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ABSTRACT Emergency medical service (EMS) plays an essential role in increasing survival rates as it

provides first aid to victims of life-threatening emergencies. However, unbalanced EMS supply-demand

distribution in the metropolis may cause a shortage of accessible EMS resources and delay the first aid

treatment. There is an urgent need to discover the hidden EMS supply-demand relation, predict the incoming

EMS demand, and take precautions against unexpected emergencies. This study assumes that EMS demand

correlates with population demographic data, regional socioeconomic factors, and hospital conditions.

To model these correlated factors, we represent Tokyo’s ambulance record data as a hospital-region bipartite

graph and propose a bipartite graph convolutional neural network model to predict the EMS demand

between hospital-region pairs. Our approach achieves 77.3% − 87.7% accuracy in binary demand label

prediction task. It significantly outperforms traditional machine learning algorithms, statistical models, and

the latest graph-based methods. Finally, we use a case study to show the significance of EMS demand

forecasting, proving that our approach can contribute to public health emergency management by making

EMS predictions.

INDEX TERMS Bipartite graph embedding, binary label classification, demand modeling, emergency

medical service, emergency event prediction, graph convolutional network.

I. INTRODUCTION

Emergency Medical Services (EMS) are responsible for pro-

viding out-of-hospital medical care to illness and injury

patients and transporting them to a medical facility. How-

ever, the EMS service is not evenly distributed. For exam-

ple, the Tokyo Metropolis consists of 23 wards, each with

different structures, functions, and population composition.

Some regions have high emergency demand but relatively

few EMS resources. The unbalanced EMS resource may

raise the risk of a shortage of available EMS resources and

result in the delay of first aid treatment, especially when

some high-priority medical emergencies such as sudden car-

diac arrest or a big event as the Tokyo Olympic Games

takes place. Besides, EMS is time-sensitive, i.e., the later
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the service arrives at the incident sites, the more severe the

damage to the patient’s health will be. Thus, accurate pre-

diction of EMS demand can help provide quick and efficient

medical treatment and increase the survival rate for elderly

patients [1].

Moreover, Japan is experiencing a ‘‘super-aging‘‘ society.

People aged 65 and older who currently make up a quarter

of the total population are estimated to reach a third by

2050. The seniors tend to have a high EMS demand for

their declining immune function and physical function. Thus,

Japan urgently needs to discover the hidden relationship of

EMS supply-demand, predict the incoming EMS demand,

and take precautions against unexpected emergencies. There-

fore, we aremotivated to focus on Tokyo, the largest metropo-

lis in ‘‘super-aging’’ society Japan, to study the relationship

between EMS supply and demand. Predicting the incoming

EMS demand in advance would induce a better allocation of
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resources and be of considerable significance to public health

emergency management.

Previous research on EMS demand prediction can be clas-

sified into model-based and data-driven approaches. The

model-based approaches predict specific demand by applying

the total capacity with multiple rules such as supply-demand

ratio and distance decay [2]. Model-based approaches work

well in an actual situation and easy to understand. However,

these approaches rely on predefined rules and cannot clearly

explain the anomalies [3]. On the other hand, the data-driven

approaches take the demand prediction problem as a clas-

sification or regression problem based on the observational

data and employ statistical methods or naive machine learn-

ing algorithms for the solution. Data-driven approaches can

fit complicated situations where the mathematical model is

difficult to establish. Specifically, some statistical methods

utilize social demographic data, socioeconomic factors, and

land use factors to improve EMS performance in a particular

city [1], [4], [5]. Moreover, predict EMS demand over time

by a spatio-temporal statistical model raises recent atten-

tion. The spatio-temporal statistical model utilizes location

information and time-series information to predict time and

location accurately [6]–[8]. However, in complex real-world

situations, the statistical model may be complicated with

too high order or too much non-linearity, or even unavail-

able, where huge factors need to be considered. It should

be noted that previous researches overwhelmingly focus on

EMS demand prediction in specific regions, while few works

study the demand between regions and hospitals. Hospitals

play a vital role in the medical emergency. Accurate EMS

demand prediction between regions and hospitals is meaning-

ful to urban public health emergency management and better

EMS resource allocation.

With the development of artificial intelligence, graph

embedding methods have been proved a better performance

than the traditional methods with flat inputs [9], [10], which

indicates a new way of predicting EMS demand via the

demand-supply relation graph. And this topic in bipartite

graphs is seldom studied in substantial research on learn-

ing graph data [11]–[16]. Those graph embedding methods

learn graph nodes as low-dimensional vector representations.

With the help of node representation vectors, subsequent

graph problems like node classification, link prediction, and

node clustering can be easily solved by combining them

with some existing machine learning methods. Start with

DeepWalk [17] and Node2vec [18], many graph embed-

ding architectures are developed. Specifically, graph con-

volutional networks (GCN) [19]–[21] has been proved an

efficient neural network architecture regarding graph embed-

ding researches. Many methods re-define the convolution

operation for graph structure data and are developed as mem-

bers of GCN based models. The core concept of GCN is

iteratively aggregating feature information from a node’s

neighborhood nodes in a graph. Compared with other graph

embedding methods that focus on graph contents, GCN uti-

lizes both node features and holds the potential of exploiting

the graph topology structure. Intuitively, a hypothesis is sug-

gested that the thinking of GCN may also perform well in

modeling the EMS demand-supply relation graph and give

an accurate prediction regarding the EMS demand between

hospitals and regions.

