
Predicting Execution Time of Computer Programs
Using Sparse Polynomial Regression

Ling Huang
Intel Labs Berkeley

ling.huang@intel.com

Jinzhu Jia
UC Berkeley

jzjia@stat.berkeley.edu

Bin Yu
UC Berkeley

binyu@stat.berkeley.edu

Byung-Gon Chun
Intel Labs Berkeley

byung-gon.chun@intel.com

Petros Maniatis
Intel Labs Berkeley

petros.maniatis@intel.com

Mayur Naik
Intel Labs Berkeley

mayur.naik@intel.com

Abstract

Predicting the execution time of computer programs is an important but challeng-
ing problem in the community of computer systems. Existing methods require ex-
perts to perform detailed analysis of program code in order to construct predictors
or select important features. We recently developed a new system to automatically
extract a large number of features from program execution onsample inputs, on
which prediction models can be constructedwithout expert knowledge. In this
paper we study the construction of predictive models for this problem. We pro-
pose the SPORE (Sparse POlynomial REgression) methodologyto build accurate
prediction models of program performance using feature data collected from pro-
gram execution on sample inputs. Our two SPORE algorithms are able to build
relationships between responses (e.g., the execution timeof a computer program)
and features, and select a few from hundreds of the retrievedfeatures to con-
struct an explicitly sparse and non-linear model to predictthe response variable.
The compact and explicitly polynomial form of the estimatedmodel could reveal
important insights into the computer program (e.g., features and their non-linear
combinations that dominate the execution time), enabling abetter understanding
of the program’s behavior. Our evaluation on three widely used computer pro-
grams shows that SPORE methods can give accurate predictionwith relative error
less than7% by using a moderate number of training data samples. In addition, we
compare SPORE algorithms to state-of-the-art sparse regression algorithms, and
show that SPORE methods, motivated by real applications, outperform the other
methods in terms of both interpretability and prediction accuracy.

1 Introduction

Computing systems today are ubiquitous, and range from the very small (e.g., iPods, cellphones,
laptops) to the very large (servers, data centers, computational grids). At the heart of such systems
are management components that decide how to schedule the execution of different programs over
time (e.g., to ensure high system utilization or efficient energy use [11,15]), how to allocate to each
program resources such as memory, storage and networking (e.g., to ensure a long battery life or fair
resource allocation), and how to weather anomalies (e.g., flash crowds or attacks [6,17,24]).

These management components typically must make guesses about how a program will perform
under given hypothetical inputs, so as to decide how best to plan for the future. For example,
consider a simple scenario in a data center with two computers, fast computerA and slow computer
B, and a program waiting to run on a large filef stored in computerB. A scheduler is often faced

1

with the decision of whether to run the program atB, potentially taking longer to execute, but
avoiding any transmission costs for the file; or moving the file fromB to A but potentially executing
the program atA much faster. If the scheduler can predict accurately how long the program would
take to execute on inputf at computerA or B, he/she can make an optimal decision, returning
results faster, possibly minimizing energy use, etc.

Despite all these opportunities and demands, uses of prediction have been at best unsophisticated
in modern computer systems. Existing approaches either create analytical models for the programs
based on simplistic assumptions [12], or treat the program as a black box and create a mapping func-
tion between certain properties of input data (e.g., file size) and output response [13]. The success
of such methods is highly dependent on human experts who are able to select important predictors
before a statistical modeling step can take place. Unfortunately, in practice experts may be hard to
come by, because programs can get complex quickly beyond thecapabilities of a single expert, or
because they may be short-lived (e.g., applications from the iPhone app store) and unworthy of the
attention of a highly paid expert. Even when an expert is available, program performance is often
dependent not on externally visible features such as command-line parameters and input files, but
on the internal semantics of the program (e.g., what lines ofcode are executed).

To address this problem (lack of expert and inherent semantics), we recently developed a new sys-
tem [7] to automatically extract a large number of features from the intermediate execution steps of
a program (e.g., internal variables, loops, and branches) on sample inputs; then prediction models
can be built from those featureswithout the need for a human expert.

