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Predicting expression patterns
from regulatory sequence in
Drosophila segmentation
Eran Segal1*, Tali Raveh-Sadka1*, Mark Schroeder2, Ulrich Unnerstall2 & Ulrike Gaul2

The establishment of complex expression patterns at precise times and locations is key to metazoan development, yet a
mechanistic understanding of the underlying transcription control networks is still missing. Here we describe a novel
thermodynamic model that computes expression patterns as a function of cis-regulatory sequence and of the binding-site
preferences and expression of participating transcription factors. We apply this model to the segmentation gene network of
Drosophila melanogaster and find that it predicts expression patterns of cis-regulatory modules with remarkable accuracy,
demonstrating that positional information is encoded in the regulatory sequence and input factor distribution. Our analysis
reveals that both strong and weaker binding sites contribute, leading to high occupancy of the module DNA, and conferring
robustness against mutation; short-range homotypic clustering of weaker sites facilitates cooperative binding, which is necessary
to sharpen the patterns. Our computational framework is generally applicable to most protein–DNA interaction systems.

Precise spatio-temporal control of gene expression lies at the heart of
metazoan development. The necessary instructions are encoded in cis-
regulatory elements, or modules, which typically contain multiple
binding sites for multiple transcription factors1. When bound, tran-
scription factors promote or inhibit expression of the neighbouring
gene, with the net expression outcome determined by how all factor
effects integrate. The binding of factors depends on their affinity to the
binding sites, but also on their expression levels; because these vary
spatially and temporally, the constellation of bound factors on the
module sequence and the resulting expression level will vary accord-
ingly. Thus, understanding the rules by which modules ‘compute’
expression from the input factor expression is key to understanding
transcriptional processes in general and pattern formation in particular.

Genetic, molecular and biochemical studies, more recently comple-
mented by ChIP-chip2 and by computational approaches exploiting site
clustering3–5, conservation6 or co-regulation detected by DNA micro-
arrays7, have collectively identified many of the genes, modules and
binding sites involved in key developmental processes. To unravel the
logic by which these components interact, various types of logical8,
probabilistic7,9, thermodynamic10–12, and reaction–diffusion models13–15

have been constructed, providing interesting insights. However, these
methods do not explicitly model transcription factor binding to regu-
latory sequence, or do so on a limited scale10,12,16. Thus, a quantitative
mechanistic description of the transcriptional control events that lie at
the core of developmental pattern formation is still missing.

Here we present a new computational framework that models the
entire process of transcriptional regulation, from the expression of
the input factors to their binding to cis-regulatory sequence and the
module expression patterns resulting from these binding events. The
model is based on physical properties and takes into account binding
competition between factors, cooperative binding interactions, and
contributions from weak binding sites. We apply our framework
to the well-characterized segmentation gene network of the early

Drosophila embryo, which consists of a four-tiered hierarchy of
maternal and zygotic factors that define the antero-posterior body
axis in a stepwise refinement of expression patterns17–20. The maternal
factors form gradients spanning the entire antero-posterior axis; they
are translated into broad, non-periodic domains of zygotic gap gene
expression and subsequently into periodic patterns of seven ‘pair
rule’ and finally fourteen segmental stripes that prefigure the four-
teen segments of the larva. Regulation within this network is highly
combinatorial and, in the top tiers, almost entirely transcriptional.

Thermodynamic model of transcription control

Our model takes as input expression levels and DNA-binding specifi-
cities for a set of transcription factors, and predicts the expression level
that any arbitrary DNA sequence will give rise to when receiving input
from these factors (Fig. 1). The model has two main components: one
that computes the occupancy distribution of factors on a given target
DNA sequence, and another that translates this occupancy distribution
into a level of expression. To account for differing input factor concen-
trations, these computations are performed separately for every position
along the spatio-temporal axis of interest, here the antero-posterior axis.

