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Abstract Increasing demand on hospital resources by an ageing population
is impacting significantly on the number of beds available and, in turn, the
length of time that elderly patients must wait for a bed before being ad-
mitted to hospital. This research presents a new methodology that models
patient pathways and allows the accurate prediction of patient length of stay
in hospital, using a phase-type survival tree to cluster patients based on their
covariates and length of stay in hospital. A type of Markov model, called
the conditional Coxian phase-type distribution is then implemented, with the
probability density function for the time spent at a particular stage of care,
for example, the first community discharge, conditioned on the length of stay
experienced at the previous stage, namely the initial hospital admission. This
component of the methodology is subsequently applied to each cohort of pa-
tients over a number of hospital and community stages in order to build up
the profile of patient readmissions and associated timescales for each cohort.
It is then possible to invert the methodology, so that the length of stay for an
observation representing a new patient admission may be estimated at each
stage of care, based on the assigned cohort at the initial hospital stage. This
approach provides hospital managers with an accurate understanding of the
rates with which different groups of patients move between hospital and com-
munity care, which may be used to reduce the negative effects of bed-blocking
and the premature discharge of patients without a required period of conva-
lescence. This has the benefit of assisting hospital managers with the effective
allocation of vital healthcare resources. The approach presented is different to
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previous research in that it allows the inclusion of patient covariate informa-
tion into the methodology describing patient transitions between hospital and
community care stages in an aggregate Markov process. A data set containing
hospital readmission data for elderly patients from the Abruzzo region of Italy
is used as a case study in the application of the presented methodology.

Keywords readmissions · survival tree · Coxian phase-type distribution ·
hospital predictions · length of stay

1 Introduction

National health care systems have a limited amount of resources heavily in
demand which have to be carefully managed in order to offer efficient hospital
care for their population. Elderly patient care accounts for the greatest use
of hospital resources [1], due to issues surrounding frailty and an increased
number of comorbidities contributing to hospital readmissions. However, in
addition to this, it is often the case that elderly patients must remain in hos-
pital after they are declared fit to be discharged, because they are waiting for
an available place in community care. In the United Kingdom National Health
Service, this is known as bed-blocking and represents an enormous consump-
tion of hospital resources that could be avoided if better resource planning was
in place [2]. Advanced knowledge, in the form of accurate predictions, for when
elderly patients are expected to leave hospital has the potential to help secure,
in advance, the community care anticipated, thereby reducing or even elimi-
nating this waste of vital resources. This is particularly important in ensuring
that the proper care resources are available for elderly patients readmitting to
hospital after a number of spells in both hospital and community care.

Previous research has shown that statistical models can accurately cap-
ture the time taken for the progression of patients through care as a single
stage [3] [4]. The focus of the current research is to describe the movement
of elderly patients through multiple ordered stages, from the initial hospital
admission, to the first community stage, then the first hospital readmission
stage, followed by the second community stage and finally the second hospital
readmission stage. Nevertheless, due to the inherent variability in the time
spent at each stage in the pathway for elderly patients, an approach which
makes predictions based on the assumption that the elderly population is ho-
mogeneous with respect to length of stay, is often inaccurate [5]. Although
length of stay may appear a simple metric, it can be influenced by a number
of factors including reason for admission, hospital policy and issues extending
beyond the hospital environment.

This paper introduces a methodology which can account for some of this
variability by making predictions for subgroups of the population, known as
cohorts, each of which may be modelled by a separate distribution. This is
carried out by extending the conditional Coxian phase-type distribution [6], a
method which calculates the conditional probability for length of stay at the
current stage of care, based on the length of stay experienced at the previous
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care stage, to be further conditioned on a phase-type survival tree [7]. This lat-
ter technique may be used to partition elderly patients into cohorts based on
their length of stay at the initial hospital stage, in such a way so that patients
in different cohorts have a significantly different length of stay distribution.
This allows the conditional Coxian phase-type distribution to be subsequently
employed to model the survival data in each cohort through until the second
hospital readmission stage, taking into account the length of stay at the pre-
vious stage of care, for each cohort separately. The research presented allows
the identification of multiple patient care pathways, arising through specific
combinations of elderly patient covariates, with the illustration of the afore-
mentioned covariates provided in a tree-like structure. The resulting parameter
estimates from the implementation of the conditional Coxian phase-type dis-
tribution to model the pathway for each cohort, may be used to predict the
length of stay for an elderly patient with a given combination of covariates
at a particular stage of care, thereby allowing health care planners to more
effectively allocate vital health care resources.

