Predicting Execution Time of Computer Programs
Using Spar se Polynomial Regression

Ling Huang Jinzhu Jia Bin Yu
Intel Labs Berkeley UC Berkeley UC Berkeley
ling.huang@intel.com jzjila@stat.berkeley.edu binyu@stat.berkeley.edu

Byung-Gon Chun Petros M aniatis Mayur Naik
Intel Labs Berkeley Intel Labs Berkeley Intel Labs Berkeley
byung-gon.chun@intel.com petros.maniatis@intel.com mayur.naik@intel.com

Abstract

Predicting the execution time of computer programs is aroi@mt but challeng-
ing problem in the community of computer systems. Existireghmods require ex-
perts to perform detailed analysis of program code in ommepnstruct predictors
or select important features. We recently developed a nstesyto automatically
extract a large number of features from program executiosamnple inputs, on
which prediction models can be constructeithout expert knowledge. In this
paper we study the construction of predictive models fas groblem. We pro-
pose the SPORE (Sparse POlynomial REgression) methoduddmyld accurate
prediction models of program performance using featura daliected from pro-
gram execution on sample inputs. Our two SPORE algoritheshle to build
relationships between responses (e.g., the executiorofimeomputer program)
and features, and select a few from hundreds of the retrita&ttires to con-
struct an explicitly sparse and non-linear model to preifietresponse variable.
The compact and explicitly polynomial form of the estimateddel could reveal
important insights into the computer program (e.g., fesgwand their non-linear
combinations that dominate the execution time), enablibgtéer understanding
of the program’s behavior. Our evaluation on three widelgdusomputer pro-
grams shows that SPORE methods can give accurate predidtiorelative error
less tharv% by using a moderate number of training data samples. Iniadgite
compare SPORE algorithms to state-of-the-art sparsesgigrealgorithms, and
show that SPORE methods, motivated by real applicationtpesiorm the other
methods in terms of both interpretability and predictioowacy.

1 Introduction

Computing systems today are ubiquitous, and range fromehg amall (e.g., iPods, cellphones,
laptops) to the very large (servers, data centers, conipnggrids). At the heart of such systems
are management components that decide how to scheduledbetiex of different programs over

time (e.g., to ensure high system utilization or efficiergrgly use [11, 15]), how to allocate to each
program resources such as memory, storage and network@gt¢eensure a long battery life or fair

resource allocation), and how to weather anomalies (eagh firowds or attacks [6, 17, 24]).

These management components typically must make guessestaiw a program will perform
under given hypothetical inputs, so as to decide how bestao for the future. For example,
consider a simple scenario in a data center with two comgyfeest computed and slow computer
B, and a program waiting to run on a large fjlestored in computeB. A scheduler is often faced

with the decision of whether to run the programiat potentially taking longer to execute, but
avoiding any transmission costs for the file; or moving theffibm B to A but potentially executing
the program atd much faster. If the scheduler can predict accurately hog tbe program would
take to execute on input at computerd or B, he/she can make an optimal decision, returning
results faster, possibly minimizing energy use, etc.

Despite all these opportunities and demands, uses of picditave been at best unsophisticated
in modern computer systems. Existing approaches eithatecemalytical models for the programs
based on simplistic assumptions [12], or treat the progmentdack box and create a mapping func-
tion between certain properties of input data (e.g., file)sand output response [13]. The success
of such methods is highly dependent on human experts whdugdaselect important predictors
before a statistical modeling step can take place. Unfaitly in practice experts may be hard to
come by, because programs can get complex quickly beyonchihebilities of a single expert, or
because they may be short-lived (e.g., applications fr@Rhone app store) and unworthy of the
attention of a highly paid expert. Even when an expert islalobd, program performance is often
dependent not on externally visible features such as cord#ia@ parameters and input files, but
on the internal semantics of the program (e.g., what lineodé are executed).

To address this problem (lack of expert and inherent secgntive recently developed a new sys-
tem [7] to automatically extract a large number of featuremfthe intermediate execution steps of
a program (e.g., internal variables, loops, and branchespmple inputs; then prediction models
can be built from those featuresthoutthe need for a human expert.