In this paper, we propose twoSparsePOlynomial REgression (SPORE) algorithms that use the
automatically extracted features to predict a computer program’s performance. They are variants of
each other in the way they build the nonlinear terms into the model –SPORE-LASSOfirst selects
a small number of features and then entertains a full nonlinear polynomial expansion of order less
than a given degree; whileSPORE-FoBachooses adaptively a subset of the full expanded terms
and hence allows possibly a higher order of polynomials. Ouralgorithms are in fact new general
methods motivated by the computer performance prediction problem. They can learn a relationship
between a response (e.g., the execution time of a computer program given an input) and the generated
features, and select a few from hundreds of features to construct an explicit polynomial form to
predict the response. The compact and explicit polynomial form reveals important insights in the
program semantics (e.g., the internal program loop that affects program execution time the most).
Our approach is general, flexible and automated, and can adapt the prediction models to specific
programs, computer platforms, and even inputs.

We evaluate our algorithms experimentally on three popularcomputer programs from web search
and image processing. We show that our SPORE algorithms can achieve accurate predictions with
relative error less than7% by using a small amount of training data for our application,and that our
algorithms outperform existing state-of-the-art sparse regression algorithms in the literature in terms
of interpretability and accuracy.

Related Work. In prior attempts to predict program execution time, Gupta et al. [13] use a variant of
decision trees to predict execution time ranges for database queries. Ganapathi et al. [11] use KCCA
to predict time and resource consumption for database queries using statistics on query texts and
execution plans. To measure the empirical computational complexity of a program, Trendprof [12]
constructs linear or power-law models that predict programexecution counts. The drawbacks of such
approaches include their need for expert knowledge about the program to identify good features, or
their requirement for simple input-size to execution time correlations.

Seshia and Rakhlin [22, 23] propose a game-theoretic estimator of quantitative program properties,
such as worst-case execution time, for embedded systems. These properties depend heavily on the
target hardware environment in which the program is executed. Modeling the environment manually
is tedious and error-prone. As a result, they formulate the problem as a game between their algorithm
(player) and the program’s environment (adversary), wherethe player seeks to accurately predict the
property of interest while the adversary sets environment states and parameters.

Since expert resource is limited and costly, it is desirableto automatically extract features from pro-
gram codes. Then machine learning techniques can be used to select the most important features
to build a model. In statistical machine learning, feature selection methods under linear regres-
sion models such as LASSO have been widely studied in the pastdecade. Feature selection with

2

non-linear models has been studied much less, but has recently been attracting attention. The most
notable are the SpAM work with theoretical and simulation results [20] and additive and general-
ized forward regression [18]. Empirical studies with data of these non-linear sparse methods are
very few [21]. The drawback of applying the SpAM method in ourexecution time prediction prob-
lem is that SpAM outputs an additive model and cannot use the interaction information between
features. But it is well-known that features of computer programs interact to determine the execu-
tion time [12]. One non-parametric modification of SpAM to replace the additive model has been
proposed [18]. However, the resulting non-parametric models are not easy to interpret and hence are
not desirable for our execution time prediction problem. Instead, we propose the SPORE method-
ology and propose efficient algorithms to train a SPORE model. Our work provides a promising
example of interpretable non-linear sparse regression models in solving real data problems.

2 Overview of Our System

Our focus in this paper is on algorithms for feature selection and model building. However we first
review the problem within which we apply these techniques toprovide context [7]. Our goal is to
predict how a given program will perform (e.g., its execution time) on a particular input (e.g., input
files and command-line parameters). The system consists of four steps.

First, thefeature instrumentationstep analyzes the source code and automatically instruments it
to extract values of program features such asloop counts(how many times a particular loop has
executed),branch counts(how many times each branch of a conditional has executed), andvariable
values(thek first values assigned to a numerical variable, for some smallk such as5).

Second, theprofilingstep executes the instrumented program with sample input data to collect values
for all created program features and the program’s execution times. The time impact of the data
collection is minimal.