In the first model component, we consider all possible configura-
tions of factor molecules on the sequence; by not allowing overlap
between two molecules in any one configuration, we model the com-
petition between factors that results from their steric hindrance
constraints (Fig. 1, and Supplementary Fig. 1). The probability of
a configuration is computed from the local concentration of the
participating factors and the strength of the binding sites they occupy
in the configuration, as measured by the position specific scoring
matrix (PSSM) score21. We do not use predetermined thresholds
for defining factor-binding sites, allowing both weak and strong fac-
tor binding to contribute, and we model self-cooperativity between
two factor molecules bound to neighbouring sites, assuming that this
effect decays with the distance between the sites. The second model
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component translates each configuration into its resulting expression
level. We assume that each bound factor molecule contributes inde-
pendently to the expression outcome, with activator molecules con-
tributing positively and repressor molecules contributing negatively.
We use the logistic function to translate these contributions into
expression because it has the desired saturation properties whereby
maximal or minimal transcription is achieved beyond a certain num-
ber of bound activator and repressor molecules, respectively. The
final expression outcome of a sequence is then the sum of the expres-
sion contributions of each configuration, weighted by their probabi-
lity (see Supplementary Information).

The model has three free parameters for each transcription factor,
representing values that are typically unknown: (1) the absolute con-
centration of the factor in vivo; (2) the transcription rate resulting
from its interactions with the basal machinery; and (3) the strength of
binding cooperativity for the factor. In addition, we parameterize the
PSSMs representing the factors’ binding preferences because they are
typically based on a limited number of footprinted binding sites, but
we constrain PSSM learning to maintain the measured consensus
(see Methods). We devised a learning algorithm that fits the model
parameters to minimize the error between the measured and model-
predicted expression for a set of input modules. This model-fitting
task is complex because it requires traversing the uncomputably
large number of possible factor configurations on the sequence,
and calculating the expression contribution of each such configura-
tion. To approximate this computation, we devised a sampling-based
algorithm, guaranteed to converge to the correct computation as the
number of samples increases.

Modelling pattern formation in segmentation

To apply our model to the segmentation network, we used as input
the spatial expression patterns22 for eight key transcription factors,
that is, Bicoid (BCD), Hunchback (HB), Caudal (CAD), Kruppel
(KR), Giant (GT), Torso-response element (TorRE), Knirps (KNI),
Tailless (TLL), and their binding-site preferences5,23. We asked the
model to predict the spatial expression of 44 gap and pair-rule gene
modules with known patterns, collated from literature and from our
own work5. We modelled the input–output relationship for one
developmental time point, using a time at which both the input factor

patterns and the output module expression patterns are mature
(mid-blastoderm; approximately 20 min into cell cycle 14).

The expression patterns predicted by a model trained on these data
exhibit good or fair agreement with the measured patterns for most
modules (Fig. 2a). The parameters behave in a biologically plausible
fashion: fitted values typically differ by less than an order of mag-
nitude between the different factors, and the trained PSSMs show
only small changes from their original settings (Fig. 3a, and
Supplementary Fig. 2). The expression of gap gene modules is gene-
rally predicted very well, suggesting that our model has adequately
captured their input and rules. In contrast, prediction of pair-rule
gene modules is more mixed, with failures resulting from missing
activation (modules receiving little maternal activator input), or
occasionally from ectopic expression that is due to missing repres-
sion, mostly in the head region of the embryo (Supplementary Fig. 3).
Because our model includes only self-cooperative interaction, we also
fail to predict the module generating even-skipped (eve) stripe 2
(eve_2), which is known to require positive synergy between BCD
and HB24. Overall, the failures of our model are as instructive as its
successes—they suggest that some input factors and some higher
interaction rules are not captured, but also that the model does not
artificially compensate for these missing features.