In this paper, we propose twgparsePOlynomial REgression (SPORE) algorithms that use the
automatically extracted features to predict a computegnamm’s performance. They are variants of
each other in the way they build the nonlinear terms into tloeleh—SPORE-LASS@rst selects

a small number of features and then entertains a full noatipelynomial expansion of order less
than a given degree; whilBPORE-FoBahooses adaptively a subset of the full expanded terms
and hence allows possibly a higher order of polynomials. &@gorithms are in fact new general
methods motivated by the computer performance predictioblem. They can learn a relationship
between aresponse (e.g., the execution time of a compuatgrgon given an input) and the generated
features, and select a few from hundreds of features to ronisin explicit polynomial form to
predict the response. The compact and explicit polynomiathfreveals important insights in the
program semantics (e.g., the internal program loop thatedfprogram execution time the most).
Our approach is general, flexible and automated, and cart #umprediction models to specific
programs, computer platforms, and even inputs.

We evaluate our algorithms experimentally on three popedanputer programs from web search
and image processing. We show that our SPORE algorithmsataeve accurate predictions with
relative error less thaf’% by using a small amount of training data for our applicatamd that our
algorithms outperform existing state-of-the-art spaeggeassion algorithms in the literature in terms
of interpretability and accuracy.

Related Work. In prior attempts to predict program execution time, Guptd.¢13] use a variant of
decision trees to predict execution time ranges for datatpasries. Ganapathi et al. [11] use KCCA
to predict time and resource consumption for database @piaging statistics on query texts and
execution plans. To measure the empirical computatiomalpbexity of a program, Trendprof [12]
constructs linear or power-law models that predict progeaetution counts. The drawbacks of such
approaches include their need for expert knowledge abeuirtigram to identify good features, or
their requirement for simple input-size to execution tinoerelations.

Seshia and Rakhlin [22, 23] propose a game-theoretic astimnhquantitative program properties,
such as worst-case execution time, for embedded systeneseTimoperties depend heavily on the
target hardware environmentin which the program is execiodeling the environment manually
is tedious and error-prone. As a result, they formulate tbblpm as a game between their algorithm
(player) and the program’s environment (adversary), wtier@layer seeks to accurately predict the
property of interest while the adversary sets environmtatés and parameters.

Since expert resource is limited and costly, it is desirabutomatically extract features from pro-
gram codes. Then machine learning techniques can be usetetd the most important features
to build a model. In statistical machine learning, featwekestion methods under linear regres-
sion models such as LASSO have been widely studied in thedeastde. Feature selection with

non-linear models has been studied much less, but has kebeeh attracting attention. The most
notable are the SpAM work with theoretical and simulatiosutts [20] and additive and general-
ized forward regression [18]. Empirical studies with datah@se non-linear sparse methods are
very few [21]. The drawback of applying the SpAM method in execution time prediction prob-
lem is that SpAM outputs an additive model and cannot userttegaction information between
features. But it is well-known that features of computergpamns interact to determine the execu-
tion time [12]. One non-parametric modification of SpAM tplace the additive model has been
proposed [18]. However, the resulting non-parametric neoae not easy to interpret and hence are
not desirable for our execution time prediction problenstéad, we propose the SPORE method-
ology and propose efficient algorithms to train a SPORE mo@elr work provides a promising
example of interpretable non-linear sparse regressioreta@u solving real data problems.

2 Overview of Our System

Our focus in this paper is on algorithms for feature selecéind model building. However we first
review the problem within which we apply these techniquegrtivide context [7]. Our goal is to
predict how a given program will perform (e.g., its execntime) on a particular input (e.g., input
files and command-line parameters). The system consistaiogfeps.

First, thefeature instrumentatiostep analyzes the source code and automatically instrgnitent
to extract values of program features sucHagp counts(how many times a particular loop has
executed)branch countghow many times each branch of a conditional has executed)axiable
values(the % first values assigned to a numerical variable, for some sbralch as).