The remainder of this paper is structured as follows: Section 2 introduces
the methodology implemented in the current research, including the phase-
type survival tree and the conditional Coxian phase-type distribution process
component. In Section 3, an overview of the data set containing hospital read-
mission data for elderly patients admitted to hospitals in the Abruzzo region
of Italy is presented. This section also contains the application and validation
of the proposed methodology, along with prediction of length of stay for all
of the identified cohorts throughout each stage of care. Conclusions, together
with a discussion on the points raised from the implementation of the research
are presented in Section 4.

2 Methodology

2.1 Coxian phase-type distribution

Phase-type distributions may be used to describe the time until absorption
of a finite Markov chain in continuous time, where there is a single absorb-
ing state and the process begins in a transient state [8]. Coxian phase-type
distributions [9] incorporate a series of transient states in order to describe
the duration until an event of interest occurs, where the system begins in the
first transient state and proceeds in a sequential fashion through the transient
states. The system may not move more than one transient state at a time,
neither is it permitted to move backwards to any previous state. The method
determines the rates associated with the movement of the system between
the latent states, before absorption occurs, representing the occurrence of the
event. In this respect, the Coxian phase-type distribution is particularly useful
for modelling elderly patient movements through hospital [10] [11] [12], where
the event of interest is the patient leaving hospital [13]. In this research, elderly
patients may leave hospital through one of two different scenarios: death or
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discharge to the community. This gives rise to the inclusion of two absorption
states in the Coxian phase-type distribution. More formally, let X(t); t ≥ 0 be
a Markov chain in continuous time with states 1, 2, ...,m,m+ 1,m+ 2, where
states m+ 1 and m+ 2 are the two absorbing states, the rest being transient
and ordered. With the system beginning in state 1: X(0) = 1, Figure 1 shows
a representation of the Coxian phase-type distribution with two absorbing
states, where transitions occur in a small time interval, h. The transition rate
from transient state i to the next transient state, i + 1, is denoted by λi and
the transition rate from transient state i to absorbing state k is denoted by
µk
i .

1 2 3 m - 1 m 

Absorbing state 2 

… 

Absorbing state 1 

Fig. 1 Coxian phase-type distribution with m transient states and two absorbing states.

This approach uses available prior information in the form of an indicator
variable, describing which of the two events has occurred for each observation.
This is to make sure that only the absorption rates for that mode of absorp-
tion are affected by instances of the system having that particular event. The
generator matrix Q, characterising the Markov process, for the distribution of
times until event k occurs is given by
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The probability density function for the Coxian phase-type distribution
illustrated in Figure 1 is given by

f(t) = p exp(Qt)q (2)

where

p = (1, 0, 0, ..., 0) (3)

q = (µk
1 , µ

k
2 , ..., µ

k
m)T (4)

It should be noted that the transition rates between transient states are
common to the processes leading to the occurrence of both events and are not
superscripted with k for this reason.

2.2 Conditional Coxian phase-type distribution

The Coxian phase-type distribution may be used to model the movement of
elderly patients through the initial hospital stage, with two possible eventual
outcomes: death or discharge to the community. However, with the aim of
this research to model the movement of elderly patients through an ordered
sequence of care stages, an approach is employed which can take into account
the length of stay at a previous stage in the determination of transition rates
for the current stage of care. Such an approach is the conditional Coxian

phase-type distribution [6] where the system of stages is considered using two
stages at a time. Once the information from the first stage is used to inform
the distributional form for the second stage, the process repeats, whereby the
second stage is used to inform that for the third stage, and so on. This is so as
to include as much information as possible in the determination of transition
rates for each stage of care. This is achieved through the use of Bayes’ theorem
in the probability density function, where t1 is the length of time spent at the
previous care stage, denoted by A and t2 is the length of time spent at the
current care stage, denoted by B:

P(B = t2|A = t1) =
P(A = t1 ∩B = t2)

P(A = t1)
(5)

=
pA exp(QAt1)TAB exp(Qk

Bt2)q
k
B

pA exp(QAt1)qA
(6)

where the notation is as described in Section 2.1, subscripted with A

and B to reflect the previous and current stages respectively. Each element
TAB(i, j) = µAiBj

, represents the rate of transition between the ith state of
stage A and the jth state of stage B. However, to meet the requirement that
patients may only enter stage B at the first state, TAB contains non-zero rates
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in the first column only. As such, it takes the following form, where ka is the
number of transient states in stage A.

TAB =











µA1B1
0 ... 0

µA2B1
0 ... 0

...
...
. . .