Model validation

A critical test for our model is whether it can predict the expression
patterns of modules that were not used as input when fitting the
parameters. We used two such sets of held-out modules: 11 recently
published anterior modules4, and 15 segmentation modules from
the related species D. pseudoobscura, which we identified and tested
in a separate study (S. Sinha et al., manuscript in preparation). The
expression of D. pseudoobscura modules was measured using trans-
genic reporter constructs in D. melanogaster, such that all observed
effects were attributable to module sequence. While producing only
mild to moderate changes in expression, the D. pseudoobscura
modules show substantial sequence turnover compared to their
D. melanogaster orthologues (average sequence identity 49%; Sup-
plementary Fig. 4) and thus represent a profound cis perturbation.
For both test sets, our model, using the parameters trained on the
original 44 modules, predicts expression with mostly good or fair
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Figure 1 | Overview of the thermodynamic
model and approach. Flow diagram showing
input, output and the main steps of the
computational framework, for a simplified
version of the eve_4_6 module with three
transcription factor inputs. The computation is
shown for one particular position along the
antero-posterior (AP) axis, measured as
percentage of egg length (%EL). At each antero-
posterior position, the factor concentrations (top
panels) define a binding energy landscape for all
factors across the module sequence, which is then
translated into a factor occupancy distribution
(middle panel). Each factor configuration, c,
results in a particular expression level, E,
represented as a fraction of the maximal
achievable transcription rate and calculated from
the number of transcription factors bound in the
configuration and the factor-specific expression
contribution parameters wtf , using the logistic
function. The overall resulting expression
outcome at each position (bottom panel) is then
computed as the sum of the expression
contribution of each configuration, weighted by
their probability P(c). For a detailed description
see main text and Supplementary Information.
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accuracy; the success rate is similar to that obtained with the training
data (Fig. 2b, c). Notably, with few exceptions, modules that are
predicted well in D. melanogaster are also predicted well in D. pseu-
doobscura, highlighting the model’s intrinsic consistency.

As a further test, we conducted a standard tenfold cross validation
assay, using an automated objective performance measure that scores
the expression predictions at each antero-posterior position as ‘on’
or ‘off’, depending on whether they are above a certain threshold,
and iterates over all possible thresholds. The resulting sensitivity/
specificity plots reveal that our model performs much better than
random expectation or models using various types of randomized
weight matrices; similar results are obtained when applying this auto-
mated performance assessment to the above two sets of held-out
modules (Supplementary Fig. 5). Taken together, our validation tests
provide strong evidence that the successful predictions are not the
result of overfitting the input data, and thus suggest that our model
indeed captures core principles governing pattern formation in the
segmentation network.

Weak sites and cooperativity

Our model predicts a high occupancy of factors on the modules: on
average, 14–27% of the module DNA is occupied by factor molecules,
with some variation along the antero-posterior axis (Fig. 4a).
Translated into binding events, this suggests an average of 10–60
bound molecules per module at each antero-posterior position,
depending on module length. This high occupancy is consistent with
the results of footprinting experiments and genome-wide chromatin
immunoprecipitation of segmentation and other factors25–27. Much
of the occupancy is attributable to factor binding to moderate or
weak binding sites. Although modules are enriched in stronger sites,
such sites collectively account for only about half of the total factor
occupancy; the other half comes from weaker sites that occur no
more frequently than is expected by chance and whose PSSM scores
place them at the low end of the range defined by footprinted sites
(Fig. 3b). Interestingly, models that exclude weaker binding sites have

lower predictive power (Supplementary Fig. 5b), demonstrating their
importance for pattern formation. The use of many contributing sites
may help to reduce gene expression noise by increasing the frequency
of activation steps28, and confer robustness to the module expression
pattern against point mutations and small deletions: by in silico
mutational analysis, we find that point and small deletion mutations
are tolerated in 8 to 15% of total module length, with little effect on
the resulting expression patterns (Supplementary Fig. 6).

Low affinity binding sites will frequently occur by chance within the
length of a typical module, but specificity may be increased by cluster-
ing. Indeed, we find that 5 of the 8 transcription factors participating in
the system show significant short-range homotypic clustering of bind-
ing sites within the modules, typically within 200 bp (Fig. 3c); the only
exceptions are factors for which the available binding site information
is either relatively unspecific or very sparse (see Methods). We observe
no systematic heterotypic clustering between binding sites of different
factors. An important feature of homotypic site clustering is that it
facilitates cooperative binding, which plays an important role in tran-
scriptional switches29 and leads to a sharpening of expression patterns
in BCD-dependent modules30,31. Notably, when cooperativity effects
are disregarded, our model predicts expression patterns with a very
gradual decay along the antero-posterior axis, in contrast to the sharp
boundaries of the measured expression profiles and indeed to the
much sharper patterns predicted by the full model (Fig. 4b, and
Supplementary Figs 7, 8); this suggests the pervasive use of coopera-
tivity in segmentation. We do not know how cooperativity is achieved
mechanistically—by homotypic protein–protein interactions, tran-
scriptional synergy, or perhaps competition with nucleosomes32,33—
but the similar narrow range within which the clustering occurs for
most factors suggests a general common mechanism.

