two locations (Jena and Wa-

geningen) (Table 1). This suggests that the mechanisms captured in

Figure 5 Structural Equation Modelling standardised results showing how planted or sown species richness (Sp. richness) affected the observed CV (coefficient of

variation of community biomass, Obs. CV) through each of the six components of our prediction (Fig. 2). Sync: synchrony of species environmental responses ue; env

var: mean scaled environmental variance R
2
e ; com bio: mean community biomass NT ; dem var: mean scaled demographic variance R

2
d ; Simp: Simpson’s (1949)

concentration index, k; obs var: mean observation variance R2
o. Coefficients as in Fig. 4.
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our prediction cover a good part of the effects of species richness

on community variability. Our prediction also includes some effects

of total plot biomass, evenness and species identity that come into

play in the various terms of Equation (3). Although our prediction

was correlated with the observed CV, it could be further improved

to increase its predictive ability.

Note that a correlation between our prediction and the observed

CV could be expected for monocultures since both are estimated

from the same data. However, correlations remained highly signifi-

cant when monocultures were removed from the analysis, except

in Wageningen where it became non significant (results not

shown). Many different factors could account for the lower range

of explanatory power of our theoretical prediction. First, time-

series are short (in terms of time-series analysis), and there is a

relatively low number of monocultures. Accuracy in parameter esti-

mation is therefore limited, especially because field data are very

variable. Second, our prediction assumes that the abundance of

species in a given year does not affect their competitors the fol-

lowing year. As discussed previously, longer time-series would be

required to obtain reliable estimates of yearly competition effects,

and a better prediction using estimated competition coefficients

could be compiled solving equation (A11). Third, our prediction

relies on a first-order, linear approximation of yearly competitive

effects and stochasticity terms; it assumes that perturbations are

small – which they are not, and that interactions between these

various factors are negligible, or in other words, that the behaviour

in monoculture reflects the behaviour in mixture. Finally, experi-

ments are probably far from the steady-state assumed.

Our theory predicts that three main mechanisms underlie the sta-

bilising effect of species richness on community biomass in biodi-

versity experiments. The first mechanism, asynchrony of species

environmental responses, is predicted to be important when envi-

ronmental stochasticity plays a significant role in community vari-

ability (Fig. S1, top row). The strong negative correlation between

the synchrony of species environmental responses and species rich-

ness in all four experiments (Fig. 5) shows that this stabilisation

mechanism is potentially strong. This potential, however, seemed to

be realised only in Texas, the only experiment where synchrony of

species environmental responses made a significant contribution to

community variability (Fig. 5). The relatively short length of the

experiments (8–13 years) and variability between plots may also

have restricted our ability to detect significant environmental signals

in the data.

Note that a species’ environmental response is an intrinsic spe-

cies-specific property that defines its functional response type or

trait (Diaz & Cabido 2001); it is measured by the year effect on

growth in monoculture, in the absence of interspecific interactions.

It can also be estimated from natural systems with replicated time-

series (Mutshinda et al. 2009; Thibaut et al. 2012). In contrast, pop-

ulation fluctuations result from many different processes, including

species responses to the environment, density dependence, species

interactions, and demographic stochasticity. Therefore, asynchrony

in species environmental responses must be carefully distinguished

from asynchrony in population fluctuations (Loreau & de Mazan-

court 2008). In particular, asynchrony in species environmental

responses cannot be measured by the summed covariances of pop-

ulation fluctuations. Summed species covariances are strongly

affected by species interactions such as competition, and can be

negative even when competition acts to decrease community stabil-

ity (Loreau & de Mazancourt 2013). Therefore, summed species

covariances are unlikely to provide a mechanistic explanation for

community stability. In contrast, asynchrony of species environ-

mental responses is a measure of functional response diversity

(Diaz & Cabido 2001); it is the basic mechanism of the insurance

hypothesis (Ives et al. 1999; Yachi & Loreau 1999). It is also the

likely cause of the stabilising effect of diversity on community bio-

mass in resource competition models (Tilman 1999; Lehman &

Tilman 2000). In these models, the interspecific trade-offs that

generate coexistence, such as species having different optimal tem-

peratures, also cause species to have asynchronous responses to

environmental (temperature) fluctuations. Our theory highlights

asynchrony of species environmental responses as a mechanism

that drives the stabilising effect of species diversity on aggregate

ecosystem properties, a mechanism that is more closely related to

the concept of functional compensation as initially envisaged by

ecosystem ecologists (McNaughton 1977). Thibaut et al. (2012)

found that this was likely the main mechanism driving the diver-

sity-stability relationship in coral reefs communities. We suggest

that future research on compensatory dynamics would benefit from

focusing on asynchrony of species environmental responses rather

than on mere patterns of population fluctuations (Loreau 2010,

ch. 5).

The second mechanism our theory highlights, reduced demo-

graphic stochasticity with increased community biomass, is pre-

dicted to be important when demographic stochasticity is a

significant driver of community variability (Fig. S2, bottom row).

Species richness increases community biomass through functional

complementarity between species and/or through selection of more

productive species, a phenomenon known as overyielding (Loreau

& Hector 2001). A positive effect of species richness on commu-

nity stability through community biomass was found in all four

experiments (Fig. 5). This stabilisation mechanism played a role in

all four experiments, although it was slightly counteracted by a

selection effect for more variable species in Cedar Creek and Texas

(Fig. 5).