...
µAkaB1

0 ... 0











(7)

Equation 6 may be used as the probability density functon for the con-
ditional Coxian phase-type distribution with two absorbing states. It is im-
portant to note that both the optimal parameter estimates from the imple-
mentation of the methodology for the previous stage of care and the times
experienced at the previous stage of care are necessary in Equation 6. Addi-
tionally, there are no superscript k values in Equation 6 as those patients who
have entered stage B, from stage A, have done so through the absorbing state
representing community discharge in stage A. The remaining patients have
already left the aggregate system through the alternative absorbing state in
stage A (representing death) and therefore are not considered for stage B.

2.3 Phase-type survival tree

The methodology described so far has been concerned with the distributional
fit for a sequence of skewed survival distributions. However, with the appli-
cation under consideration that of elderly patient care, there is often a large
amount of variability in length of stay in care, due to the wide-ranging cir-
cumstances surrounding admission and discharge from hospital. As a result,
elderly patient length of stay is usually not homogeneous, and a technique is
sought which can account for a large proportion of this variability. Mainstream
data mining techniques have been considered, for example, logistic regression,
decision trees, Bayesian networks and random forests. However such methods
require the presence of a categorical response variable, the levels of which both
have significantly different distributions of the survival variable and may be
accurately predicted using the remaining variables in the data set. Given the
application under consideration, it is often difficult to identify a suitable can-
didate response variable, due to the complicated set of circumstances usually
surrounding each individual elderly patient admission to hospital. The desti-
nation of the patient on leaving hospital, for example, death or discharge, is
often associated with significantly different length of stay distributions. How-
ever, this detail is accounted for through the provision of separate absorbing
states in the component of the methodology which models the survival distri-
butions at each stage of care.

With the above considerations in mind, an alternative approach is pre-
sented, which does not require the partitioning of patient observations at the
indication of a single variable. Instead, observations may be separated into sub-
groups based on whether or not splitting using a sequence of variables results
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in a significant reduction in the overall variability of the data. A technique
which intrinsically partitions observations into subgroups is a phase-type sur-
vival tree [7] [14] [15]. This is carried out through splitting observations into
cohorts based on their characteristics (or covariates), so that patients in the
same cohort have a similar distribution for length of stay and patients in dif-
ferent cohorts have significantly different distributions for length of stay. Using
a survival tree, the heterogeneity apparent in the data is reduced to multiple
smaller sets of data which are each homogeneous with respect to a particular
survival distribution. The survival tree is constructed using Coxian phase-type
distributions, with the Akaike information criterion (AIC) [16] corresponding
to the optimal distribution used as the splitting criterion. For this reason, the
method is called the phase-type survival tree. This component of the method-
ology is applied to observations representing elderly patient admissions at the
initial hospital stage only.

A 
(Root node)

B

C

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

All 

patients

Survival tree component Successive iterations of the conditional Coxian phase-type distribution

Fig. 2 Conceptual schema of the approach with the survival tree identifying cohorts based
on the initial hospital stage before the conditional Coxian phase-type distribution is applied
successively to each cohort.

Figure 2 shows a simple conceptual diagram of how the survival tree and
conditional Coxian phase-type distribution components are used in conjunc-
tion. All of the elderly patient records referring to an initial hospital admis-
sion are used as input to determine the root node variable of the survival
tree, denoted by variable A. To determine the root node, the Coxian phase-
type distribution is fitted to all observation times, with the optimal AIC value
recorded. The data set is then partitioned according to both variable and vari-
able level. The Coxian phase-type distribution is fitted to the observations
within each level, with the resulting optimal AIC values summed to obtain a
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total AIC value for each variable. The variable corresponding to the greatest
improvement in AIC value from that corresponding to the un-partitioned fit
is selected as the root node. Once this variable has been identified, the records
are split according to the different levels of variable A with the same process
used once again to determine variables B and C from the remaining pool of
variables. This process is repeated until the survival tree is constructed, at
which point the Coxian phase-type distribution (with two absorbing states)
fitting each leaf of the tree represents the initial hospital length of stay data
for the respective patient cohort. In the example given by Figure 2, there are
four identified patient cohorts, numbered ‘1’ through to ‘4’. The methodology
then considers the next stage of the aggregate process, the first community
stage. The conditional Coxian phase-type distribution is fitted to each cohort
separately for those patients undergoing this stage and the rates of transition
for this stage of care determined. This is carried out for the remaining stages
of care in the aggregate process (pathway) until the second hospital readmis-
sion stage. Once placed into cohorts based on the initial hospital stage data,
patients remain in these cohorts until either the time-frame for the study ends
(the second hospital readmission stage), or they leave one of the care stages
through death or they do not require a further readmission to hospital.