With the concerns mentioned above, in this article,

we study the EMS demand-supply relation between regions

and hospitals, then propose an approach for predicting the

EMS demand at the hospital-region level. Our motivation

is based on the idea that the EMS demand between a

region and a hospital is mainly affected by population demo-

graphics, regional socioeconomic factors, and hospital condi-

tions. Thus, we collect data from various sources, including

regional demographic data (daytime population number /

census population number / crime number), regional land-use

data (industrial / residential / commercial area ratio), regional

historical emergency data (illness / injury case number),

hospital information data (number of beds and doctors /

past number of patients), and transportation data (distance

between region and hospital).

We develop a Bipartite Graph Convolutional Net-

work (BiGCN) model that exploits the multi-modal fea-

tures of the data for EMS demand prediction. Specifically,

we transform the demand prediction problem to an edge label

classification problem in a hospital-region bipartite graph,

as shown in Fig. 1. The bipartite graph is a particular type

of graph whose nodes divide into two disjoint sets such that

the edge connects nodes from one set to the other. Hospitals

and regions serve as two individual node sets. Hospitals and

regions serve as two individual node sets. The edge connects a

hospital node and a region node, indicating that an emergency

happened in this region, and the injured people are sent to this

hospital. Feature attributes are attached to each node and each

edge.

Notably, we find that traditional GCN does not work cor-

rectly in bipartite graphs because it confuses the informa-

tion from the two disjoint node sets. Our BiGCN model

separates the convolution operation of the two node sets

and overcomes the shortcomings of traditional GCN. The

experimental results demonstrate that our approach achieves

77.3% − 87.7% accuracy in the label prediction task, which

is significantly superior to baseline traditional machine learn-

ing algorithms, statistical models, and the latest graph-based

methods. Finally, We use a case study to illustrate that our

approach can provide valuable suggestions for allocating

injured people in emergencies. It proves that our work is

meaningful to urban public health emergency management,

make the public aware of the significance of EMS demand

prediction, and help local governments better allocate EMS

resource and decrease the emergency risk.

The main contributions of this article are summarized as

follows:

• We are the first to analyze EMS demand at the

hospital-region level in a metropolis like Tokyo. Our

work is of considerable significance to public health

emergency management.
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FIGURE 1. The hospital-region EMS bipartite graph.

• We represent the ambulance record data as a

hospital-region bipartite graph and transform the EMS

demand prediction problem to an edge label classifica-

tion problem in the bipartite graph.

• We analyze the limitations of GCN in bipartite graphs

and propose BiGCN by fully considering the structure

characteristics of bipartite graphs. BiGCN is not limited

to the hospital-region bipartite graph in this article but

has the potential to become a general model for learning

node embeddings and accomplishing supervised learn-

ing tasks in non-specific bipartite graphs.

• We conduct experiments and demonstrate that our

approach achieves excellent performance in the demand

label prediction task and significantly outperforms

baseline methods, including traditional machine learn-

ing algorithms, statistical models, and state-of-the-art

graph-based methods. We discover the main factors that

affect the EMS demand prediction most. We use a case

study to show how our approach can contribute to public

health emergency management.

SOURCE CODE

The Python implementation of the BiGCNmodel is provided

for reviewing: https://github.com/Tracy-King/BiGCN.

The rest of this article is organized as follows. Section II

summarizes the recent literature on EMS demand analy-

sis and graph learning. Section III introduces the problem

statement of EMS demand prediction. Section IV discusses

the limitations of the state-of-the-art GCN in the bipartite

graph. Section V presents our BiGCN model. Section VI

reports experiment results and presents a case study. Finally,

Section VII concludes our research.

II. RELATED WORK

We present the related work from two different angles: EMS

demand analysis and graph embedding.

A. EMS DEMAND ANALYSIS

Past research on EMS supply and demand analysis can be

classified into model-based and data-driven approaches. The

model-based approaches predict specific demand by applying

the total capacity with multiple rules such as supply-demand

ratio and distance decay [2]. The main topic is accessibility

as an important indicator in evaluating the justice of medical

service [22]. Moreover, the large variance of accessibility

indicates an unequal spatial distribution of EMS facili-

ties. Therefore, EMS facility location optimization (FLO)

is another popular topic. There are several types of EMS

facilities for FLO models, including emergency devices [23],

emergency centers [24], and the ambulance stations [25].

The data-driven approaches take the demand predic-

tion problem as a classification or regression problem

based on the observational data and employ a statistical

or naive machine learning model for the solution. Specifi-

cally, the statistics-based approaches perform well in spatial

EMS analysis [26]. uEMS [4] has the object to maxi-

mize the EMS vehicle coverage with limited ambulance

stations in an urban area and provides a generalized lin-

ear model to locate the urban EMS ambulance station.