Our analysis provides a mechanistic underpinning for the stabilis-

ing effect of community biomass. Previous arguments were based

on empirical scaling relationships between the mean and the vari-

ance of species abundances with the form, r2ni ¼ an
z
i where z is a

scaling coefficient typically between 1 and 2 (Taylor & Woiwod

1982). Two known mechanisms create such a scaling coefficient for

individual species: demographic stochasticity (Anderson et al. 1982),

and competitive interactions between species (Kilpatrick & Ives

2003). Both mechanisms were at work in our model, although only

demographic stochasticity results in a stabilisation of diverse com-

munities through overyielding. We suggest that future research

would benefit from exploring the role of demographic stochasticity

to explain ecosystem stability.

Finally, our theory also predicts a potential effect of diversity on

ecosystem stability through reduced observation error. This effect

comes from the assumption that the biomasses of different species

are measured independently. The higher the diversity, the more the

observation errors on species biomass average out in community

biomass. Common species contribute more to community biomass

variability than rare species, with the appropriate weighting being

given by Simpson’s index. Observed observation error decreased

slightly with species richness in the field, although the R2 were small

(results section). Is reduced observation error a genuine stabilisation

© 2013 Blackwell Publishing Ltd/CNRS
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mechanism or just a methodological problem? We suspect that a

significant part of measurement error comes from spatial heteroge-

neity. If biodiversity decreases spatial heterogeneity at the commu-

nity level by averaging out heterogeneity of the component species,

then it can be considered a genuine mechanism through which

diversity stabilises communities. This mechanism was likely to play

a role in the Cedar Creek and Jena experiments (Fig. 4 and 5).

Although reduced observation error may be viewed as a statistical

mechanism due to sampling constraints rather than as a genuine

ecological mechanism, its influence on the results of biodiversity

experiments should not be ignored. Observation error, which has

been overlooked so far, will be important to consider explicitly in

future biodiversity experiments.

What is the role of competition in stabilising communities? Inter-

specific competition is often hypothesised to stabilise communities

through compensatory dynamics. However, mathematical explora-

tion of the full community dynamics, obtained by solving equation

(A11) for a 2-species community with interspecific competition,

shows that interspecific competition can have dual effects, but that

it most often has a destabilising effect at both the population and

community levels (Loreau & de Mazancourt 2013). Some recent

studies suggest that interspecific interactions contribute little to

community stability in a range of animal taxa (Mutshinda et al.

2009; Almaraz et al. 2012; Thibaut et al. 2012). Although our predic-

tion encompasses the effect of interspecific competition on average

abundance, it ignores its potential effects on year-to-year dynamics.

Longer time-series will be necessary to assess the importance of

year-to-year interspecific competitive interactions in experimental

plant communities.

Our work provides a new predictive theory of the stability of

community biomass that can be parameterised from species-specific

properties obtained independently, and their abundance in mixture.

To be estimated, our prediction requires experimental data from

monocultures, but given enough temporal and spatial resolution,

parameters could in principle be estimated from natural communi-

ties (as in Almaraz et al. 2012; Thibaut et al. 2012). Thus, our

approach offers the potential for understanding and predicting the

stability of an important ecosystem service in the face of biodiver-

sity loss and other environmental changes from knowledge of indi-

vidual species responses to these changes. This could provide a

useful tool to inform policy and economic decision-making pro-

cesses about the insurance value of biodiversity in the provision of

ecosystem services (Baumg€artner 2007).
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A. Derivation of the prediction for the squared coefficient of variation of total 

community biomass (equation 3) 

We first derive an analytical prediction for the variance of total community biomass in 

stationary state. To obtain it, we make a number of assumptions along the way, which we 

summarize here: 

- The system has reached a stationary state with small perturbations around the 

deterministic equilibrium; therefore, a linear approximation around the 

equilibrium is sufficient. 

- All stochastic components are Gaussian variables, with no temporal 

(environmental, demographic and observation) and spatial (demographic and 

observation) autocorrelations (white noise). For each species, the environmental 

responses are the same across all plots (response to a year effect); environmental 

responses can be correlated across species (a good year for one species might be a 

good year for another species). Demographic stochasticity is independent between 

species and plots. Observation errors are independent between species and 

samples within plots. 

- Interactions between species do not affect their environmental responses, nor the 

magnitude of demographic stochasticity and observation error. 

- The overall effect of competition on community stability is small, even if its 

effect on community biomass, composition and on individual species dynamics 

might be strong. Accordingly, we assume that competition coefficients are zero, 

but that species carrying capacities in communities are their observed abundances 

in communities. 