Third, theslicingstep analyzes each automatically identified feature to determine the smallest subset
of the actual program that can compute the value of that feature, i.e., thefeature slice. This is the
cost of obtaining the value of the feature; if the whole program must execute to compute the value,
then the feature isexpensiveand not useful, since we can just measure execution time and we have
no need for prediction, whereas if only a little of the program must execute, the feature is cheap and
therefore possibly valuable in a predictive model.

Finally, themodelingstep uses the feature values collected during profiling along with the feature
costs computed during slicing to build a predictive model ona small subset of generated features.
To obtain a model consisting of low-cost features, we iterate over the modeling and slicing steps,
evaluating the cost of selected features and rejecting expensive ones, until only low-cost features are
selected to construct the prediction model. At runtime, given a new input, the selected features are
computed using the corresponding slices, and the model is used to predict execution time from the
feature values.

The above description is minimal by necessity due to space constraints, and omits details on the
rationale, such as why we chose the kinds of features we choseor how program slicing works.
Though important, those details have no bearing in the results shown in this paper.

At present our system targets a fixed, overprovisioned computation environment without CPU job
contention or network bandwidth fluctuations. We thereforeassume that execution times observed
during training will be consistent with system behavior on-line. Our approach can adapt to modest
change in execution environment by retraining on differentenvironments. In our future research, we
plan to incorporate candidate features of both hardware (e.g., configurations of CPU, memory, etc)
and software environment (e.g., OS, cache policy, etc) for predictive model construction.

3 Sparse Polynomial Regression Model

Our basic premise for predictive program analysis is that asmallbut relevantset of features may ex-
plain the execution time well. In other words, we seek a compact model—an explicit form function
of a small number of features—that accurately estimates theexecution time of the program.

3

To make the problem tractable, we constrain our models to themultivariate polynomial family, for at
least three reasons. First, a “good program” is usually expected to have polynomial execution time in
some (combination of) features. Second, a polynomial modelup to certain degree can approximate
well many nonlinear models (due to Taylor expansion). Finally, a compact polynomial model can
provide an easy-to-understand explanation of what determines the execution time of a program,
providing program developers with intuitive feedback and asolid basis for analysis.

For each computer program, our feature instrumentation procedure outputs a data set withn samples
as tuples of{yi,xi}n

i=1, whereyi ∈ R denotes theith observation of execution time, andxi denotes
theith observation of the vector ofp features. We now review some obvious alternative methods to
modeling the relationship betweenY = [yi] andX = [xi], point out their drawbacks, and then we
proceed to our SPORE methodology.

3.1 Sparse Regression and Alternatives

Least square regression is widely used for finding the best-fitting f(x, β) to a given set of responses
yi by minimizing the sum of the squares of the residuals [14]. Regression with subset selection
finds for eachk ∈ {1, 2, . . . , m} the feature subset of sizek that gives the smallest residual sum of
squares. However, it is a combinatorial optimization and isknown to be NP-hard [14]. In recent
years a number of efficient alternatives based on model regularization have been proposed. Among
them, LASSO [25] finds the selected features with coefficients β̂ given a tuning parameterλ as
follows:

β̂ = arg min
β

1

2
‖Y − Xβ‖2

2 + λ
∑

j

|βj |. (1)

LASSO effectively enforces manyβj ’s to be 0, and selects a small subset of features (indexed by
non-zeroβj ’s) to build the model, which is usually sparse and has betterprediction accuracy than
models created by ordinary least square regression [14] when p is large. Parameterλ controls the
complexity of the model: asλ grows larger, fewer features are selected.

Being a convex optimization problem is an important advantage of the LASSO method since several
fast algorithms exist to solve the problem efficiently even with large-scale data sets [9, 10, 16, 19].
Furthermore, LASSO has convenient theoretical and empirical properties. Under suitable assump-
tions, it can recover the true underlying model [8, 25]. Unfortunately, when predictors are highly
correlated, LASSO usually cannot select the true underlying model. The adaptive-LASSO [29]
defined below in Equation (2) can overcome this problem

β̂ = argmin
β

1

2
‖Y − Xβ‖2

2 + λ
∑

j

|
βj

wj

|, (2)

wherewj can be any consistent estimate ofβ. Here we choosewj to be a ridge estimate ofβ:

wj = (XT X + 0.001I)−1XT Y,

whereI is the identity matrix.