3 Application

3.1 Tree-building process and identification of cohorts

The methodology presented in this research is applied to a data set consisting
of hospital readmission information for elderly patients in the Abruzzo region
of Italy. To the best of the authors’ knowledge, the hospitals from which the
data is collected provide very similar levels of care to elderly patients, with
rehabilitation taking place at additional facilities, for example, specialised hos-
pitals and residential care. As such, each of the hospitals may be assumed to
provide adequate care for all elderly patients in the data set. The data set
contains length of stay times for 7,251 patients, of which 1,067 experience a
readmission and 261 patients undergo a further readmission, between the 10th
November 2008 and the 31st of December 2009. Due to the relatively short
duration of the study and in keeping with previous literature [17] incorporat-
ing Italian patient readmissions, all subsequent admissions to hospital for a
particular patient, within this time interval, are classified as a readmission.
The purpose of the study is to provide a methodology which is capable of
modelling the movement of elderly patients between hospital and community
care, with a view to addressing the clinical need for a more effective allocation
of healthcare resources. As such, the data set under consideration does not
include information on the specific type of care that patients receive in or be-
tween hospital spells, only whether they have left each hospital stage through
death or discharge. Furthermore, the data set contains information on only
those patients who are readmitted to hospital from the community; there is
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no information on patients who have died in the community, or indeed, those
who are still alive in the community without requiring an additional readmis-
sion to hospital. However, with the focus of the current research to provide
an insight into the readmission patterns of elderly patients in order to facil-
itate hospital managers in the allocation of hospital resources, data on the
patients who are readmitted to hospital is what is essential to do so. Conse-
quently, when employing the methodology to model community stages, only
one absorbing state is used, representing readmission to hospital.

Patients in the study are aged between 65 and 104 years, with lengths of
stay ranging from 1 to 85 days in hospital care. There are three variables of
interest, representing patient covariates, recorded in the data set: age, gender
and admission method. The age variable has been discretised to take values
< 76, 76 − 82 and > 82 years respectively. These intervals are chosen as
they simultaneously indicate significantly different distributions of length of
stay for patients between the levels (p-value = 0.0289) so as to facilitate the
construction of the survival tree, whilst also containing large enough numbers
of observations in each level so as to eliminate any class imbalance. This latter
reason is particularly important because many patient observations are lost
from each cohort as the number of readmissions increases, meaning that at
the second hospital readmission stage there is a risk of having insufficient
observations over which to run the methodology. To this end, it is desirable
to have roughly representative numbers of patients at the each of the hospital
stages to demonstrate the working of the methodology, given the relatively
small data set. Other age intervals, for example age bands of ten years, have
been considered in this research, however this results in a greater number
of intervals leading to smaller numbers of observations within each cohort.
Additionally in other tested partitions, the lengths of stay for the variable
levels are either not significantly different, or result in the introduction of
class imbalance.

The admission method variable also consists of three levels: ‘Emergency’,
‘Planned’ and ‘Other’, giving an indication as to the urgency of the admis-
sion to hospital for each patient. The vast majority of hospital admissions
are recorded as either ‘Emergency’ or ‘Planned’, with the small proportion
(<3%) representing ‘Other’ perhaps arising from rare instances which do not
fall broadly within either of the aforementioned categories, or have simply
been unrecorded. They have been included in this analysis due to the re-
sults of running the methodology over a similar additional data set of elderly
patient records from an Italian region, where elderly patients having an admis-
sion method categorised as ‘Other’ were found to have significantly different
lengths of stay from those categorised as either ‘Emergency’ or ‘Other’, thereby
indicating a third admission method in its own right. Table 1 details the con-
struction of the survival tree, where the variable showing the greatest AIC
improvement is chosen to partition at that point in the construction of the
tree.

Application of the phase-type survival tree to the 7,251 observations from
the initial hospital stage results in the identification of seven cohorts, with
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Table 1 Numerical construction of the survival tree.

Node Variable Variable level Patients L No. of states AIC Improvement

All All All 7251 -22237 6 44508 -

1 Age < 76 910 -2831 4 5683

Root node 76-82 2679 -8134 5 16297 -4

>82 2535 -6233 5 12480

Admission Emergency 4995 -15300 5 30628

method Planned 2052 -6325 5 12678 +3

Other 204 -592 3 1199

Gender Female 4058 -9584 6 24996

Male 3193 -9745 5 19517 -5

2 Age < 76 430 -1356 3 2728

Admission 76-82 1846 -5589 7 11198 +27

method > 82 2719 -8320 6 16674

(Emergency)

Gender Female 2802 -8567 6 17167

Male 2193 -6705 7 13449 +11

3 Age < 76 471 -1289 4 2601

Admission 76-82 762 -2311 5 4650 +287

method > 82 819 -2556 5 5140

(Planned)