Substituting equation (2) into equation (1), we get the following equation for the 

observed biomasses: 
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 First-order approximations of the temporal variance of total community biomass 

are obtained as follows (Ives 1995; Hughes & Roughgarden 2000; Ives & Hughes 2002; 

Loreau & de Mazancourt 2008). Let ( ) ( ) *
iii NtNtN −=δ denote the deviation of observed 

species i’s biomass from its equilibrium value in the community, *
iN , in the absence of 

stochasticity. Equation (A1) can be Taylor expanded around δNi(t) =uei(t) = udi(t) = ( )tu
s

oi

= 0 to yield, after dropping terms of order two and higher, 

 ( ) ( ) ( )ttt zδNAδN +=+1 , (A2) 

where δN(t) is the vector of deviations of species biomasses from their deterministic 

equilibrium value, A is the community matrix, also known as the Jacobian matrix around 

the equilibrium, with elements (aij)1<i,j<S: 
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and z(t) is a vector that encapsulates the effects of environmental and demographic 

stochasticity as well as observation error, and whose elements are 

( ) ( ) ( ) ( )[ ] ( ) ( )
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When the system reaches a stationary distribution, the variances and covariances 

between species biomass time series are:  

( ) ( ) ( )( ) ( )( )
SjijiSjiji

T
NNNNtt

<<<<
∞ ===

,1,1
,cov,cov δδCδNδN   (A5) 

where TδN  is the transpose of vector δN , i.e. a row vector. 

Since both uoi(t) and uoi(t-1) appear in zi(t), observation errors introduce a 

correlation between z(t-1) and z(t). Our assumptions listed above lead to the following 

correlation structure of z: 
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( ) ( ) 0Zzz =T
tt         (A6) 

( ) ( ) 11 Zzz =− T
tt         (A7) 

( ) ( ) 0=− T
tst zz  for s>1       (A8) 

We use (A2) to write a dynamical equation for the covariance C: 

( ) ( ) ( )
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 (A9) 

Using (A2), (A7) and (A8), we obtain: 

( ) ( ) ( ) ( ) ( ) ( )

10

11

Z

zzzδNAzδN

+=

−+−= TTT
tttttt

     (A10) 

Substituting into (A9), and taking the limit ∞→t  on both sides, we get: 

BAACC += ∞∞ T          (A11) 

where 

011 ZAZAZB ++= TT         (A12) 

The variance of total community biomass, 2
NTσ , is the sum of all the elements of 

the C matrix. If all parameters are known, equation (A11) can be solved. However, 

solving it requires an estimate of all interspecific competition coefficients, which requires 

unrealistically long time-series (Ives et al. 2003). Because of data limitations, we have to 

make the simplifying assumption that competition does not affect the dynamics at the 

community level. Such assumption would be reasonable in symmetrical models where all 
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species have the same parameters, where competition does not affect the variance of total 

biomass (Ives et al. 1999; Loreau & de Mazancourt 2008). It would also be reasonable if 

the time-scale of operation of competition was much less than the sampling time-scale. In 

such case, the effect of competition on species biomass could be strong, but its effect 

would not be detected in a time-series analysis. This was demonstrated for density 

dependence in single-species dynamics (Doncaster 2008), and is consistent with time-

series analyses that find little evidence for interspecific interactions using time-series data 

(Mutshinda et al. 2009). To apply our approach, we assume that interspecific competition 

has a strong effect on the average biomass of the species in the community, but that the 

effects of competition through year-to-year dynamics of the species have a small-enough 

overall effect on the stability of total community biomass. Accordingly, we set all 

interspecific competition coefficients to zero, and species carrying capacities to their 

average biomass in the community. The community matrix reduces to its diagonal 

elements, mii ra −= 1 .  

With this approximation, equation (A4) simplifies to: 

( ) ( ) ( ) ( ) ( )[ ]turtuNtuNtuNtz oimioioiididiieieiii −−+++= 11)( *** σσσ  ,  (A13) 

the elements of matrix Z0 (equation A6) are: 
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the elements of matrix Z1 (equation A7) are: 

( ) ( ) ( )( )tutuNNrz ojoiojoijimjij ,cov1 **1 σσ−−=  ,     (A15) 

and the elements of matrix B (equation A12) are: 

( ) ( )
( )( )[ ] ( )ojoiojoijimjmi

djdidjdijiejeiejeijiij

uuNNrr

uuNNuuNNb

,cov111

,cov,cov

**

****

σσ

σσσσ

−−−+

+=
 .    (A16) 

Equation (A11) can be written as: 
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ijijjiij bcaac += ,         (A17) 

which we can solve for cij: 
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The variance of community biomass, 2
NTσ , is the sum of all the elements of the C 

matrix: 
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The first term in this equation is the contribution of environmental stochasticity, the 

second the contribution of demographic stochasticity, and the last the contribution of 

observation error. In practice, we do not know how the observation error between 

individual species in a community covary; assuming that observation error on each 

species is the same in monocultures and in mixtures, and that the covariances of 

observation error between species in mixture plots are independent, we get:  
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** ,cov

σ
σσ ,      (A20) 

where 2
oiσ  is the observation error (variance of the log biomass between subsamples 

within plots and years) in monocultures of species i, and nx is the number of subsamples 

taken within a plot within a year and used to estimate the CV of community biomass.  

Finally, we obtain equation (3) by replacing the equilibrium abundances with the average 

abundance of species, ii NN =*  which is true in stationary state, and dividing by the 
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squared mean plot biomass to get our estimate of the squared CV of total community 

biomass:  
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where 

 

NT  is mean total community biomass, and 

( )

2

1,

,cov

e

S

ji mjmimjmi

ejeiejeiji

e

rrrr

uupp

Σ

−+
=

∑
=

σσ

ϕ          (A22) 

is the synchrony of species environmental responses. This measure varies between 0 

when species are perfectly asynchronous, to 1 when species are perfectly synchronized. 