Technically LASSO can be easily extended to create nonlinear models (e.g., using polynomial basis
functions up to degreed of all p features). However, this approach gives us

(

p+d
d

)

terms, which is
very large whenp is large (on the order of thousands) even for smalld, making regression computa-
tionally expensive. We give two alternatives to fit the sparse polynomial regression model next.

3.2 SPORE Methodology and Two Algorithms

Our methodology captures non-linear effects of features—as well as non-linear interactions among
features—by using polynomial basis functions over those features (we use terms to denote the poly-
nomial basis functions subsequently). We expand the feature setx = {x1 x2 . . . xk}, k ≤ p to
all the terms in the expansion of the degree-d polynomial(1 + x1 + . . . + xk)d, and use the terms
to construct a multivariate polynomial functionf(x, β) for the regression. We defineexpan(X, d)
as the mapping from the original data matrixX to a new matrix with the polynomial expansion
terms up to degreed as the columns. For example, using a degree-2 polynomial with feature set

4

x = {x1 x2}, we expand out(1 + x1 + x2)
2 to get terms1, x1, x2, x2

1, x1x2, x2
2, and use them as

basis functions to construct the following function for regression:

expan ([x1, x2], 2) = [1, [x1], [x2], [x
2
1], [x1x2], [x

2
2]],

f(x, β) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x1x2 + β5x

2
2.

Complete expansion on allp features is not necessary, because many of them have little contri-
bution to the execution time. Motivated by this execution time application, we propose a general
methodology called SPORE which is a sparse polynomial regression technique. Next, we develop
two algorithms to fit our SPORE methodology.

3.2.1 SPORE-LASSO: A Two-Step Method

For a sparse polynomial model with only a few features, if we can preselect a small number of
features, applying the LASSO on the polynomial expansion ofthose preselected features will still
be efficient, because we do not have too many polynomial terms. Here is the idea:

Step 1: Use the linear LASSO algorithm to select a small number of features and filter out (often
many) features that hardly have contributions to the execution time.

Step 2: Use the adaptive-LASSO method on the expanded polynomial terms of the selected features
(from Step 1) to construct the sparse polynomial model.

Adaptive-LASSO is used in Step 2 because of the collinearityof the expanded polynomial features.
Step 2 can be computed efficiently if we only choose a small number of features in Step 1. We
present the resultingSPORE-LASSOalgorithm in Algorithm 1 below.

Algorithm 1 SPORE-LASSO
Input: responseY , feature dataX , maximum degreed, λ1, λ2

Output: Feature indexS, term indexSt , weightsβ̂ for d-degree polynomial basis.
1: α̂ = arg minα

1
2‖Y − Xα‖2

2 + λ1‖α‖1

2: S = {j : α̂j 6= 0}
3: Xnew = expan(X(S), d)
4: w = (XT

new
Xnew + 0.001I)−1XT

new
Y

5: β̂ = arg minβ
1
2‖Y − Xnewβ‖2

2 + λ2

∑

j |
βj

wj
|

6: St = {j : β̂j 6= 0}

X(S) in Step 3 of Algorithm 1 is a sub-matrix ofX containing only columns fromX indexed by
S. For a new observation with feature vectorX = [x1, x2, . . . , xp], we first get the selected feature
vectorX(S), then obtain the polynomial termsXnew = expan(X(S), d), and finally we compute
the prediction:Ŷ = Xnew × β̂. Note that the prediction depends on the choice ofλ1, λ2 and
maximum degreed. In this paper, we fixd = 3. λ1 andλ2 are chosen by minimizing the Akaike
Information Criterion (AIC) on the LASSO solution paths. The AIC is defined asn log(‖Y −Ŷ ‖2

2)+

2s, whereŶ is the fittedY ands is the number of polynomial terms selected in the model. To be
precise, for the linear LASSO step (Step 1 of Algorithm 1), a whole solution path with a number of
λ1 can be obtained using the algorithm in [10]. On the solution path, for each fixedλ1, we compute
a solution path with variedλ2 for Step 5 of Algorithm 1 to select the polynomial terms. For each
λ2, we calculate the AIC, and choose the(λ1, λ2) with the smallest AIC.