Gender Female 1139 -3530 4 7082

Male 913 -2760 5 5548 +48

4 Age < 76 9 -17 2 40

Admission 76-82 71 -210 3 437 -3

method > 82 124 -355 3 725

(Other)

Gender Female 117 -342 3 701

Male 87 -250 3 515 -17

5 Gender Female 200 -617 3 1251

Adm (Emerg.) Male 230 -739 3 1494 -17

Age ¡76

6 Gender Female 911 -2758 6 5549

Adm (Emerg.) Male 935 -2831 6 5696 -46

Age 76-82

7 Gender Female 1691 -5187 5 10401

Adm (Emerg.) Male 1028 -3130 6 6294 -21

Age ¿82

8 Gender Female 203 -644 3 1303

Adm (Planned) Male 268 -785 5 1597 -299

Age ¡76

9 Gender Female 409 -1246 4 2513

Adm (Planned) Male 353 -1072 4 2166 -29

Age 76-82

10 Gender Female 527 -1662 5 3351

Adm (Planned) Male 292 -889 4 1800 -11

Age ¿82

the survival tree shown in Figure 3. The AIC value for 7,251 observations
without using any variables to split is 44,508. In the determination of the root
node for the survival tree, only the admission method variable is successful in
reducing the variability in the length of stay variable (AIC improvement of 3).
Therefore, this variable is used for splitting at the root node. The resulting
branches representing patients entering hospital as ‘Emergency’ and ‘Planned’
admissions show additional improvement when split by both Age and Gender,
with Age in both cases representing optimal improvement (AIC improvements
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of 27 and 287 respectively). The node resulting from the ‘Other’ admission
method level becomes a leaf, due to the absence of significant improvement
when splitting using age or gender. For the remaining nodes, splitting using the
only other available variable, gender, does not result in a significant reduction
of variability in the length of stay variable. The fitted distributions for both
death and discharge patients are plotted in Figure 4.

\hat{L} 

\hat{L} 

\hat{L} 

\hat{L} 
\hat{L} 

\hat{L} 

 Admission 

Method 

 Age 

 Emergency 

Other 

Planned 

<76 
76-82 

>82 >82 <76 76-82 

 7 

 1  2  3  4 

  

 Age 

 5  6 

204 

(3%) 

 

2719 

(37%) 

 

1846 

(25%) 

 

430 

(6%) 

 

471 

(6%) 

 

762 

(11%) 

 

819 

(11%) 

 

Fig. 3 Survival tree to identify cohorts based on the initial hospital stage.

Figure 4 shows that the survival tree has been successful in identifying
cohorts of patients with significantly different distributions for length of stay.
This is particularly true for the case where patients leave hospital through
death, with the survival curves visibly disparate. However, the benefit of us-
ing the survival tree may also be seen when patients who are discharged from
hospital are considered, although they are less visibly distinct from one an-
other. Nevertheless, although apparently similar, the Coxian phase-type dis-
tributions representing the seven cohorts generally have differing numbers of
phases, ranging from three to seven, thereby supplying additional evidence
that the distribution of times between the cohorts are significantly different.

As patients move into the subsequent stages of care, they remain in the
cohorts to which they were assigned at the initial hospital stage. Table 2 shows
the number of elderly patients at each stage of care by cohort. It should once
again be noted that when elderly patients leave a particular hospital spell, they
may do so through either death or community discharge. Those patients who
are discharged may die in the community, remain alive whilst not requiring
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Fig. 4 Distributional fits to the cohorts in the initial hospital stage for death (above) and
discharge (below).

a further hospital readmission or be readmitted to hospital. It is only this
latter group of patients which are accounted for in the data set, explaining
why the numbers between successive hospital readmissions decrease by such
a high factor. Additionally, this also means that the number of patients in
each community stage is the same as the number of patients in the subsequent
hospital readmission stage. After the initial hospital stage, each community
and hospital readmission stage is represented using a conditional Coxian phase-
type distribution with one and two absorbing states respectively.

Table 2 Number of patients in each admission for every cohort.

Cohort Initial admission First readmission Second readmission
Emergency; < 76 430 56 18
Emergency; 76− 82 1846 272 68
Emergency; > 82 2719 439 111
Planned; < 76 471 42 6
Planned; 76− 82 762 103 23
Planned; > 82 819 121 23
Other 204 34 12