Perfect asynchrony between a pair of species requires that the positive environmental 

response in one species is perfectly counterbalanced by the negative environmental 

response of another species, taking into account their relative abundances. For example, 

perfect asynchrony between species 1 and 2 would require 21 ee uu −=  and 2211 ee pp σσ =

: a response in an abundant species can only be counterbalanced by a stronger response in 

a species that is less abundant. Perfect synchrony on the other hand happens when 

ejei uu =  for all i and j, leading to a maximal covariances between environmental 

responses: ( )
ejeiejeiejei uu σσσσ =,cov , in which case the numerator in the synchrony in 

environmental responses equals the denominator. This synchrony measure generalises the 
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one derived by Loreau and de Mazancourt (2008) to cases where species differ in their 

parameters and relative abundances. 

∑
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is the mean scaled environmental variance,  
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is the mean scaled demographic variance,  
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2
λ  is Simpson's concentration index (Simpson 1949)   
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is a mean observation variance, 

T

i

i
N

N
p =  is species i's observed average proportional biomass in the community, and nx 

is the number of subsamples taken within plots and years used in the estimate of the CV 

of community biomass. 

The environmental and demographic variances are scaled by a factor that depends on the 

species intrinsic growth rates, which determine the speed at which species return to 

equilibrium after a perturbation. Observation variance does not have that scaling because 

it does not affect community dynamics.  



Online Supporting Information, section A   9 

Simpson's concentration index is the complement of λ−1 , one of Simpson's diversity 

indices (Simpson 1949), which is affected both by species richness and evenness. Thus 

our formula suggests that species diversity (both higher richness and higher evenness) 

can decrease observation error. Regressions of the observed observation error versus 

Simpson's concentration index do indeed show such an effect (Cedar Creek: R2 = 0.07, P 

= 8e-4; Jena: R2 = 0.02, P = 0.043), but the higher explanatory power of our predicted 

observation variance indicates that there are strong species identity effects for observation 

error, especially in Jena (Fig. S3). In other words, observation error differed among 

species, and plots that contained species with high observation error exhibited greater 

observation error of community biomass.  

Note that the squared coefficient of variation of community biomass depends directly on 

the mean environmental, demographic, and observation variances rather than these 

variances divided by the square of mean community biomass, because these variances are 

defined as variances of the growth rate of biomass on a log scale (Eq. 1) or of the log of 

community biomass (Eq. 2), making them scale-free in a way similar to a CV. 
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B. Materials and methods details 

B.1. Simulation methods 

We generated parameters for model (1) so that we could get coexisting communities with 

6 species richness levels (S=1, 2, 4, 8, 16 and 32 species) and the synchrony of species 

environmental responses varied between zero and 1 at each species level (except for S=1, 

where by definition synchrony is 1).  

 Species carrying capacities, Ki, and interspecific competition coefficients, αij, 

were drawn until there was a potential equilibrium with all species present, i.e., 

KαN 1* −=  had only positive elements. Carrying capacities were drawn from a 

lognormal distribution, i.e. ln(Ki) was drawn from a normal distribution with 

mean=ln(10,000), sd=0.7. The shape of the distribution corresponds to real grassland 

communities, where a typical mean value is around ln(500 g/m2) for the Jena 

experiment(Schmid et al. 2008). In the low connectance simulations, coexistence in 

diverse communities was ensured by a large number of zeros in the competition 

matrix(May 1973). The interspecific competition coefficients, αij, , had a 

probability C=0.0625 to be non-zero, in which case they were drawn from a uniform 

distribution in the range [0, 0.8]. The large number of zeros resulted in overall low 

average levels of competition. In the high connectance simulations, coexistence in diverse 

communities was ensured by a low variance in the scaled competition coefficients, βij, 

where 
i

j

ijij
K

K
αβ =

 

(Jansen & Kokkoris 2003).  βij were drawn from a normal 

distribution with standard deviation 0.02, and their means were one of 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8 or 0.9. Note that βij and βji were two parameters drawn independently, so 

ji ≠
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that competition could be asymmetric. Feasible communities without extinction were 

found up to S=32 and mean βij =0.8, so competition could be much higher on average 

than in low connectance simulations. In models like this, coexistence of competitors 

results in overyielding (i.e., a higher community biomass in species mixtures than in the 

average monoculture)(Loreau 2010). 

 Once a potential coexisting community was obtained, we drew the intrinsic rates 

of natural increase of each species, rmi, from a uniform distribution in the range [0.2, 1.5] 

until the potential equilibrium was stable, i.e., the modulus of the dominant eigenvalue of 

the community matrix (the Jacobian at equilibrium) was less than 1. 

 For each of the two levels of connectance, we ran two sets of simulations, where 

either (a) environmental stochasticity or (b) demographic stochasticity was the main 

driver of community variability. Species demographic standard deviation, , were 

drawn from a uniform distribution in the range (a) [0, 2] and (b) [0, 4], while species 

environmental standard deviation  were drawn from a uniform distribution in the 

range (a) [0, 0.2] and (b) [0, 0.01].  