Steins et al. [27] use a Zero-Inflated Poisson(ZIP) regression

approach to develop a statistical EMS demand forecasting

model. Grekousis and Liu [5] propose a spatial-based Artifi-

cial Neural Networks(ANN) approach that identifies the geo-

graphical location of expected emergency events. Besides,

predicting EMS demand over time has raised recent atten-

tions [7], [28], [29]. Some spatio-temporal approaches are

proposed to utilize both location information and time-series

information since EMS prediction needs to be accurate for

both time and location. Setzler et al. [6] design an ANN

to forecast EMS demand volume of specific areas during

different times of the day. Channouf et al. [8] develop and

compare several regression models to analyze the time-series

information of a major Canadian city’s daily and hourly EMS
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call volume. Zhou et al. [30] introduce a Gaussian Mixture

Model(GMM) to estimate the ambulance demand distribution

in Toronto, Canada. However, previous research overwhelm-

ingly focuses on EMS demand prediction in specific regions,

while few studies study the demand between regions and

hospitals. Hospitals play a vital role in the medical emer-

gency. Accurate EMS demand prediction between regions

and hospitals is meaningful to urban public health emergency

management and better EMS resource allocation.

B. GRAPH EMBEDDING

Graphs are used in many science branches to represent

the patterns of connections between the components of

complex systems. There is a surge of interest in graph

embedding [11]–[16]. The goal is to learn a mapping that

embeds nodes as points in a low-dimensional vector space.

The learned embeddings can be taken as feature inputs for

downstream machine learning tasks, and this technology has

achieved great success in many applications. Researchers

have proposed various graph embedding methods such as

matrix factorization [31], edge reconstruction [32], random

walks plus skip-gram model [17], [18], and graph neural

networks [19], [33], [34].

However, graph embedding in bipartite graphs is relatively

less studied. The bipartite graph is a ubiquitous data struc-

ture to model the relationship between two types of enti-

ties. Examples of bipartite graphs include the author-paper

graph, the customer-product graph, the player-event graph,

the actor-movie graph, and the keyword-document graph. As

far as we know, there are fewworks on bipartite graph embed-

ding. BiNE is an approach by performing biased random

walks and preserving the long-tail distribution of nodes in

bipartite graphs [35]. BGNN is another approach that uti-

lizes inter-domain message passing and intra-domain align-

ment towards information fusion [36]. However, these two

methods do not precisely solve our problem for two rea-

sons. First, BiNE only employs the graph structure informa-

tion but not the node feature information. Second, both are

unsupervised learning methods that do not fully utilize the

training set to optimize the models, resulting in suboptimal

performance.

On the other hand, there are extensive researches on

graph embedding for heterogeneous graphs, which contain

multi-typed nodes or multi-typed edges. Note that bipartite

graphs that contain two typed nodes can be regarded as a

particular class of heterogeneous graphs. Metapath2vec [37]

uses meta-path based random walks to aggregate the hetero-

geneous neighborhood nodes and then exploit a skip-gram

model to learn the node embeddings. HAN [38] is a hetero-

geneous graph neural network based on the hierarchical atten-

tion mechanism, including node-level and semantic-level

attentions. It fully considers the importance of node neighbors

and different meta-paths. HetGNN [39] combines heteroge-

neous structural information and node attributes. It has an

excellent performance in graphs with multiple types of nodes

and edges.

TABLE 1. Symbols and interpretations.

FIGURE 2. The number of emergency cases in different regions of Tokyo.

III. PROBLEM SETUP

This section first describes the dataset we used in our

research. It then represents the EMS data as a hospital-region

bipartite graph and transforms the problem to an edge label

classification problem in the graph. Table 1 lists the main

notations in this article.

A. DATASET DESCRIPTION

This study collects a dataset of ambulance records from 1st

January 2017 to 31st December 2017 for the Central Tokyo

area. The dataset is provided by the Tokyo Fire Department.

It contains 624,062 emergency cases. Each record includes

the patient’s age, gender, ambulance types (disease or injury),

ambulance scene, and hospital address.

There are 931 administrative regions and 291 hospitals

that can provide emergency medical care in Tokyo. Admin-

istrative regions are divided by following the official district

division principle of government. The map of regions with

the number of cases is visualized in Fig. 2. We are interested

in the emergency demand from one region to one hospital.
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TABLE 2. Features of hospitals and regions.

The raw data aggregates into 270,921 hospital-region pairs,

with only 23,308 pairs having demand. We attach a binary

label denoting the low/high demand level for each pair. The

label is determined by the percentage of the demand in the

capacity of the respective hospital. As a result, 13,603 pairs

are labeled ‘‘high’’, and 9,705 pairs are labeled ‘‘low’’. More-

over, we collect a bunch of feature information for the regions

and hospitals, as listed in Table 2. Also, we follow [2] to mea-

sure the Euclidean distance between regions and hospitals.

B. EDGE LABEL CLASSIFICATION IN THE

HOSPITAL-REGION GRAPH

We represent the EMS data as a bipartite graph G =

(U,V,E), as shown in Fig. 1. U and V are the node sets for

hospitals and regions, respectively. M = |U| and N = |V|

are the number of nodes in the two sets. E ⊆ U × V denotes

the edge set. K = |E| is the number of edges. eij ∈ E

represents the EMS demand relationship between the hospital

node ui ∈ U and region node vj ∈ V. The edge weight is

ωij = exp(−distance(ui, vj)), (1)

which indicates the ‘‘closeness’’ of ui and vj. distance (·)

denotes the Euclidean distance between two node, and exp (·)

denotes the exponential function.