3.2 Validation of methodology and prediction of length of stay for new
observations

The above methodology may be validated through the comparison of the em-
pirical median length of stay value for a given cohort of patients at a particular
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stage, with the median value of simulated data obtained through the use of
the associated fitted distribution. The median is chosen due to the high level
of positive skewness in the data. Specifically, a set of times for each fitted dis-
tribution is simulated and the median value is calculated. This fitted median
value is compared with the 95% confidence interval for the median value of
empirical times for the corresponding cohort and stage. If the fitted median
value lies within this confidence interval, then that distribution is said to be
representative of the underlying data used to fit it. The methodology as a
whole is validated if this is true for a high proportion of the fits for each co-
hort and stage combination. A 95% confidence interval for the median value of
a distribution may be obtained by using Equation 8 to calculate the Normal
approximation to the Binomial distribution:

(t
[np−1.96

√
np(1−p)]

, t
[np+1.96

√
np(1−p)]

) (8)

where t[i] is the ith ordered time, n is the number of observations and
p = 0.5 to specify that the confidence interval is calculated for the median.
The simulation of times for a given distribution may be carried out through the
use of the survivor function for that distribution. For a phase-type distribution,
the survivor function is given by:

S(t) = p exp(Qt)e (9)

where e is the unity column vector. A simulated time from this distribu-
tion may be obtained by first selecting a random number from the uniform
distribution, substituting this value for S(t) and using the Newton-Raphson
method [18] to solve for t. This process is repeated until n times are simulated.
It should be noted that this validation step is carried out to ensure that the
individual conditional Coxian phase-type distribution components have each
captured the time-distributional features of the underlying data. Once veri-
fied, focus then moves to the determination of predictive intervals for each
cohort/stage combination using a slightly different approach.

3.2.1 Validation of methodology for the Abruzzo data set

The distributions for patients leaving hospital through death and discharge are
validated separately, since each hospital stage is represented by two processes;
for patients who leave through death and discharge. This gives rise to an extra
three distributions (since there are three hospital admissions considered: the
initial admission, first readmission and second readmission) for each of the
seven cohorts, making a total of 56 fitted distributions to be validated. Only
three fitted median values do not lie within the 95% confidence interval for
the empirically calculated medians, giving an accuracy of 94.6%. The three
distributions which do not validate the methodology are all in the second
hospital readmission stage for patients leaving through death, and as such,
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have an extremely small number of observations in the distribution (n = 1,
1 and 2). In each case and because of the lack of data for this distribution,
the empirical 95% confidence interval for the median value is constrained to
have a range equal to a single value, for example, (2, 2), meaning that for a
model using continuous data, it is very unlikely for the representative value
to fall within this interval. In any case, the authors are confident that this
is an issue simply with the quantity of data available for later stages of care
and that the survival tree has been successful in accounting for the variation
in length of stay across all considered stages of care, even as far along as the
second hospital readmission in most cases. The fitted median value and 95%
confidence interval for each cohort at every stage are shown in Table 3, where
the care stages have been abbreviated to Hi and Cj , denoting the ith hospital
stage (i = 0, 1, 2 denoting the initial admission, first readmission and second
readmission) and jth community stage (j = 1, 2 denoting first and second
discharge), respectively. The three instances where the fitted median does not
fall within the empirical confidence interval have the number of observations
marked with a *.

3.2.2 Prediction of length of stay for new observations for the Abruzzo data

set

Having used simulations to validate the methodology, a similar approach may
be used to predict the length of stay for a new elderly patient arriving to
hospital, in addition to predictions for length of stay in potential successive
stages of care. Upon arrival to hospital for their initial admission, the survival
tree may be used to classify the patient into a cohort based on the method
of admission and their age (both of which would be available at the point
of entering the hospital). Confidence intervals for the median values of the
simulated sets of times may then be calculated, through the use of Equation 8
and the fitted distributional form for each cohort, serving as predictions on
when the patient is likely to leave the stages of care they enter, beginning
with the initial hospital stage and extending through to the second hospital
readmission stage.

Table 3 shows the prediction intervals for each of the seven cohorts across
all stages of care. These results indicate that elderly patients generally spend
less time in hospital, across all of the cohorts, as the number of readmissions
increase. This may be because hospital staff better know the medical require-
ments of their patients, with increased hospital readmissions, although this is
assuming that patients are readmitted to the same hospital department on
their readmission. Furthermore, elderly patients who are admitted as planned
admissions generally stay for a longer period in hospital than those who are
admitted as emergency cases. Upon consultation with a clinical director and
geriatrician of significant experience in this field, this is once again not an un-
reasonable result. This may be because emergency cases are generally regarded
as more urgent than planned admissions and the case may be that they are
treated as more of a priority, thereby leading to a shorter duration in hospital.
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Table 3 Validation of the methodology and predicted intervals for each cohort