One may wonder whether Step 1 incorrectly discards featuresrequired for building a good model
in Step 2. We next show theoretically this is not the case. LetS be a subset of{1, 2, . . . , p} and
its complementSc = {1, 2, . . . , p} \ S. Write the feature matrixX asX = [X(S), X(Sc)]. Let
responseY = f(X(S))+ ǫ, wheref(·) is any function andǫ is additive noise. Letn be the number
of observations ands the size ofS. We assume thatX is deterministic,p ands are fixed, andǫ′is are
i.i.d. and follow the Gaussian distribution with mean0 and varianceσ2. Our results also hold for
zero mean sub-Gaussian noise with parameterσ2. More general results regarding general scaling of
n, p ands can also be obtained.

Under the following conditions, we show that Step 1 of SPORE-LASSO, the linear LASSO, selects
the relevant features even if the responseY depends on predictorsX(S) nonlinearly:

5

1. The columns (Xj, j = 1, . . . , p) of X are standardized:1
n
XT

j Xj = 1, for all j;

2. Λmin(
1
n
X(S)T X(S)) ≥ c with a constantc > 0;

3. min |(X(S)T X(S))−1X(S)T f(X(S))| > α with a constantα > 0;

4. XT
Sc [I−XS(XT

S XS)−1XT
S]f(XS)

n
< ηαc

2
√

s+1
, for some0 < η < 1;

5. ‖XT
ScXS(XT

S XS)−1‖∞ ≤ 1 − η;

whereΛmin(·) denotes the minimum eigenvalue of a matrix,‖A‖∞ is defined asmaxi

[

∑

j |Aij |
]

and the inequalities are defined element-wise.

Theorem 3.1. Under the conditions above, with probability→ 1 as n → ∞, there exists
someλ, such thatβ̂ = (β̂S , β̂Sc) is the unique solution of the LASSO (Equation(1)), where
β̂j 6= 0, for all j ∈ S andβ̂Sc = 0.

Remark. The first two conditions are trivial: Condition 1 can be obtained by rescaling while Con-
dition 2 assumes that the design matrix composed of the true predictors in the model is not singular.
Condition 3 is a reasonable condition which means that the linear projection of the expected re-
sponse to the space spanned by true predictors is not degenerated. Condition 4 is a little bit tricky;
it says that the irrelevant predictors (XSc) are not very correlated with the “residuals” ofE(Y) after
its projection ontoXS . Condition 5 is always needed when considering LASSO’s model selection
consistency [26,28]. The proof of the theorem is included inthe supplementary material.

3.2.2 Adaptive Forward-Backward: SPORE-FoBa

Usingall of the polynomial expansions of a feature subset is not flexible. In this section, we propose
the SPORE-FoBa algorithm, a more flexible algorithm using adaptive forward-backward searching
over the polynomially expanded data: during search stepk with an active setT (k), we examine one
new featureXj, and consider a small candidate set which consists of the candidate featureXj, its
higher order terms, and the (non-linear) interactions between previously selected features (indexed
by S) and candidate featureXj with total degree up tod, i.e., terms with form

Xd1

j Πl∈SXdl

l , with d1 > 0, dl ≥ 0, andd1 +
∑

dl ≤ d. (3)

Algorithm 2 below is a short description of the SPORE-FoBa, which uses linear FoBa [27] at step
5and 6. The main idea of SPORE-FoBa is that a term from the candidate set is added into the model
if and only if adding this term makes the residual sum of squares (RSS) decrease a lot. We scan all
of the terms in the candidate set and choose the one which makes theRSS drop most. If the drop in
theRSS is greater than a pre-specified valueǫ, we add that term to the active set, which contains the
currently selected terms by the SPORE-FoBa algorithm. Whenconsidering deleting one term from
the active set, we choose the one that makes the sum of residuals increase the least. If this increment
is small enough, we delete that term from our current active set.