 Species i's environmental response had the form:  

( ) ( )tuetu
En

j

jijeiei ∑
=

=
1

σ         

 where uj(t) are random independent variables drawn from a standard normal distribution 

(mean=0, sd=1), and eij is species i's specific response to environmental variable j. In 

order to simulate as wide a range of synchrony of species environmental responses as 

possible, we used nE=S random independent environmental variables(Loreau & de 

Mazancourt 2008), with values:  

diσ

eiσ
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where  

 

and  , the target synchrony in environmental responses, was chosen between 0 and 1. 
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Once these parameters were chosen, community dynamics was simulated for 2,010 

time-steps, with the expected average abundance of all species in the community, *
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initial conditions.  
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characteristics of the community (mean community biomass and standard deviation) and 

of its component species in species mixture (mean biomass). 

We simulated 1,000 single-species communities. For each of the other values of 

species richness (S=2, 4, 8, 16, 32), we generated 200 communities for each target level 

of species synchrony of environmental response ( , 11 values regularly spaced 

between 0 and 1). We repeated the simulations across the 2 levels of connectance, and 2 

sets of values for environmental and demographic variances. This made a total of four 

sets of 12,000 simulated communities. 

B.2. Field studies 

The designs of the four biodiversity experiments used are summarized in Table S1 for 

ease of comparison. 

The experiment at the Cedar Creek Ecosystem Science Reserve, Minnesota, USA, was 

established in 1994-1995(Tilman et al. 2006). Land was treated with herbicide, burned, 

bulldozed, ploughed and harrowed in 1993 to clear extant plants and minimize the 

accumulated seed bank. Each of the 168 plots (9 x 9 m) was seeded in 1994 with 10g 

seed/m2 and in 1995 with 5g seed/m2, with this mass divided evenly between species 

randomly selected from an 18-species pool. Plots were burned annually, and included 1, 

2, 4, 8, or 16 species. Species composition was maintained by hand weeding. 

Measurements used in our analysis were measurements of total aboveground biomass, 

collected all years, and species-specific biomasses, collected from 2000-2010. At each 

harvest, aboveground biomass was measured in 4 samples within each plot. During 1996-

1999, each sample was 0.1 x 3 m; during 2000-2010, each sample was 0.1 x 6 m.   

 There were four complications in applying our methodology to these data. First, 

there were three species with non-replicated monocultures due to lack of seed 

tar

eϕ
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establishment: Elymus canadensis, Poa pratensis and Panicum virgatum. In these cases it 

was impossible to quantify demographic stochasticity, and thus we had to assume that it 

was zero. Secondly, oaks were excluded from our analysis (Quercus ellipsoidalis and 

Quercus macrocarpa) since their growth patterns differed qualitatively from that of the 

other vegetation, and two other species (Elymus canadensis and Agropyron smithii) were 

excluded because their monocultures became dominated by other species. This was 

accomplished by excluding all plots that were dominated by these species (>50g/m2 

average biomass for these species during 2000-2010) and ignoring their biomasses 

elsewhere. Findings are robust to the alternative methods of complete inclusion of all 

plots containing these species or their complete exclusion. Third, there were 

complications when Petalostemum villosum was sown in species mixtures. Due to seed 

contamination the legumes P. villosum and P. candidum were both sown in 

approximately equal densities in the 2-, 4-, and 8-species mixtures. Also, Amorpha 

canescens was sown instead of P. villosum in 16-species mixtures. Our analysis treats the 

biomass of these species as a single compound species. Fourth, due to the non-legume 

forb Solidago rigida not germinating in 1994, plots containing this plant were seeded 

with the non-legume forb Monarda fistulosa in 1995. S. rigida germinated the following 

year, hence all plots originally intended to be planted with S. rigida contained both 

species. Since we did not have their monoculture data, our analysis treats the biomass of 

these species as a single compound species.  

The experiment near Wageningen, The Netherlands was established during 

2000(van Ruijven & Berendse 2007, 2009). In each plot, the topsoil was removed to a 

depth of 50 cm. Wooden frames were placed around the edges of these holes, which were 

1 x 1 x 0.5 m (length x width x height), and each hole was filled with a mixture of pure 

sand and soil (3:1) from an old field. Seedlings were grown in a greenhouse, and 144 

seedlings were transplanted into each 1 x 1 m plot in a substitutive design (i.e., same 
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density in all plots). The experiment consisted of 102 plots, planted in 6 blocks. Each 

block includes each of the 8 study species in monoculture, four 2-species mixtures, four 

4-species mixtures, and the species mixture of all 8 species. No legumes were included in 

this study. Species composition was maintained by hand weeding. Our analysis includes 

aboveground biomass collected from 2000-2010. At each harvest, the 0.6 x 0.6 m interior 

of each plot was sampled. 

The experiment near Temple, Texas, USA was established during 2001(Isbell et al. 