Second, therofiling step executes the instrumented program with sample inpaitalaollect values
for all created program features and the program’s exettitioes. The time impact of the data
collection is minimal.

Third, theslicing step analyzes each automatically identified feature taohéne the smallest subset
of the actual program that can compute the value of that feate., thefeature slice This is the
cost of obtaining the value of the feature; if the whole pesgmust execute to compute the value,
then the feature isxpensivand not useful, since we can just measure execution time arfthwe

no need for prediction, whereas if only a little of the pragnaust execute, the feature is cheap and
therefore possibly valuable in a predictive model.

Finally, themodelingstep uses the feature values collected during profilingcaleith the feature
costs computed during slicing to build a predictive modebmsmall subset of generated features.
To obtain a model consisting of low-cost features, we iemter the modeling and slicing steps,
evaluating the cost of selected features and rejectingesieeones, until only low-cost features are
selected to construct the prediction model. At runtimeegia new input, the selected features are
computed using the corresponding slices, and the modeks taspredict execution time from the
feature values.

The above description is minimal by necessity due to spapstnts, and omits details on the
rationale, such as why we chose the kinds of features we ahtokew program slicing works.
Though important, those details have no bearing in the tseshbwn in this paper.

At present our system targets a fixed, overprovisioned cdatipn environment without CPU job
contention or network bandwidth fluctuations. We therefmssume that execution times observed
during training will be consistent with system behaviorlore. Our approach can adapt to modest
change in execution environment by retraining on diffeeamtironments. In our future research, we
plan to incorporate candidate features of both hardwage, @nfigurations of CPU, memory, etc)
and software environment (e.g., OS, cache policy, etc)fediptive model construction.

3 Sparse Polynomial Regression Model

Our basic premise for predictive program analysis is trsmallbutrelevantset of features may ex-
plain the execution time well. In other words, we seek a caxhpedel—an explicit form function
of a small number of features—that accurately estimatesstbeution time of the program.

To make the problem tractable, we constrain our models tothlévariate polynomial family, for at
least three reasons. First, a “good program” is usually eggkto have polynomial executiontime in
some (combination of) features. Second, a polynomial mopéb certain degree can approximate
well many nonlinear models (due to Taylor expansion). Bnal compact polynomial model can
provide an easy-to-understand explanation of what detersnihe execution time of a program,
providing program developers with intuitive feedback arsbbd basis for analysis.

For each computer program, our feature instrumentatiooguhare outputs a data set wittsamples

as tuples ofy;, x;}7_,, wherey; € R denotes the'” observation of execution time, amg denotes

the i*" observation of the vector gffeatures. We now review some obvious alternative methods to
modeling the relationship betweé&h = [y;] and X = [x;], point out their drawbacks, and then we
proceed to our SPORE methodology.

3.1 SparseRegression and Alternatives

Least square regression is widely used for finding the beistefif (x, 3) to a given set of responses
y; by minimizing the sum of the squares of the residuals [14]grBssion with subset selection
finds for eachk € {1,2,...,m} the feature subset of sizethat gives the smallest residual sum of
squares. However, it is a combinatorial optimization ankinewn to be NP-hard [14]. In recent
years a number of efficient alternatives based on modelaegation have been proposed. Among
them, LASSO [25] finds the selected features with coeffisighgiven a tuning parametex as
follows:

A 1
B =argminS|[Y = XG5+ A 18] (1)
J

LASSO effectively enforces many;’s to be 0, and selects a small subset of features (indexed by
non-zerog;’s) to build the model, which is usually sparse and has beitediction accuracy than
models created by ordinary least square regression [14ih whe large. Parametex controls the
complexity of the model: a& grows larger, fewer features are selected.

Being a convex optimization problem is an important advgataf the LASSO method since several
fast algorithms exist to solve the problem efficiently evathvarge-scale data sets [9, 10, 16, 19].
Furthermore, LASSO has convenient theoretical and engbipioperties. Under suitable assump-
tions, it can recover the true underlying model [8, 25]. Uhfoately, when predictors are highly
correlated, LASSO usually cannot select the true undeglymodel. The adaptive-LASSO [29]

defined below in Equation (2) can overcome this problem

1 B;
B =argmin S|V = XB[3+ A |~
J

|, %)

wj
wherew; can be any consistent estimateffHere we choose); to be a ridge estimate ¢f.
w; = (XTX +0.0017)7 ' XY,

wherel is the identity matrix.