Algorithm 2 SPORE-FoBa
Input: responseY , feature columnsX1, . . . , Xp, the maximum degreed
Output: polynomial terms and the weights
1: Let T = ∅
2: while truedo
3: for j = 1, . . . , p do
4: Let C be the candidate set that contains non-linear and interaction terms from Equation (3)
5: Use Linear FoBa to select terms fromC to form the new active setT .
6: Use Linear FoBa to delete terms fromT to form a new active setT .
7: if no terms can be added or deletedthen
8: break

6

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

P
re

di
ct

io
n

E
rr

or

Percentage of Training data

SPORE−LASSO
SPORE−FoBa

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

P
re

di
ct

io
n

E
rr

or

Percentage of Training data

SPORE−LASSO
SPORE−FoBa

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

P
re

di
ct

io
n

E
rr

or

Percentage of Training data

SPORE−LASSO
SPORE−FoBa

(a) Lucene (b) Find Maxima (c) Segmentation

Figure 1: Prediction errors of our algorithms across the three data sets varying training-set fractions.

4 Evaluation Results

We now experimentally demonstrate that our algorithms are practical, give highly accurate predic-
tors for real problems with small training-set sizes, compare favorably in accuracy to other state-of-
the-art sparse-regression algorithms, and produce interpretable, intuitive models.

To evaluate our algorithms, we use as case studies three programs: the Lucene Search Engine [4],
and two image processing algorithms, one for finding maxima and one for segmenting an image
(both of which are implemented within the ImageJ image processing framework [3]). We chose
all three programs according to two criteria. First and mostimportantly, we sought programs with
high variability in the predicted measure (execution time), especially in the face of otherwise similar
inputs (e.g., image files of roughly the same size for image processing). Second, we sought programs
that implement reasonably complex functionality, for which an inexperienced observer would not
be able to trivially identify the important features.

Our collected datasets are as follows. For Lucene, we used a variety of text input queries from
two corpora: the works of Shakespeare and the King James Bible. We collected a data set with
n = 3840 samples, each of which consists of an execution time and a total of p = 126 automatically
generated features. The time values are in range of(0.88, 1.13) with standard deviation 0.19. For
the Find Maxima program within the ImageJ framework, we collectedn = 3045 samples (from an
equal number of distinct, diverse images obtained from three vision corpora [1,2,5]), and a total of
p = 182 features. The execution time values are in range of(0.09, 2.99) with standard deviation
0.24. Finally, from the Segmentation program within the same ImageJ framework on the same image
set, we collected againn = 3045 samples, and a total ofp = 816 features for each. The time values
are in range of(0.21, 58.05) with standard deviation 3.05. In all the experiments, we fix degree
d = 3 for polynomial expansion, and normalized each column of feature data into range[0, 1].

Prediction Error. We first show that our algorithms predict accurately, even when training on a
small number of samples, in both absolute and relative terms. The accuracy measure we use is the
relative prediction error defined as1

nt

∑

| ŷi−yi

yi
|, wherent is the size of the test data set, andŷi’s

andyi’s are the predicted and actual responses of test data, respectively.

We randomly split every data set into a training set and a testset for a given training-set fraction,
train the algorithms and measure their prediction error on the test data. For each training fraction,
we repeat the “splitting, training and testing” procedure 10 times and show the mean and standard
deviation of prediction error in Figure 1. We see that our algorithms have high prediction accuracy,
even when training on only10% or less of the data (roughly 300 - 400 samples). Specifically,
both of our algorithms can achieve less than7% prediction error on both Lucene and Find Maxima
datasets; on the segmentation dataset, SPORE-FoBa achieves less than8% prediction error, and
SPORE-LASSO achieves around10% prediction error on average.