The hospital node ui and region node vj are associated with

feature vectors fui ∈ RP and fvj ∈ RQ, which are based

on preprocessed raw features in Table 2, and P and Q are

the respective number of features. Fu = [fu1 , . . . , fuM ]
⊤ ∈

RM×P and Fv = [fv1 , . . . , fvN ]
⊤ ∈ RN×Q denote the feature

matrix of hospitals and regions. Moreover, yij ∈ {−1, 1} is

the label for edge eij (which corresponds to low/high demand

between hospital and region) and Y = {yij|eij ∈ E} is the set

of edge labels.

Since the edge connects nodes between U and V, the adja-

cency matrix A takes a block off-diagonal form

A =

[

0M×M Bu
Bv 0N×N

]

, (2)

TABLE 3. Statistics of the bipartite graph for the EMS dataset.

whereBu ∈ RM×N andBv ∈ RN×M are the incidence matrix

for U and V, respectively. Bu = B⊤
v , and Bu(i,j) = Bv(j,i) =

ωij. D is the degree diagonal matrix:

D =

[

Du 0M×N

0N×M Dv,

]

, (3)

where Du = Diag(
∑

i Bu(1,i), . . . ,
∑

i Bu(M ,i)) and Dv =

Diag(
∑

i Bv(1,i), . . . ,
∑

i Bv(N ,i)) are the diagonal degree

matrices of U and V.

Table 3 reports the statistics of the hospital-region bipartite

graph. The problem in Section III can be represented as an

edge label classification problem in the graph. Suppose Y is

split into a training set Ytrain, a validation set Yval, and a test

set Ytest. Then, our problem (as illustrated in Fig. 3) is set

up as follows: given the features of regions and hospitals(Fu,

Fv), the distance of hospital-region pairs(A), and a portion

(10% − 80%) of known labels(Ytrain, and Yval), how can we

predict the remaining edge labels(Ytest).

IV. LIMITATIONS OF GCN IN BIPARTITE GRAPHS

In this section, we discuss the limitations of traditional GCN

and explain why it cannot correctly work in the bipartite

graph.

GCN [19] is a type of neural network architectures that

can leverage the graph structure and node features for

graph analysis, and this model has achieved great success

in many tasks. GCN consists of aggregators and updaters.

The aggregator gathers information guided by the graph
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FIGURE 3. Predicting the high/low demand label of hospital-region pairs.

structure, and the updater updates nodes’ hidden states

according to the gathered information. The core of the

method is learning node representations, or embeddings, in a

low-dimensional vector space that encode information about

the graph. Specifically, the convolutional layer is based on the

following equation:

H(t+1) = σ (LH(t)W(t+1)) (4)

whereL is the aggregationmatrix,H(t) is the node embedding

matrix in t-th layer, H(0) is initialized with the node feature

matrix, W(l) is the trainable weight matrix in l-th layer, and

σ (·) is the activation function.

GCN is originally designed for unipartite graphs, and

it adopts the symmetric normalized Laplacian matrix

D̃− 1
2 ÃD̃− 1

2 as the aggregator LGCN, where Ã = A + I and

D̃ is the degree diagonal matrix of Ã. Here I denotes the

identity matrix. In the following, we analyze the limitations

of applying GCN in bipartite graphs. To simplify the analysis,

we consider an approximate form LGCN ≈ D− 1
2 ÃD− 1

2 .

Moreover, we have to concatenate the two feature matri-

ces Fu and Fv as the initialization of the node embedding

matrix H(0). However, since the two matrices have different

column dimensions and P < Q, we have to expand Fu with

zero values to make an alignment:

H(0) =

[

Fu | 0M×(Q−P)

Fv

]

(5)

where | is an auxiliary symbol for matrix partitions, and 0 is a

zeromatrix with the given shape. Then, the first convolutional

layer in Eq. (4) becomes

H(1) = D− 1
2 (A + I)D− 1

2H(0)W(1) (6)

=









(

D
− 1

2
u BuD

− 1
2

v Fv

)

+
(

D−1
u Fu | 0M×(Q−P)

)

(

D
− 1

2
v BvD

− 1
2

u Fu | 0N×(Q−P)

)

+
(

D−1
v Fv

)









W(1)

(7)

From Eq. (7), we can find that the aggregator sums the hos-

pital feature matrix Fu and the region feature matrix Fv. Note

that Fu and Fv refer to information from different sources,

which implies that they have different dimensions and they

are based on different scaling systems. Therefore, it is not

reasonable to sum them together. For the same reason, it is

insufficient to use the same matrix W(1) for the filter opera-

tion. As a result, GCN does not work correctly in bipartite

graphs. A new approach is in demand to wisely apply the

thinking of GCN to bipartite graphs.