Technically LASSO can be easily extended to create nonlimealels (e.g., using polynomial basis
functions up to degreé of all p features). However, this approach gives(ﬁ§d) terms, which is
very large whem is large (on the order of thousands) even for sriathaking regression computa-
tionally expensive. We give two alternatives to fit the sparslynomial regression model next.

3.2 SPORE Methodology and Two Algorithms

Our methodology captures non-linear effects of featureswell as non-linear interactions among
features—by using polynomial basis functions over thoatufes (we use terms to denote the poly-
nomial basis functions subsequently). We expand the feateitx = {21 x2... 21}, k < pto

all the terms in the expansion of the degrepelynomial(1 + =1 + ... + x;)%, and use the terms
to construct a multivariate polynomial functigifx,) for the regression. We defirepan(X, d)

as the mapping from the original data matfixto a new matrix with the polynomial expansion
terms up to degreé as the columns. For example, using a degrgmlynomial with feature set

x = {x1 22}, we expand outl + x; + 22)? to gettermsl, z1, z2, 27, z172, 23, and use them as
basis functions to construct the following function for reggsion:

expan ([xlva]v 2) = [1’ [1‘1], [‘rQ]v [‘r%]’ [xle]v [x%]],
[(x,8) = Bo+ Bixy + Poxa + ﬂ?ﬂ?% + Bawrw2 + ﬂ517§-

Complete expansion on gl features is not necessary, because many of them have bitlei-c
bution to the execution time. Motivated by this executiandiapplication, we propose a general
methodology called SPORE which is a sparse polynomial ssgwe technique. Next, we develop
two algorithms to fit our SPORE methodology.

321 SPORE-LASSO: A Two-Step Method

For a sparse polynomial model with only a few features, if \ma preselect a small number of
features, applying the LASSO on the polynomial expansiotho$e preselected features will still
be efficient, because we do not have too many polynomial tetteee is the idea:

Step 1: Use the linear LASSO algorithm to select a small number dfufes and filter out (often
many) features that hardly have contributions to the exectime.

Step 2: Use the adaptive-LASSO method on the expanded polynomimstef the selected features
(from Step 1) to construct the sparse polynomial model.

Adaptive-LASSO is used in Step 2 because of the collineafithe expanded polynomial features.
Step 2 can be computed efficiently if we only choose a smallbrrrof features in Step 1. We
present the resultingPORE-LASS@lgorithm in Algorithm 1 below.

Algorithm 1 SPORE-LASSO

Input: responsé’, feature dataX’, maximum degred AL, Ao

Output Feature |nde>S term indexS;, weightsg3 for d-degree polynomial basis.
a= argmma Y — Xall3 + Al

S={j:a

Xnew = expan(Xw), d)

w= (XL, Xpew+0.0010)71XT Y

new new

B = argming 4|V — X[+ 2o X, | 22|
Sy = {j : ﬁj S 0}

@ g AR

X (S) in Step 3 of Algorithm 1 is a sub-matrix of containing only columns fronX indexed by
S. For a new observation with feature vecfor= [z, z2, . . ., z,], we first get the selected feature
vectorX (5), then obtain the polynomial ternis,c., = expan(X(S) d), and finally we compute

the prediction: Y = Xpew X 6 Note that the prediction depends on the ch0|cé\gf/\2 and
maximum degred. In this paper, we fix = 3. A\; and\, are chosen by minimizing the Akaike

Information Criterion (AIC) on the LASSO solution paths.€TAIC is defined as log(||Y —Y[|3)+

2s, whereY is the fittedY” ands is the number of polynomial terms selected in the model. To be
precise, for the linear LASSO step (Step 1 of Algorithm 1),leole solution path with a number of
A1 can be obtained using the algorithm in [10]. On the solutiathpfor each fixed;, we compute

a solution path with varieds for Step 5 of Algorithm 1 to select the polynomial terms. Facle

A2, we calculate the AIC, and choose tf¥e, A2) with the smallest AIC.