2009). Seedlings were grown in a greenhouse, and 96 seedlings were transplanted into 

each 1 x 1 m plot in a substitutive design. The existing vegetation was removed with 

herbicide and the field was disked before planting. The experiment consisted of 75 plots 

in a formerly-cultivated field, planted in 3 blocks. Each block includes each of the 13 

study species in monoculture, four 2-species mixtures, four 4-species mixtures, and four 

8-species mixtures. No legumes were included in this study. Uniquely, two of each of the 

four mixtures of a given species richness in each block were established at maximal 

species evenness (i.e., equal planted proportions of species).  The remaining 2 species 

mixtures of each richness level were established with realistically low species evenness 

(i.e., some species planted as dominant, and others planted as rare). Species composition 

was maintained by hand weeding. One species (Oenothera speciosa) was excluded from 

our analysis because it was lost from all plots during the second year of the study. Our 

analysis includes aboveground biomass collected from 2001-2010; however, species-

specific parameters were based on 2001-2008 data, because several species were lost 

from all monocultures after 2008. At each harvest, the entire plot was sampled. 

The experiment near Jena, Germany was established during 2002 in a former 

agricultural field(Proulx et al. 2010). Before sowing, the area was ploughed and kept 

fallow in 2001. In order to reduce weed pressure the field was harrowed bimonthly and 

treated with herbicide in July 2001. Each of the plots was seeded with 1000 viable 
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seeds/m2. The main experiment consisted of 82 plots, each 20 x 20 m. This included 16 

monocultures, 16 mixtures of 2, 4 and 8 species, 14 mixtures of 16 species, and four 

mixtures of all 60 species. Additionally, 120 monoculture plots, each 3.5 x 3.5 m, were 

established so that there were two replicate monocultures for each of the 60 study species. 

Half of the monocultures (i.e. 60 small plots) were given up in 2006. Plot size was 

reduced sequentially and is now 7x7 m and 1x1 m. All plots were distributed in 4 blocks. 

Species composition was maintained by hand weeding. We excluded 7 of the 60 species 

(i.e., Ajuga reptans, Campanula patula, Cardamine pratensis, Luzula campestris, 

Trifolium campestre, T. dubium, and T. fragiferum) from our analyses, due to lack of 

establishment or missing observations that prevented species parameter estimation. Our 

analysis included aboveground biomass collected twice per year (May and August) from 

2003-2010; however, species-specific parameters were based on 2003-2006 data because 

only one of the replicate monocultures per species was maintained after 2006. Each 

harvest was treated as a separate time. At each harvest, aboveground biomass was 

measured in 4 samples for each large plot for 2002-2007; 3 for 2008-2009 and 2 in 2010, 

and 2 samples for each small monoculture plot. Each sample was 0.5 x 0.2 m. 

 

B.3 Parameter estimation  

Parameters were estimated for each species independently, using replicated 

monoculture data. Estimates of species carrying capacities, Ki, were obtained as the 

average biomass in monoculture (excluding the first year of experiments). 

In monoculture j, we assume that species i follows simple dynamics given by: 
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Defining ( ) ( )( ) ( )i

jmono

ii KtNtx lnln −= ,  we derive a first-order approximation of observed 

biomass:  ( ) ( )( )( ) ( ) ( )( ) ( )( )txKtxKtNtN iiii

jmono

i

jmono

i +≈+== 1lnexplnexp , and a first-

order approximation of equation (B1): 
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 Without observation error, the first-order linear approximation of Equation (B1) is 

a first-order autoregressive process of the form ( ) ( ) ( ) ( )tetXartX +−= 11  (Box & Jenkins 

1970).  

 Observation error introduces a first-order moving average component to the error 

term, so it becomes an autoregressive moving average process of order 1,1, or 

ARMA(1,1), of the form: ( ) [ ] ( ) ( ) [ ] ( )1111 −++−= tebtetXatX  (Box & Jenkins 1970). 

However, our time-series were much too short to give reliable estimates of both 

autoregressive and moving average components(Ives et al. 2003). We therefore made the 

assumption that ( ) ( )tur oimioi 1−σ  is small compared to ( )1
)(

)( +++ tu
K

tu
tu oioi

i

didi

eiei σ
σ

σ , 

and approximated equation (B2) as a simple first-order autoregressive process to estimate 

species intrinsic growth rate.  

 Species intrinsic growth rate parameters were thus obtained from the first-order 

autoregression coefficients of ( )( )tN iln  where  is biomass in monoculture, taking 

the mean value over the replicate monocultures j: . Estimates of 

autocorrelation coefficients are biased when estimating from short time-series, because of 

( )tNi

j

est

mi arr )1(1−=
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temporal autocorrelation in the data, such that low values of rm are overestimated (Box & 

Jenkins 1970). 

 

Estimating environmental, demographic and observation variances  

To estimate environmental, demographic and observation variances, we only used data 

from replicated monocultures. Defining ( )tO
x

ri  as the observation error on the 

instantaneous species growth rate per unit biomass between time t and time t+1 on 

sample x, ( ) ( ) ( )
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follows equation (B1), with Ki and rmi as estimated, in each plot, we have: 
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However, this relationship assumes that the mean is zero. To ensure that this is the case, 

and because we are interested in estimates of the variance per plot rather than the 

variance between plots, we removed the overall mean per plot: 
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where meanj is the mean of monoculture plot j. 