Comparisons to State-of-the-Art. We compare our algorithms to several existing sparse regression
methods by examining their prediction errors at differentsparsitylevels (the number of features used
in the model), and show our algorithms can clearly outperform LASSO, FoBa and recently proposed
non-parametric greedy methods [18] (Figure 2). As a non-parametric greedy algorithm, we use Ad-
ditive Forward Regression (AFR), because it is faster and often achieves better prediction accuracy
than Generalized Forward Regression (GFR) algorithms. We use the Glmnet Matlab implementa-

7

tion of LASSO and to obtain the LASSO solution path [10]. Since FoBa and SPORE-FoBa naturally
produce a path by adding or deleting features (or terms), we record the prediction error at each step.
When two steps have the same sparsity level, we report the smallest prediction error. To generate
the solution path for SPORE-LASSO, we first use Glmnet to generate a solution path for linear
LASSO; then at each sparsity levelk, we perform full polynomial expansion withd = 3 on the
selectedk features, obtain a solution path on the expanded data, and choose the model with the
smallest prediction error among all models computed from all active feature sets of sizek. From the
figure, we see that our SPORE algorithms have comparable performance, and both of them clearly
achieve better prediction accuracy than LASSO, FoBa, and AFR. None of the existing methods can
build models within 10% of relative prediction error. We believe this is because execution time of a
computer program often depends on non-linear combinationsof different features, which is usually
not well-handled by either linear methods or the additive non-parametric methods. Instead, both of
our algorithms can select 2-3 high-quality features and build models with non-linear combinations
of them to predict execution time with high accuracy.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

P
re

di
ct

io
n

E
rr

or

Sparsity

LASSO
FoBa
AFR
SPORE−LASSO
SPORE−FoBa

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

P
re

di
ct

io
n

E
rr

or

Sparsity

LASSO
FoBa
AFR
SPORE−LASSO
SPORE−FoBa

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

P
re

di
ct

io
n

E
rr

or

Sparsity

LASSO
FoBa
AFR
SPORE−LASSO
SPORE−FoBa

(a) Lucene (b) Find Maxima (c) Segmentation

Figure 2: Performance of the algorithms: relative prediction error versus sparsity level.

Model Interpretability. To gain better understanding, we investigate the details ofthe model con-
structed by SPORE-FoBa for Find Maxima. Our conclusions aresimilar for the other case studies,
but we omit them due to space. We see that with different training set fractions and with different
sparsity configurations, SPORE-FoBa can always select two high-quality features from hundreds of
automatically generated ones. By consulting with experts of the Find Maxima program, we find that
the two selected features correspond to the width (w) and height (h) of the region of interest in the
image, which may in practice differ from the actual image width and height. Those are indeed the
most important factors for determining the execution time of the particular algorithm used. For a
10% training set fraction andǫ = 0.01, SPORE-FoBa obtained

f(w, h) = 0.1 + 0.22w + 0.23h + 1.93wh + 0.24wh2

which uses non-linear feature terms(e.g.,wh, wh2) to predict the execution time accurately (around
5.5% prediction error). Especially when Find Maxima is usedas a component of a more complex
image processing pipeline, this model would not be the most obvious choice even an expert would
pick. On the contrary, as observed in our experiments, neither the linear nor the additive sparse
methods handle well such nonlinear terms, and result in inferior prediction performance. A more
detailed comparison across different methods is the subject of our on-going work.

5 Conclusion

In this paper, we proposed the SPORE (Sparse POlynomial REgression) methodology to build the
relationship between execution time of computer programs and features of the programs. We in-
troduced two algorithms to learn a SPORE model, and showed that both algorithms can predict
execution time with more than 93% accuracy for the applications we tested. For the three test cases,
these results present a significant improvement (a 40% or more reduction in prediction error) over
other sparse modeling techniques in the literature when applied to this problem. Hence our work
provides one convincing example of using sparse non-linearregression techniques to solve real
problems. Moreover, the SPORE methodology is a general methodology that can be used to model
computer program performance metrics other than executiontime and solve problems from other
areas of science and engineering.