V. PROPOSED APPROACH

In this section, we propose an approach to address the

problem in the last section. We hypothesize that the EMS

demand between a region and a hospital can be predicted

by modeling the demographic information and the distance

of regions and hospitals. To overcome the disadvantage of

traditional GCN and apply the thinking of GCN in bipartite

graphs, we introduce an improved GCN based model, bipar-

tite graph convolutional network structure BiGCN. Fig. 4

illustrates the overview structure of BiGCN model. The core

method of BiGCN is learning the embedding representa-

tion of nodes by graph convolution operation, then learn-

ing the edge embedding representations based on its two

side node embeddings, finally predicting the edge labels

based on the edge embeddings. The spotlight of BiGCN is

the utilization of both the graph structure information and

node features, and the individual operation for two disjoint

node sets. The model evaluation depends on the accuracy

and f1 score metrics regarding the EMS demand prediction

task.

A. BiGCN

Based on the structural characteristics of bipartite graphs

that U and V are disjoint node sets with distinct properties

(degree distributions, associated features), our idea is to sep-

arate the convolution operation for U and V. Specifically, the
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FIGURE 4. Overview of the structure of our approach.

mathematical expression of our convolutional layer is

H(0)
u = Fu (8)

H(0)
v = Fv (9)

H(t+1)
u = σ (

[

D−1
u BuH

(t)
v W(t+1)

u ‖ Fuω
(t+1)
u

]

) (10)

H(t+1)
v = σ (

[

D−1
v BvH

(t)
u W(t+1)

v ‖ Fvω
(t+1)
v

]

) (11)

H
(t)
u andH

(t)
v are the learned node embedding matrix in the

t-th layer for U and V, respectively.W
(t)
u ,W

(t)
v , ω

(t)
u , and ω

(t)
v

are trainable weight matrices (filters) in t-th layer. ‖ is the

concatenation operation.

The process of the convolutional layer contains three steps,

as shown in Fig. 4. Take node ui ∈ U as an example.

We first aggregate features from its neighbors inV and update

the aggregated features by a filter (this step corresponds to

D−1
u BuH

(t)
v W

(t+1)
u in Eq.(10)). In parallel, we update the

original features of ui by another filter (this step corresponds

to Fuω
(t+1)
u in Eq.(10)). Finally, we concatenate the updated

features from two sources and pass them to an activation

function. Similar process applies for node vi ∈ V.

There are three differences between GCN and BiGCN.

First, GCN only use one aggregator and one filter for U and

V, while BiGCN enforces independent aggregators (D−1
u Bu,

D−1
v Bv) and filters (W

(t)
u , W

(t)
v , ω

(t)
u for the two node sets.

Secondly, GCN intentionally adding self-connections (Ã =

A + I) to preserve the feature of the node itself. On the

other hand, BiGCN uses the concatenation operation for this

purpose and overcomes the shortcomings of simply summing

the features from different sources. Thirdly, GCN uses the

symmetric normalized Laplacian matrix D̃− 1
2 ÃD̃− 1

2 as the

aggregator. However, the node degree distributions of U and

V are compositionally distinct from each other, and thus the

symmetric normalization is not meaningful. Instead, BiGCN

uses the random walk Laplacian matrixD−1
u Bu andD

−1
v Bv to

take the average of neighboring node features in the aggre-

gation process. All of the above imply that BiGCN fully

considers the structure characteristics of bipartite graphs.

We explain about the dimensionality. Note that in the hid-

den layer, we concatenate the features fromU andV.We hope

to keep the dimension in proportion to the original dimension

of the two sources. Therefore, we assume ⌈c(t)P⌉+⌈c(t)Q⌉ is

the dimension of t-th hidden units. c(t) ∈ R+ is a dimension

scaling parameter. ⌈·⌉ is the ceiling function. Following this

assumption, we have:

H(t)
u ∈ R

M×(⌈c(t)P⌉+⌈c(t)Q⌉) (12)

H(t)
v ∈ R

N×(⌈c(t)P⌉+⌈c(t)Q⌉) (13)

W(1)
u ∈ R

Q×⌈c(1)Q⌉ (14)

W(1)
v ∈ R

P×⌈c(1)P⌉ (15)

W(t)
u ∈ R

(⌈c(t−1)P⌉+⌈c(t−1)Q⌉)×⌈c(t)Q⌉, for t ≥ 2 (16)

W(t)
v ∈ R

(⌈c(t−1)P⌉+⌈c(t−1)Q⌉)×⌈c(t)P⌉, for t ≥ 2 (17)

ω
(t)
u ∈ R

P×⌈c(t)P⌉ (18)

ω
(t)
v ∈ R

Q×⌈c(t)Q⌉ (19)

Next, we analyze the computational complexity of the con-

volutional layer for GCN and BiGCN.With regard to Eqs.(7),

(10), (11), the complexity is dominated by matrix multipli-

cation. We equally assume that both models have the same

dimension D for the hidden units. Moreover, we suppose

P < Q. In the case of a sparse bipartite graph, the complexity

of GCN isO(KQ+KP+(M+N )QD)=O(KQ+(M+N )QD),

while the complexity of BiGCN isO(KQ+MQD+MPD+

KP+NPD+NQD) = O(KQ+ (M +N )QD). In the case of

a dense bipartite graph, the complexity of GCN isO(MNQ+

NMP+ (M + N )QD) = O(MNQ+ (M + N )QD), while the

complexity of BiGCN isO(MNQ+MQD+MPD+NMP+

NPD + NQD) = O(MNQ + (M + N )QD). Therefore, GCN

and BiGCN have the same computational complexity.
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B. LOSS FUNCTION