( )tstoch
jx

i

,  is thus the response variable whose variance components we want to estimate 

to estimate environmental and demographic variances: 
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We can use this relationship to estimate the environmental time-series ( )tuei . An estimate 

of environmental stochasticity is the normalised mean across replicates and subsamples, 

( ))(

)(
)(

tstochsd

tstoch
tu

i

iest

ei = (Table S2). We partitioned the variation in )(,
tstoch

jx

i  into three 

variance components (Table S2), which were then used to estimate environmental, 

demographic and observation variances of the intrinsic growth rate. Environmental 

variance, σei, and the observation variance on the intrinsic growth rate, σori, were 

estimated as indicated in Table S2. The standard deviation of demographic stochasticity 

was estimated from the plot variance as: 

 

σdi = K i

estσpi

2           (B6) 

Estimates of environmental or plot variance might happen to be negative (Nelder 

1954). Negative values were found for 5 of the species in the Cedar Creek experiment 

and 12 of the species in the Jena experiment. We had to assume these variances were zero 

because we could not make the calculations with negative environmental variances: to 

compute the environmental term of equation 3 (Fig. 3), estimates of standard errors of 

component species are required (equations A22 and A23) and complex numbers could 

not be used. We thus cut the left tail of the distribution of estimates, thus introducing a 

bias that overestimates variances, a standard practice to cope with negative estimates of 

variance components.  

Observation variance in the weighted mean observation variance term of Equation 

3 is different from the observation error on the intrinsic growth rate, Ori, in equations B3 

and B5. The observation variance in our prediction is the variance of observation error on 

log biomass, 2
oiσ  (supporting online text equation A25). It was quantified as the variance 
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of the log biomass across samples taken within a monoculture plot within a year for 

species i.  

 

B.4. Comparing predicted and observed quantities 

To compare our prediction with observed community CV (Fig. 2), as well as to compare 

predicted observation variance with the observed observation variance (Fig. S3), major 

axis regression was performed with the lmodel2 package in R 2.11.1. Major axis 

regression is required to account for uncertainty in the explanatory variable (our 

prediction for community CV in Fig. 2 and our prediction for observation variance in Fig. 

S3). We also tested the extent to which our prediction explained variation in the observed 

community CV after accounting for richness (Table 1 and S3) and biomass by comparing 

nested models. Adding our prediction to the model that included richness and community 

biomass improved the fit (Cedar Creek: F1,144 = 9.44, P = 2.5e-3; Wageningen: F1,99 = 

3.52, P = 6.4e-2; Jena: F1,184 = 51.13, P = 2.0e-11; Texas: F1,69 = 67.13, P = 9.8e-12), 

indicating that our prediction includes other important effects, such as species identity 

effects. 

 

B.5. Explaining the observed CV using structural equation modeling 

Two sets of structural equation models were developed and evaluated to examine factors 

contributing to observed variability (CV) in biomass (Figs. 3 and 4 in main text). In the 

first of these, the objective was to estimate the importances of the three additive 

components of equation (3), demographic stochasticity, environmental stochasticity, and 

observation error, in explaining observed variability. The second set estimated the degree 
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to which the individual components of equation (3) mediated the overall effect of species 

richness on observed variability. For all models, estimation was performed using lavaan, 

version 4 (Rosseel 2012) in R and using conventional evaluative criteria (Grace 2006). 

Data were examined for distributional properties and univariate relationships for linearity 

prior to modeling. All variables were logged prior to analysis. Case-wise deletion was 

used for missing values. Resulting sample sizes for the different datasets were as follows: 

Jena = 160; Wageningen = 102; Cedar Creek = 138; Texas = 72. Post-analysis 

diagnostics indicated reasonable distributions of errors. For the additive component 

models (Fig. 4) all models were saturated and had perfect data-model fit. For the 

mediation models (the second set, Fig. 5), errors among mediators were allowed to be 

freely intercorrelated in the initial model. Model simplification utilized single degree of 

freedom chi-square tests based on the model likelihoods. For these models, final model fit 

statistics were as follows: For Jena, model chi-square = 16.4 with 17 df and p = 0.50. For 

Wageningen, model chi-square = 8.6 with 7 df and p = 0.28. For Cedar Creek, model chi-

square = 3.6 with 10 df and p = 0.96. For Texas, model chi-square = 3.4 with 7 df and p = 

0.85. All of these results reflect close data-model fit. Overall, we judged the full-

information maximum likelihood results to be robust based on model complexity, sample 

size, and diagnostics. 
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 Cedar Creek Wageningen Texas Jena 

Year 

established 

1994–1995 2000 2001 2002 

Years used 1997–2010 2001–2010 2002–2010 2003–2010,  

2 harvests/yr 

Establishment seeds transplanted 

seedlings 

transplanted 

seedlings 

seeds 

Diversity levels 1,2,4,8,16 1,2,4,8 1,2,4,8 1,2,4,8,16,60 

Number of 

species 

18 8 13 60 

Legumes 

present 

yes no no yes 

Number of plots 168 102 75 82 large & 120 

smalln1 

Level of 

monoculture 

replication 

1–3 depending 

on species 

6 3 2–3 depending 

on species, 1–

2 from 2006 

onwards 

Plot size 9 x 9 m 1 x 1 m 1 x 1 m 20 x 20 m & 

3.5 x 3.5 mn2 

Samples per 

plot 

4 in 2001–2006 

n3  

1 1 4 in large n4 & 

2 in small 

plots 

Sample size 0.1 x 3 m 1996–

1999; 0.1 x 6 m 

2000–2010 
n3

 