Stage Number of patients Fitted median Empirical 95% CI Predicted 95% CI

Cohort 1 - Emergency; Age < 76
H0 (Death) 35 9 (5, 13) (8, 9)
H0 (Discharge) 395 9 (9, 10) (9, 10)
C1 56 47 (32, 72) (42, 50)
H1 (Death) 4 8 (4, 14) (7, 8)
H1 (Discharge) 52 8 (7, 9) (7, 8)
C2 18 31 (8, 70) (28, 33)
H2 (Death) 1* 3 (4, 4) (3, 3)
H2 (Discharge) 17 7 (4, 13) (6, 8)

Cohort 2 - Emergency; Age 76− 82
H0 (Death) 177 4 (3, 6) (4, 5)
H0 (Discharge) 1669 8 (8, 8) (8, 9)
C1 272 54 (41, 59) (51, 59)
H1 (Death) 41 4 (2, 6) (4, 5)
H1 (Discharge) 231 8 (7, 9) (8, 9)
C2 68 38 (28, 52) (35, 42)
H2 (Death) 4 4 (1, 9) (4, 5)
H2 (Discharge) 64 8 (6, 10) (8, 9)

Cohort 3 - Emergency; Age > 82
H0 (Death) 399 6 (5, 6) (5, 6)
H0 (Discharge) 2320 9 (8, 9) (8, 9)
C1 439 56 (50, 64) (50, 63)
H1 (Death) 79 5 (3, 7) (4, 5)
H1 (Discharge) 360 8 (8, 9) (8, 9)
C2 111 42 (25, 51) (39, 46)
H2 (Death) 14 4 (2, 6) (4, 4)
H2 (Discharge) 97 7 (6, 7) (6, 7)

Cohort 4 - Planned; Age < 76
H0 (Death) 14 14 (9, 18) (13, 15)
H0 (Discharge) 457 8 (8, 9) (8, 8)
C1 42 69 (53, 109) (63, 76)
H1 (Death) 3 7 (2, 16) (7, 8)
H1 (Discharge) 39 8 (7, 11) (8, 9)
C2 6 44 (1, 73) (40, 48)
H2 (Death) 1* 4 (6, 6) (4, 4)
H2 (Discharge) 5 5 (3, 18) (4, 5)

Cohort 5 - Planned; Age 76− 82
H0 (Death) 36 7 (3, 13) (6, 7)
H0 (Discharge) 726 9 (8, 9) (9, 9)
C1 103 64 (59, 92) (60, 71)
H1 (Death) 7 4 (1, 7) (4, 4)
H1 (Discharge) 96 9 (8, 10) (8, 9)
C2 23 56 (32, 96) (52, 61)
H2 (Death) 4 6 (5, 16) (6, 7)
H2 (Discharge) 19 6 (3, 14) (5, 6)

Cohort 6 - Planned; Age > 82
H0 (Death) 72 7 (6, 8) (7, 7)
H0 (Discharge) 747 10 (9, 10) (9, 10)
C1 121 63 (44, 77) (57, 68)
H1 (Death) 16 4 (2, 7) (4, 4)
H1 (Discharge) 105 9 (8, 10) (9, 10)
C2 23 41 (29, 52) (39, 44)
H2 (Death) 6 5 (2, 7) (4, 5)
H2 (Discharge) 17 8 (3, 14) (7, 8)

Cohort 7 - Other admission method
H0 (Death) 29 5 (4, 7) (5, 5)
H0 (Discharge) 175 9 (8, 10) (8, 9)
C1 34 40 (12, 86) (35, 48)
H1 (Death) 3 2 (1, 3) (2, 2)
H1 (Discharge) 31 7 (6, 9) (7, 8)
C2 12 33 (4, 84) (31, 36)
H2 (Death) 2* 1 (2, 2) (1, 1)
H2 (Discharge) 10 6 (4, 12) (6, 7)
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This often results in planned admissions waiting longer for the treatment they
require. This trend observed from the methodology output agrees with that
obtained by simple calculation of the median length of stay for elderly patients
as a whole, which shows a decrease from 8 days at the initial hospital stage to
7 days at the second hospital readmission stage. The methodology presented
in this research paper has since been applied to a set of elderly patient records
from hospitals in a different region, with the same general trends evident.