We now turn to edge label classification. We have obtained

node embedding matrix H
(T )
u = [h

(T )
u1 , . . . ,h

(T )
uM ]

⊤ and

H
(T )
v = [h

(T )
v1 , . . . ,h

(T )
vN ]⊤, where T is the number of layers

in BiGCN, and h
(T )
ui and h

(T )
vj are the embedding for ui and

vj. For an edge eij, we can generate its embedding h
(T )
e(ij) ∈

R(⌈c(T )P⌉+⌈c(T )Q⌉) using the Hadamard product [18]

[h
(T )
e(ij)]l = [h(T )ui

]l ·[h
(T )
vj

]l, (20)

where l ∈ 1, · · · , (⌈c(T )P⌉ + ⌈c(T )Q⌉) denotes the sub-

script of the l-th element. In this way, we can generate

an edge embedding matrix H
(T )
e = [h

(T )
e1 , . . . ,h

(T )
eK ]⊤ ∈

RK×(⌈c(T )P⌉+⌈c(T )Q⌉).

Then, we use Support Vector Machine (SVM) classifier

to predict the binary edge labels. Specifically, the predicted

labels can be formulated as

ŷ = sgn
(

H(T )
e ω

)

, (21)

where ω ∈ R(⌈c(T )P⌉+⌈c(T )Q⌉) is a trainable vector and sgn is

the sign function.

For model training, we evaluate the classification error

over all examples in the training set based on the hinge loss

function:

Lc =H(H(T )
e ) (22)

=
1

|Ytrain|

∑

k∈I(Ytrain)

max
(

0, 1 − yk
(

H(T )
e ω

)

k

)

+
1

2
‖ω‖22,

(23)

where y is the vector of edge labels and I(Ytrain) is the set of

edge indices in Ytrain. Moreover, to alleviate the information

loss in the hidden layer of BiGCN, we formulate a recurrent

loss by applying the hinge loss to the Hadamard product of

hidden units

Lr =

T−1
∑

t=1

H(H(t)
e ) (24)

Finally, the total loss is

L = Lc + αLr , (25)

where α is a hyperparameter for balancing Lc and Lr .

VI. EXPERIMENT

We conducted experiments on the edge label classification

task to answer the following questions regarding BiGCN

model:

• Does BiGCN agree with our hypothesis and perform

well in bipartite graphs? How does it compare with other

models?

• Which input feature influences the prediction result

most?

• How many layers should be used in BiGCN?

• Is recurrent loss necessary? How does it impact model

performance?

• How can our approach be used for public health emer-

gency management?

In the following, we first explain experimental settings and

baselines. After that, we discuss the results.

EXPERIMENT SETUP

We randomly splitY intoYtrain,Yval, andYtest.Yval accounts

for 10%, Ytest ratio ranges from 10% ∼ 80%, and the

remaining is for Ytrain. As for the implementation of BiGCN,

we chose Parametric Rectified Linear Unit (PReLU) as the

activation function. We applied batch normalization with a

momentum of 0.9 to each convolutional layer. We initialized

the weight parameters using He initialization [40].We trained

the model by Adam optimizer [41] with a learning rate of

0.01. We set the maximum training iteration as 500 and

applied an early stopping strategy if the validation loss does

not decrease for 10 iterations. The implementation is in

Python and PyTorch on Google Colaboratory platform with

Intel(R) Xeon(R) CPU @ 2.20GHz, NVIDIA Tesla P100

16GB GPU, and 25GB memory.

BASELINES

We consider traditional machine learning classifiers, statis-

tical models, and the latest graph-based methods such as

graph embedding and graph neural networks as baselines.

The details are listed below.

1) SVM (Support Vector Machine), GBDT (Gradient

Boosting Decision Tree), and LR (Logistic Regres-

sion): These are traditional machine learning classi-

fiers.

2) GMM [30]: This is a Gaussian Mixture Model

approach.

3) ZIP [27]: This is a Zero-Inflated Poisson regression

approach.

4) Node2Vec [18]: This is an unsupervised algorithm

for learning graph node embeddings based on random

walks and skip-gram model.

5) GCN [19]: This is one of the most widely used

graph convolutional networks. This method, as stated

in Section IV, can be interpreted as smoothing the

node features in the neighborhoods guided by the graph

structure.

6) VGAE [42]: This is a variational graph autoencoder,

in which GCN is used as an encoder to learn node

embeddings.

7) GraphSAGE [33]: This is another popular method for

generating node embeddings based on graph structure

and node features.

8) BiNE [35]: This is an extension of unsupervised graph

embedding algorithm to bipartite graphs.

9) BGNN [36]: This is a bipartite graph neural network for

learning node embeddings in an unsupervised fashion.

10) Metapath2vec [37]: This is an extension of con-

ventional graph embedding technique to hetero-

geneous graphs, which contain multi-typed nodes

or multi-typed edges. This approach formalizes
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TABLE 4. The results for predicting the hospital-region labels by different approaches.

meta-path-based random walks to construct the hetero-

geneous neighborhood of a node to learn embeddings.