One may wonder whether Step 1 incorrectly discards feateigsred for building a good model
in Step 2. We next show theoretically this is not the case. d.be a subset of1,2,...,p} and

its complementS© = {1,2,...,p} \ S. Write the feature matriXX asX = [X(5), X(S)]. Let
respons&” = f(X(S)) + ¢, wheref(-) is any function and is additive noise. Let. be the number

of observations anslthe size ofS. We assume that’ is deterministicp ands are fixed, ands are
i.i.d. and follow the Gaussian distribution with me@mnd variancer. Our results also hold for
zero mean sub-Gaussian noise with parameteMore general results regarding general scaling of
n,p ands can also be obtained.

Under the following conditions, we show that Step 1 of SPARESSO, the linear LASSO, selects
the relevant features even if the respoliséepends on predictors (S) nonlinearly:

1. The columnsX;,j =1,...,p) of X are standardizedj;XfXj =1, forall j;

2. Amin(2X(S)TX(S)) > ¢ with a constant > 0;

3. min [(X(S)TX(9))71X(9)T f(X(S))| > a with a constanty > 0;

XL I-Xs(XEXs) ' XT1f(Xs) nac .
4. 3s sn s <Nm,forsome()<n<1,

5. | X Xs(XEXs) Moo <1 —n;

whereA i (-) denotes the minimum eigenvalue of a matfid|| - is defined asnax; [Zj |Aij|}
and the inequalities are defined element-wise.

Theorem 3.1. Under the conditions above, with probability 1 asn — oo, there exists
some)\, such thats = (0s, se) is the unique solution of the LASSO (Equatidr)), where
B; # 0, forall j € Sandfs. = 0.

Remark. The first two conditions are trivial: Condition 1 can be oht&al by rescaling while Con-
dition 2 assumes that the design matrix composed of the tediqtors in the model is not singular.
Condition 3 is a reasonable condition which means that tieali projection of the expected re-
sponse to the space spanned by true predictors is not degeshe€Condition 4 is a little bit tricky;
it says that the irrelevant predictorX §.) are not very correlated with the “residuals”B{Y") after
its projection ontaXg. Condition 5 is always needed when considering LASSO’s heelection
consistency [26, 28]. The proof of the theorem is includeth@supplementary material.

3.2.2 Adaptive Forward-Backward: SPORE-FoBa

Usingall of the polynomial expansions of a feature subset is not flexin this section, we propose
the SPORE-FoBa algorithm, a more flexible algorithm usingpaigle forward-backward searching
over the polynomially expanded data: during search ktejth an active sef’*), we examine one
new featureX;, and consider a small candidate set which consists of théidate featureX;, its
higher order terms, and the (non-linear) interactions betwpreviously selected features (indexed
by S) and candidate featuc¥; with total degree up td, i.e., terms with form

X Mes X[, withdy > 0,d; > 0,andd; + Y _dy < d. (3)

Algorithm 2 below is a short description of the SPORE-FoBhicl uses linear FoBa [27] at step
5and 6. The main idea of SPORE-FoBa is that a term from theidatedset is added into the model
if and only if adding this term makes the residual sum of sgs#R.S.S) decrease a lot. We scan all
of the terms in the candidate set and choose the one whichsttad®.5.S drop most. If the drop in
the RSS is greater than a pre-specified valieve add that term to the active set, which contains the
currently selected terms by the SPORE-FoBa algorithm. Wieasidering deleting one term from
the active set, we choose the one that makes the sum of rksidcizase the least. If this increment
is small enough, we delete that term from our current acete s

Algorithm 2 SPORE-FoBa

Input: responsé’, feature columns(y, ..., X,, the maximum degre¢
Output: polynomial terms and the weights
1 LetT =0