4 Conclusion and Discussion

The research presented in this paper extends previous methodologies which
aim to model the pathway of elderly patients between various types of care [19]
[6] to a methodology which incorporates patient characteristics, in order to
provide predictions on length of stay for cohorts of elderly patients having sig-
nificantly different length of stay distributions. This is carried out by employ-
ing a phase-type survival tree, previously used in conjunction with a standard
Coxian phase-type distribution to model just a single stage of care [15], to
group patients into cohorts based on the length of stay in their initial hospital
spell. Differently to the research in [15], the survival tree is constructed using
a Coxian phase-type distribution with two absorbing states, to reflect the sig-
nificantly different length of stay distributions for both death and discharge
within each hospital stage. Once the survival tree is used to categorise elderly
patients according to length of stay at the initial hospital stage, the conditional
Coxian phase-type distribution is employed for each cohort separately during
the subsequent stages, taking into account each individual’s length of stay, at
both the previous and current stages, in the determination of the transition
rate parameters for the current stage. Previous research [6] has shown the
conditional Coxian phase-type distribution to outperform the standard Cox-
ian phase-type distribution when considering a number of stages within an
overall aggregate system, for a population assumed to be homogeneous. This
paper presents the phase-type survival tree as a front-end for this composite
methodology, able to account for a heterogeneous population. The primary re-
sults of the research presented are the predictive intervals for all combinations
of stage/cohort and may be found in Table 3.

The survival tree is successful in partitioning elderly patients such that
those in different cohorts have a significantly different distribution for length
of stay at the initial hospital stage. This is shown through the illustration of
visibly disparate survival curves for each cohort. The methodology is verified
through the comparison of the median from a set of simulated survival times
for each fitted distribution with the 95% confidence interval for the empirical
median of the represented length of stay data. Out of a total of 56 fitted
distributions spanning hospital (for patients who leave through both death and
community discharge) and community care stages, 53 fitted median values fall
within the 95% confidence interval for the empirical median. The remaining
three fitted distributions do not succeed in this respect simply due to a lack
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of data. The methodology has subsequently been inverted to allow predictive
intervals on length of stay to be calculated for new patients entering a hospital
department.

A number of assumptions made in the presentation of this research. The
reasons for patient admission, whilst usually likely to have an effect on an
individual’s duration of stay in hospital, have been deliberately omitted from
consideration. This is because the application of the research is in response to
the problem surrounding the increase of elderly admissions and readmissions
to hospital in a general sense, regardless as to whether each patient’s subse-
quent readmission is for a related medical issue. In this respect, the study has
been endorsed by an experienced geriatrician, highlighting the need for hos-
pital managers to obtain a greater understanding of the movement of elderly
people between hospital and community care. A further assumption is that all
patient admissions have occurred from the starting date of the study, with pa-
tients having no related hospital admissions before this point. An extension to
the methodology, incorporating censoring, is to be sought to help towards alle-
viating this assumption. As further work, patient information may be included
through the incorporation of covariates directly into the conditional Coxian
phase-type distribution, thereby enabling more patient-centred predictions to
be made. Additionally, this work may be extended to account for the precise
type of community care that elderly patients are discharged into, for example,
residential care or the patient’s own home.

The current research has the potential to become a decision support tool to
allow hospital managers to accurately predict when a given patient is likely to
leave hospital upon entering the department, or when they are likely to be read-
mitted to hospital upon their discharge to the community. This would make
it possible to reduce, or even eliminate, the negative effects of bed-blocking,
whereby elderly patients are fit enough to be discharged from hospital, but
are unable to do so due to a lack of organisation of a suitable place in com-
munity care. Additionally, alternative measures of community care may be
put in place, once a given elderly patient has been discharged from hospital,
in time for when they are expected to be readmitted, so that the hospital
readmission may be avoided altogether. As a next step, the adaptation of the
methodology presented in this research may be tested as part of a trial for a
localised area, under the proviso that enough data in each of the cohorts can
be obtained. With the data set in the current research taken over a period of
14 months, it may be necessary to use a wider time interval to ensure that
enough observations are present for the cohorts which are determined.

The benefit of using the conditional Coxian phase-type distribution is its
ability to additionally take into account the length of stay experienced by
elderly patients at the previous stage of care, in the determination of tran-
sition rates for the current stage. However, the assumption that all elderly
patients exhibit a similar survival distribution, and as such are homogeneous
with respect to length of stay, is often not valid. The novel incorporation of
the phase-type survival tree as a front-end component to the conditional Cox-
ian phase-type distribution, results in the estimation of more accurate rate
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parameters, in turn allowing more precise and representative predictions to be
made for a population which is heterogeneous in nature. Predictive intervals
may then be calculated through the estimation of an interval based on the
median of simulated times, generated from each distribution corresponding to
both a stage of care and cohort. This would allow hospital managers to accu-
rately predict when an elderly patient is likely to leave hospital, reducing the
negative effects of bed-blocking, and also to predict when an elderly patient is
likely to require readmission to hospital, meaning that an alternative source of
community care may be put in place, thereby avoiding readmission altogether.
Implementation of the presented methodology, with a view to addressing both
of the aforementioned scenarios, has the potential to lead to a more effective
allocation of both hospital beds and staff, thereby meaning that vital resources
may be saved.
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