Note that

11) HetGNN [39]: This is a graph neural network model

for learning node vector representations in heteroge-

neous graphs.

12) HAN [38]: This is a heterogeneous graph neural

network based on the hierarchical node-level and

semantic-level attentions.

We employ traditional machine learning classifiers (SVM,

GDBT, LR) to predict the hospital-region bipartite graph

edge labels with flat inputs consist of distance informa-

tion and node features. The two baseline statistical models

(GMM, ZIP) are designed for EMS demand forecasting in

the prior works. The statistical model is much more under-

standable and simpler to implement than machine learn-

ing models. In our experiment, two models receive flat

inputs consist of distance information and node features.

Graph structure information is not involved. The graph-based

approaches (Node2Vec, GCN, VGAE, GraphSAGE, BiNE,

BGNN, Metapath2vec, HetGNN, HAN) receive both graph

topology structure and node features as input. They are ini-

tially designed for only learning node embeddings. Thus,

after obtaining the node embeddings by these baseline meth-

ods, we generate edge embeddings by applying Hadamard

product to these node embeddings and finally feed them to

an SVM classifier to predict the hospital-region labels.

A. PERFORMANCE COMPARISON

Table 4 displays the results by BiGCN (with loss balanc-

ing hyperparameter α = 0.1, dimension of hidden unit

⌈c(t)P⌉ + ⌈c(t)Q⌉ = 50, and number of convolution layer

T = 3) and the baselines. We evaluated the performance

in terms of accuracy and F1 score. BiGCN demonstrates

the best overall performance. In particular, it achieves the

highest accuracy and F1 score when the test ratio ranges

from 10% ∼ 60%, with 2.4% - 8.0% performance gain over

GBDT that is consistently better than the other baselines. The

only exception arises when the test ratio reaches 80%, or the

training set only accounts for 10%, where our model suffers

from an overfitting problem. GBDT, as an additive model,

has a good strategy to prevent overfitting and thus obtains

superior performance.

It is interesting to note that BiGCN outperforms the other

graph-based approaches by a large margin. We attribute

this to two reasons. The first reason is the deliberate net-

work structure of BiGCN that considers the characteristics

of bipartite graphs. In contrast, GCN, VGAE, and Graph-

SAGE are designed for unipartite graphs and do not adapt

to bipartite graphs. The second reason is the end-to-end

model optimization based on our proposed cost function.

Conversely, Node2Vec, VGAE, BiNE, and BGNN are unsu-

pervised learning methods to preserve the original graph’s

topology structure. They thus do not fully utilize the train-

ing set to optimize the models. Note that Metapath2vec,

VOLUME 9, 2021 9911



R. Jin et al.: Predicting EMS Demand With BiGCNs

HetGNN, and HAN are originally proposed for heteroge-

neous graphs, and we find that they also do not fit well

with bipartite graphs. For example, althoughHANutilizes the

node-level and semantic-level attention mechanism, the triv-

ial structure and single meta-path in bipartite graph restrict

its performance. As for the statistical models, GMM gives

similar performances in all test ratios, while ZIP’s perfor-

mance is severely impacted by the training data volume.

It gives an average performancewhen there is enough training

data (test ratio = 10% ∼ 20%), although still lower than

BiGCN. However, with the training data decreasing, they

tend to give an extraordinarily unbalanced prediction result,

i.e., predicting many ‘‘high‘‘ labels and a few ‘‘low‘‘ labels.

It covers almost all the ‘‘high‘‘ cases but seldom predicts

‘‘low‘‘ cases correctly. This result leads to a high precision

and a low recall, resulting in a low f1 score in total. This result

may be caused by the low adaptability of statistical models in

a complicated situation.

B. MAIN FACTORS

The neural network based approach BiGCN is a ‘‘black box‘‘

and lacks interpretability. On the other hand, although having

a lower accuracy, statistical models allow for an understand-

ing of the main factors that influence the prediction. The

BiGCNmodel input involves regional demographic informa-

tion, land-use information, historical emergency information,

hospital information, and distance information. Some infor-

mation may have a significant impact on EMS demand pre-

diction, and some may have less effect. There is a need for an

understanding of the main factors that affect the model output

most. The discovery of the main factors in EMS demand

prediction contributes to better EMS demand estimation.

Using the statistical method ZIP, we can obtain the coeffi-

cient distribution for each variable. The coefficients are inter-

preted as the ones in a standard Poisson model: the excepted

value of dependent variable changes by exp (coef .) for each

unit increase in the corresponding variable. We do a z-test on

variable coefficients. Then mainly use two statistical terms,

z-score and p-value, to evaluate the variable coefficients. The

z-test is a statistical test that indicates whether a variable

exhibits statistical significance or exhibits a random pattern.

Specifically, in this experiment, z-scores are the standard

deviations of variable coefficients, and p-values are prob-

abilities that the variable coefficients are created by some

random process. Suppose a variable coefficient has a very

high(z > +2.5) or very low(z < −2.5) z-score, associated

with very small p-values (p < 0.01). In that case, this variable

is likely to be statistically significant clustering or dispersion,

which means it is positively/negatively correlated with the

output. The larger the |z| is, the stronger the relationship is.