8

References

[1] Caltech 101 Object Categories. http://www.vision.caltech.edu/Image_Datasets/
Caltech101/Caltech101.html.

[2] Event Dataset.http://vision.stanford.edu/lijiali/event_dataset/.

[3] ImageJ.http://rsbweb.nih.gov/ij/.

[4] Mahout. lucene.apache.org/mahout.

[5] Visual Object Classes Challenge 2008.http://pascallin.ecs.soton.ac.uk/challenges/
VOC/voc2008/.

[6] S. Chen, K. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D. Schlichting. Link gradients: Predicting the
impact of network latency on multitier applications. InINFOCOM, 2009.

[7] B.-G. Chun, L. Huang, S. Lee, P. Maniatis, and M. Naik. Mantis: Predicting system performance through
program analysis and modeling.Technical Report, 2010. arXiv:1010.0019v1 [cs.PF].

[8] D. Donoho. For most large underdetermined systems of equations, the minimal1-norm solution is the
sparsest solution.Communications on Pure and Applied Mathematics, 59:797829, 2006.

[9] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.Annals of Statistics,
32(2):407–499, 2002.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordi-
nate descent.Journal of Statistical Software, 33(1), 2010.

[11] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson. Predicting multiple
metrics for queries: Better decisions enabled by machine learning. InICDE, 2009.

[12] S. Goldsmith, A. Aiken, and D. Wilkerson. Measuring empirical computational complexity. InFSE,
2007.

[13] C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting query execution times for autonomous workload
management. InICAC, 2008.

[14] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer, 2009.

[15] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy: fair scheduling for
distributed computing clusters. InProceedings of SOSP’09, 2009.

[16] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.An interior-point method for large-scale
l1-regularized least squares.IEEE Journal on Selected Topics in Signal Processing, 1(4):606–617, 2007.

[17] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang. WebProphet: Automating performance
prediction for web services. InNSDI, 2010.

[18] H. Liu and X. Chen. Nonparametric greedy algorithm for the sparse learning problems. InNIPS 22, 2009.

[19] M. Osborne, B. Presnell, and B. Turlach. On the lasso andits dual. Journal of Computational and
Graphical Statistics, 9(2):319–337, 2000.

[20] P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models.Journal of the Royal
Statistical Society: Series B(Statistical Methodology), 71(5):1009–1030, 2009.

[21] P. Ravikumar, V. Vu, B. Yu, T. Naselaris, K. Kay, J. Gallant, and C. Berkeley. Nonparametric sparse hier-
archical models describe v1 fmri responses to natural images.Advances in Neural Information Processing
Systems (NIPS), 21, 2008.

[22] S. A. Seshia and A. Rakhlin. Game-theoretic timing analysis. InProceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 575–582. IEEE Press, Nov. 2008.

[23] S. A. Seshia and A. Rakhlin. Quantitative analysis of systems using game-theoretic learning.ACM
Transactions on Embedded Computing Systems (TECS), 2010. To appear.

[24] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar. Answering what-if deployment and
configuration questions with wise. InACM SIGCOMM, 2008.

[25] R. Tibshirani. Regression shrinkage and selection viathe lasso.J. Royal. Statist. Soc B., 1996.

[26] M. Wainwright. Sharp thresholds for high-dimensionaland noisy sparsity recovery using l1-constrained
quadratic programming (Lasso).IEEE Trans. Information Theory, 55:2183–2202, 2009.

[27] T. Zhang. Adaptive forward-backward greedy algorithmfor sparse learning with linear models.Advances
in Neural Information Processing Systems, 22, 2008.

[28] P. Zhao and B. Yu. On model selection consistency of Lasso. The Journal of Machine Learning Research,
7:2563, 2006.

[29] H. Zou. The adaptive lasso and its oracle properties.Journal of the American Statistical Association,
101(476):1418–1429, 2006.

9