2: whiletruedo
3 forj=1,...,pdo
Let C be the candidate set that contains non-linear and interatetims from Equation (3)
Use Linear FoBa to select terms frarhto form the new active séf.
Use Linear FoBa to delete terms frdfito form a new active séf.
if no terms can be added or deletbdn
break

o NoaOA

—A-SPORE-LASSO| —A-SPORE-LASSO| ’ —A-SPORE-LASSO|
SPORE-FoBa SPORE-FoBa SPORE-FoBa

0.15 0.15 0.15

0.1

0.1 0.1

Prediction Error
Prediction Error
Prediction Error

0.05 e —— 1 0.05 —a 0.05

0.1 0.2 0.3 0.4 05 0.1 0.2 0.3 0.4 05 0.1 0.2 0.3 0.4 05
Percentage of Training data Percentage of Training data Percentage of Training data

(a) Lucene (b) Find Maxima (c) Segmentation

Figure 1: Prediction errors of our algorithms across thedlttata sets varying training-set fractions.

4 Evaluation Results

We now experimentally demonstrate that our algorithms aaetjzal, give highly accurate predic-
tors for real problems with small training-set sizes, comgavorably in accuracy to other state-of-
the-art sparse-regression algorithms, and produce netatge, intuitive models.

To evaluate our algorithms, we use as case studies threeapnegthe Lucene Search Engine [4],
and two image processing algorithms, one for finding maxinmé @ne for segmenting an image
(both of which are implemented within the ImageJ image pssicey framework [3]). We chose
all three programs according to two criteria. First and niogtortantly, we sought programs with
high variability in the predicted measure (execution tinespecially in the face of otherwise similar
inputs (e.g., image files of roughly the same size forimagegssing). Second, we sought programs
that implement reasonably complex functionality, for whan inexperienced observer would not
be able to trivially identify the important features.

Our collected datasets are as follows. For Lucene, we usettiety of text input queries from
two corpora: the works of Shakespeare and the King James.Bibk collected a data set with
n = 3840 samples, each of which consists of an execution time andbdfyt = 126 automatically
generated features. The time values are in rang®.88, 1.13) with standard deviation 0.19. For
the Find Maxima program within the ImageJ framework, weexikdn = 3045 samples (from an
equal number of distinct, diverse images obtained fromethigion corpora [1, 2, 5]), and a total of
p = 182 features. The execution time values are in rang@df9, 2.99) with standard deviation
0.24. Finally, from the Segmentation program within the sdamageJ framework on the same image
set, we collected again = 3045 samples, and a total pf= 816 features for each. The time values
are in range 0f0.21, 58.05) with standard deviation 3.05. In all the experiments, we égrée

d = 3 for polynomial expansion, and normalized each column difeedata into rangf, 1].

Prediction Error. We first show that our algorithms predict accurately, evermwtraining on a
small number of samples, in both absolute and relative teilthe accuracy measure we use is the

relative prediction error defined a% > yl Yi| wheren, is the size of the test data set, ajt
andy;’s are the predicted and actual responses of test datacteshe

We randomly split every data set into a training set and asetsfor a given training-set fraction,
train the algorithms and measure their prediction errorhentést data. For each training fraction,
we repeat the “splitting, training and testing” procedudgtilnes and show the mean and standard
deviation of prediction error in Figure 1. We see that oupnatms have high prediction accuracy,
even when training on only0% or less of the data (roughly 300 - 400 samples). Specifically,
both of our algorithms can achieve less tiah prediction error on both Lucene and Find Maxima
datasets; on the segmentation dataset, SPORE-FoBa axlesgetharg% prediction error, and
SPORE-LASSO achieves aroun@’; prediction error on average.