Table 5 demonstrates the z-scores and p-values of the

variable coefficient for each feature. The upper part is the

regional feature, and the lower part is the hospital feature.

As a result, almost all the features significantly impact the

prediction result(|z| > 2.5 and p < 0.01). Specifically,

‘‘Euclidean distance‘‘(z = 941.555), regional ‘‘EMS injury

TABLE 5. Z-score and p-value of variable coefficients in ZIP regression
model (test ratio=0.1).

case number‘‘(z = −898.339) and regional ‘‘EMS dis-

ease case number‘‘(z = 898.346) are three main factors

that affect the EMS demand prediction result most. Fea-

tures ‘‘EMS injury/disease case number sent to hospital‘‘ and

‘‘EMS injury/disease case number not sent to hospital‘‘ are

linearly correlated with ‘‘EMS injury/disease case number‘‘,

thus having similar z-scores. Besides, it is noticeable that the

hospital ‘‘EMS injury case number‘‘ feature has z = 0.250

and p = 0.803. It means that this feature is likely to be

randomly distributed and has less influence on the prediction

result.

C. PARAMETER STUDY

1) BALANCING PARAMETER α

As introduced in Section V-B, the loss function is a combi-

nation of classification loss Lc and recurrent loss Lr , with

parameter α as a balancing weight. We conducted experi-

ments to investigate how α affects performance.

Fig. 5(a) and 5(b) present the results with α ranging from

0.001 to 1.5. A small α such as 0.001 indicates placing a

dominant emphasis on Lc and ignoring Lr in the cost, while

a high α implies including more weight on Lr in the cost.

We can find that the performance improves as α increases

from 0.001 to 0.1, then it gradually declines. Our model

reaches a high accuracy at around α = 0.1, where recurrent

loss Lr positively contributes to the performance.

2) NUMBER OF CONVOLUTIONAL LAYERS

We studied the influence of the number of convolutional

layers on performance. Fig. 5(c) and 5(d) report the results.

The best results are obtained with three layers. There is a
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FIGURE 5. Parameter study. (a)(b) Results with different α. (c)(d) Results with different numbers of layers. (e)(f) Results with different
dimensions of hidden units.

modest decrease in performance when more layers are used

because the learned embeddings are over-smoothed [43].

Over-smoothing means if a neural network has many convo-

lutional layers, the output node features may become indis-

tinguishable and give a poor performance. Also, the running

time grows as the number of layers increases.

3) DIMENSION OF HIDDEN UNIT

We analyzed the impact of the dimension of hidden

units introduced as ⌈c(T )P⌉ + ⌈c(T )Q⌉ in Section V-A.

Fig. 5(e) and 5(f) demonstrate the training and testing per-

formance for hidden dimension ranging from 6 to 200. With

the increasing hidden dimension, the test performance keeps
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FIGURE 6. The identified hospitals with high EMS demand.

increasing until the dimension reaches around 50, then it

becomes relatively stable. However, the training performance

still improves even after 50, and gradually goes far beyond

the test performance, finally becomes stable after 170. The

figure shows that when the hidden dimension exceeds 50,

the model begins to be overfitting. The increasing hidden

dimension can only fit the training set better instead of

improving the test accuracy. When the increasing hidden

dimension exceeds around 170, it can no longer improve the

training performance. It indicates that the model has achieved

its best with the current architecture and cannot easily be

improved by merely adding the hidden dimension.

D. CASE STUDY

Finally, we demonstrate an application of our approach in

the case of a sudden emergency. We imagine a severe acci-

dent occurring in a region named ‘‘Hirakawacho’’, which

is close to the home of many government agencies such as

the National Diet Building and the Prime Minister’s Official

Residence. The region initially connects to four hospitals with

high demand. Then, we modified the region feature injury

number by adding 1,000 cases to simulate an injury accident

where 1,000 people need first aid treatment. We used our

model to predict the hospitals with ‘‘high’’ demand after the

accident according to the new feature input.

The result is shown in Fig. 6. The red cross mark denotes

the hospitals, and the center point indicates the region.

Our model identifies eleven additional hospitals with high

demand, including six hospitals with low demand and five

hospitals without demand before the accident. This result is

reasonable because we can see that the newly identified hos-

pitals are all close to the region and have high capacity. Such a

result is of great value for suggesting the allocation of injured

people. It also helps public health emergency management in

preparation for similar emergencies in the future.

VII. CONCLUSION

We analyzed the ambulance record data for Tokyo and

presented the first approach to predict the EMS demand

at the hospital-region level. We represented the data as a

hospital-region bipartite graph and proposed a novel BiGCN

model to predict the EMS demand between hospital-region

pairs. Our approach achieves excellent performance on the

prediction accuracy, outperforming the baselines, includ-

ing traditional machine learning algorithms, statistical mod-

els, and the latest graph-based methods by a large margin.

We applied a case study to prove the feasibility of the BiGCN

model in a real-world situation. Our work is meaningful to

urban public health emergency management, make the public

aware of the significance of EMS demand prediction, and

help local governments better allocate EMS resources and

decrease the emergency risk.
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