0.6 x 0.6 m 1 x 1 m 0.5 x 0.2 m 

 

Table S1 | Summary of the experimental designs of the four long-term grassland 

biodiversity experiments. Notes: n1 half of the monocultures (i.e. 60 small plots) were 

given up in 2006. n2 plot size was reduced sequentially and  is now 7x7 m and 1x1 m. n3 

only one 0.1 x 3 m sample sorted to species. n4 4 in large plots for 2002–2007, 3 for 

2008–2009 and 2 from 2010 onwards. 
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Table S2 | Partitioning variance components 

Source Sums of squares Degrees of freedom Mean square Expected mean 

square 

Estimated variance 

component 

Time 

SSy =

 

( )∑
=

−
yn

t

iipx stochtstochnn
1

2

)(  

dfy = ny – 1 MSy= SSy/dfy σori
2 + nx(σpi

2) + 

nxnp(σei
2) 

σei
2 = (MSy – MSp)/ nxnp 

Plot(Time) 

SSp = ( )∑∑
==

−
py n

j

i

j

i

n

t

x tstochtstochn
1

2

1

)()(  

dfp = ny np – np – dfy MSp = SSp/dfp σori
2 + nx(σpi

2) σpi
2 = (MSp – MSx)/ nx 

Subsample(Plot(Time)) 

SSx = ( )∑∑∑
===

−
xpy n

x

j

i

jx

i

n

j

n

t

tstochtstoch
1

2
,

11

)()(  

dfx = dfTot – dfy – dfp MSx = SSx/dfx σori
2 σori

2 = MSx 

Total 

SSTot =

 

( )∑∑∑
===

−
xpy n

x

i

jx

i

n

j

n

t

stochtstoch
1

2
,

11

)(  

dfTot = ny np nx – np    

Notes: )(,
tstoch

jx

i  is the value from equation (B4) for subsample x in replicate monoculture plot j of species i at time t; 

 

stochi  is the 

grand mean of all of these values across all nx subsamples in all np monoculture plots during all ny times for species i, which 

equals zero; 

 

stochi

j (t)  is the mean of these values across all nx subsamples taken from monoculture j of species i at time t; and 

)(tstochi  is the mean of these values across all nx subsamples in all np monoculture plots of species i at time t. From these 

values, we quantified environmental variance, σei
2, plot variance, σpi

2, and the variance of observation error on the intrinsic 
growth rate, σori

2, for each species i. 
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Table S3 | Full model results 

Study R2 (full model) P (full model) F (richness) P (richness) F (prediction) P (prediction) 

Cedar Creek 0.26 5.0e-4 F1,144 = 6.91 9.5e-3 F1,144 = 12.69 5.0e-4 

Wageningen 0.41 1.8e-5 F1,99 = 19.19 2.9e-5 F1,99 = 20.30 1.8e-5 

Jena 0.49 1.2e-17 F1,184 = 45.32 2.1e-10 F1,184 = 90.12 1.2e-17 

Texas 0.77 1.6e-21 F1,69 = 4.67 3.4e-2 F1,69 = 190.26 1.6e-21 

The full model included both the prediction and planted species richness as independent variables and the observed CV as the 
dependent variable. R2 and P-values are reported for the full model. Test statistics indicate whether adding planted richness to 
the model that included the prediction (richness), or adding the prediction to the model that included planted richness 
(prediction), significantly improved the fit.  
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Figure S1 | Simulated model communities: coefficient of variation of community 

biomass against the synchrony of species environmental responses, on a log-log 

scale. Left column: low connectance (low competition) communities; right column: high 

connectance (high competition) communities. Either environmental stochasticity (top 

row) or demographic stochasticity (bottom row) is the main driver of community 

variability.  Each dot represents one community, colour indicates species richness. A 

sample of 1,200 out of the 12,000 simulated communities was plotted for clarity. 

Coloured solid lines represent the regression lines for each corresponding level of species 

richness, while the black solid line is the regression line pooling all levels of species 

richness together.  If demographic stochasticity were negligible, the regression would 

have a slope of ½, shown with the black dashed line. 

Figure S2 | Simulated model communities: coefficient of variation of community 

biomass against community biomass (log of total biomass in grams). Left column: low 

connectance (low competition) communities; right column: high connectance (high 

competition) communities. Either environmental stochasticity (top row) or demographic 

stochasticity (bottom row) is the main driver of community variability.  Each dot 

represents one community, colour indicates species richness. A sample of 1,200 out of 

the 12,000 simulated communities was plotted for clarity. Coloured solid lines represent 

the regression lines for each corresponding level of species richness, while the black solid 

line is the regression line pooling all levels of species richness together.  If environmental 

stochasticity were negligible, the regression line would have a slope of -½, shown with 

the black dashed line. 

Figure S3 | The predicted observation error was significantly correlated to its 

observed value in the two experiments with multiple samples per plot. R2 and P-values 

are for major-axis regressions. Black dashed lines indicate 1:1 relationship. Grey lines 
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indicate 95% confidence interval for slope. Colours indicate number of planted or sown 

species as in Fig. 2. 
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Low connectance
(low competition)
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Figure S3 
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