Comparisonsto State-of-the-Art. We compare our algorithms to several existing sparse rsigres
methods by examining their prediction errors at diffesgarsitylevels (the number of features used
in the model), and show our algorithms can clearly outpenfbASSO, FoBa and recently proposed
non-parametric greedy methods [18] (Figure 2). As a nomypatric greedy algorithm, we use Ad-
ditive Forward Regression (AFR), because it is faster atehadchieves better prediction accuracy
than Generalized Forward Regression (GFR) algorithms. $¥ethe Gimnet Matlab implementa-

tion of LASSO and to obtain the LASSO solution path [10]. ®ifoBa and SPORE-FoBa naturally
produce a path by adding or deleting features (or terms)eaerd the prediction error at each step.
When two steps have the same sparsity level, we report thiestnarediction error. To generate
the solution path for SPORE-LASSO, we first use Glmnet to gerea solution path for linear
LASSO; then at each sparsity leviel we perform full polynomial expansion witth = 3 on the
selectedk features, obtain a solution path on the expanded data, amukselthe model with the
smallest prediction error among all models computed frdradive feature sets of size From the
figure, we see that our SPORE algorithms have comparablerpeahce, and both of them clearly
achieve better prediction accuracy than LASSO, FoBa, arid. ANlone of the existing methods can
build models within 10% of relative prediction error. We ilbgk this is because execution time of a
computer program often depends on non-linear combinatibdgferent features, which is usually
not well-handled by either linear methods or the additive-parametric methods. Instead, both of
our algorithms can select 2-3 high-quality features anttlbmibdels with non-linear combinations
of them to predict execution time with high accuracy.

—-LASSO —-LASSO ——LASSO
x FoBa x FoBa x FoBa
05 ~-AFR 05 ~-AFR 05 ~-AFR
-©- SPORE-LASSO| -©- SPORE-LASSO| -©- SPORE-LASSO|
0.4] SPORE-FoBa 0.4] SPORE-FoBa 0.4] SPORE-FoBa

Prediction Error

o

Prediction Error
K o .
- w
Prediction Error
o

=3 =)
=, &

w a

s @

ol €

1S
N
o
~
1S
N
o
~

=)

4 5 3 4
Sparsity Sparsity Sparsity

(a) Lucene (b) Find Maxima (c) Segmentation

Figure 2: Performance of the algorithms: relative preditgrror versus sparsity level.

Model Interpretability. To gain better understanding, we investigate the detailkemodel con-
structed by SPORE-FoBa for Find Maxima. Our conclusionssandlar for the other case studies,
but we omit them due to space. We see that with differentitrgiget fractions and with different
sparsity configurations, SPORE-FoBa can always select igfeduality features from hundreds of
automatically generated ones. By consulting with expditis@Find Maxima program, we find that
the two selected features correspond to the widthand height §) of the region of interest in the
image, which may in practice differ from the actual imagetidnd height. Those are indeed the
most important factors for determining the execution tini¢he particular algorithm used. For a
10% training set fraction and= 0.01, SPORE-FoBa obtained

f(w,h) = 0.1+ 0.22w + 0.23h + 1.93wh + 0.24wh?

which uses non-linear feature terms(ewgh, wh?) to predict the execution time accurately (around
5.5% prediction error). Especially when Find Maxima is uasch component of a more complex
image processing pipeline, this model would not be the miogioais choice even an expert would
pick. On the contrary, as observed in our experiments, eeitie linear nor the additive sparse
methods handle well such nonlinear terms, and result imiorferediction performance. A more
detailed comparison across different methods is the stibjewr on-going work.

5 Conclusion

In this paper, we proposed the SPORE (Sparse POlynomiald2Eign) methodology to build the
relationship between execution time of computer prograntsfaatures of the programs. We in-
troduced two algorithms to learn a SPORE model, and showeedbibth algorithms can predict
execution time with more than 93% accuracy for the applicetiwe tested. For the three test cases,
these results present a significant improvement (a 40% oe meatuction in prediction error) over
other sparse modeling techniques in the literature whehieapio this problem. Hence our work
provides one convincing example of using sparse non-linegression techniques to solve real
problems. Moreover, the SPORE methodology is a generaladetbgy that can be used to model
computer program performance metrics other than exectititemand solve problems from other
areas of science and engineering.

References

(1]

(2]
(3]
(4]
(5]

(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]

[21]

[22]
(23]
[24]

[25]
[26]

[27]
(28]

[29]

Caltech 101 Object Categories. htt p://ww.. vi si on. cal t ech. edu/ | mage_Dat aset s/
Cal t ech101/ Cal t ech101. ht m .

Event Datasethtt p: // vi sion. stanford. edu/lijiali/event_dataset/.
ImageJ.htt p: // rsbweb. ni h. gov/ij/.
Mahout. | ucene. apache. or g/ mahout .

Visual Object Classes Challenge 2008t p: / / pascal | i n. ecs. sot on. ac. uk/ chal | enges/
VOC/ voc2008/ .

S. Chen, K. Joshi, M. A. Hiltunen, W. H. Sanders, and R. Bhlhting. Link gradients: Predicting the
impact of network latency on multitier applications. IMNFOCOM, 2009.

B.-G. Chun, L. Huang, S. Lee, P. Maniatis, and M. Naik. MsnPredicting system performance through
program analysis and modelingechnical Report2010. arXiv:1010.0019v1 [cs.PF].

D. Donoho. For most large underdetermined systems oétiops, the minimall-norm solution is the
sparsest solutionCommunications on Pure and Applied Mathemat&%797829, 2006.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. $teangle regression.Annals of Statistics
32(2):407-499, 2002.

J. Friedman, T. Hastie, and R. Tibshirani. Regularmapaths for generalized linear models via coordi-
nate descentlournal of Statistical Softwar83(1), 2010.

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, Mrdan, and D. Patterson. Predicting multiple
metrics for queries: Better decisions enabled by machiaeieg. InICDE, 2009.

S. Goldsmith, A. Aiken, and D. Wilkerson. Measuring érigal computational complexity. |fSE
2007.

C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting quergcaition times for autonomous workload
management. IICAC, 2008.

T. Hastie, R. Tibshirani, and J. Friedmarhe Elements of Statistical Learnin§pringer, 2009.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talveaad A. Goldberg. Quincy: fair scheduling for
distributed computing clusters. Rroceedings of SOSP’'02009.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevskyn interior-point method for large-scale
I11-regularized least squareeEE Journal on Selected Topics in Signal Processii{d):606—617, 2007.

Z.Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-Ma¥g. WebProphet: Automating performance
prediction for web services. INSDJ, 2010.

H. Liu and X. Chen. Nonparametric greedy algorithm fug sparse learning problems.NiiPS 22 2009.

M. Osborne, B. Presnell, and B. Turlach. On the lasso itsdual. Journal of Computational and
Graphical Statistics9(2):319-337, 2000.

P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. 1Spaadditive models.Journal of the Royal
Statistical Society: Series B(Statistical Methodologyi)5):1009-1030, 2009.

P. Ravikumar, V. Vu, B. Yu, T. Naselaris, K. Kay, J. Gallaand C. Berkeley. Nonparametric sparse hier-
archical models describe v1 fmri responses to natural isidgb/ances in Neural Information Processing
Systems (NIPS21, 2008.

S. A. Seshia and A. Rakhlin. Game-theoretic timing gsial InProceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAR3ges 575-582. IEEE Press, Nov. 2008.

S. A. Seshia and A. Rakhlin. Quantitative analysis aftsgns using game-theoretic learningCM
Transactions on Embedded Computing Systems (TE20$). To appear.

M. Tarig, A. Zeitoun, V. Valancius, N. Feamster, and Mm#&ar. Answering what-if deployment and
configuration questions with wise. BRCM SIGCOMM 2008.

R. Tibshirani. Regression shrinkage and selectiortheédasso.J. Royal. Statist. Soc BL996.

M. Wainwright. Sharp thresholds for high-dimensioaald noisy sparsity recovery using I1-constrained
quadratic programming (LassdEEE Trans. Information Theorp5:2183-2202, 2009.

T. Zhang. Adaptive forward-backward greedy algoritfumsparse learning with linear modeidvances
in Neural Information Processing Syster@g, 2008.

P. Zhao and B. Yu. On model selection consistency of baBke Journal of Machine Learning Research
7:2563, 2006.

H. Zou. The adaptive lasso and its oracle propertigsurnal of the American Statistical Association
101(476):1418-1429, 2006.