Design principles of segmentation

Earlier work on individual modules34–37 had shown that their expres-
sion patterns are generated by combinatorial action of input factors,
with maternal factors acting as activators and gap factors mostly as
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Figure 2 | Predicted expression patterns and
model validation. a–c, Comparison between
measured module expression patterns (red) and
those predicted by the model (blue) for all 44
modules used to fit the parameters (a), as well as
for modules not used for parameter fitting
(b, c): b, 11 recently identified anterior modules4

(note that gt_23, gt_1, prd_1 and D_body
represent shorter delineations of our modules
gt_210, gt_26, prd_14 and D_14,
respectively); c, Fifteen modules from
D. pseudoobscura (S. Sinha et al., manuscript in
preparation). Sequence identity as determined by
pairwise sequence alignment is indicated in
parentheses; the orthologous D. melanogaster
modules are marked by grey triangles in
a. Modules were subjectively classified into three
categories (good, fair, poor) on the basis of the
quality of the match between measured and
predicted pattern and the amount of spurious
expression.
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repressors. The results of our modelling support these general
notions, but argue against other previously suggested design princi-
ples. Our model classifies the maternal factors BCD, CAD and TorRE
as activators, and the zygotic gap factors (HB, GT, KR, KNI, TLL) as
repressors (Fig. 3a), suggesting that context-dependent function,
which had been proposed for some gap factors24,35,38–40, is not neces-
sary to account for most expression patterns. The maternal activators
show higher total occupancy in modules that are expressed and lower
occupancy in modules that are not expressed in the same region as
they are, indicating that their prevalent mode of action is indeed
activation; the zygotic factors show the converse behaviour
(Fig. 3d). Interestingly, both activators and repressors show signifi-
cant binding in ‘inappropriate’ modules, albeit at lower levels, sug-
gesting that module design is not entirely parsimonious.

When we examine how the expression patterns of individual mod-
ules are generated, we find that all modules are highly combinatorial
in design and generally contain one or two types of activating input
and multiple repressive inputs, with preference for co-extensive acti-
vator(s) and against co-extensive repressors: modules typically
receive activation from the activator most appropriate for their
region, with some choice in the middle (BCD/CAD) and at the ter-
mini (BCD/TorRE or CAD/TorRE) of the embryo; the choice of
activator(s) entails the choice of appropriate repressors. An illustra-
tive example for these design features is the differential factor occu-
pancy in the modules generating the two main expression domains of

the gap gene gt (Fig. 5, and Supplementary Figs 9, 10). Modules
generally disfavour but do not exclude sites for co-extensively
expressed repressors; sites for the cognate factor, however, are very
rare: of the 11 modules driving the expression of the primary gap gene
domains, only 3 have significant input by the factor itself (gt_26,
Kr_CD2, tll_K2) (Supplementary Fig. 10). This argues against a sig-
nificant role for direct auto-regulation of gap factors in the pattern-
ing, which had figured prominently in several theoretical models15,41.

Interestingly, we find no (positive) correlation between the
strength of BCD input and the posterior border of target module
expression (Fig. 4c). This finding suggests that the number/quality of
BCD-binding sites in the target modules is not the sole determinant
of position in the anterior portion of the embryo as envisaged by the
gradient–affinity model of BCD action42,43; rather, module expres-
sion boundaries seem to be determined as much by repressive gap
gene input as by attenuation of maternal activation4.

We find little overlap between the binding preferences of the dif-
ferent input factors, and as noted above, no heterotypic clustering.
This suggests that the different factors bind to the DNA largely inde-
pendently and that sequence-specific competition or occlusion,
which had been proposed as a mechanism of repressor action35,44,45,
does not play a major role. The one exception is the strong overlap
in binding preferences between HB and CAD (Fig. 4d, and
Supplementary Fig. 11), which is in fact exploited in the design of
many posterior modules: because the two factors have opposing
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Figure 3 | Participating transcription factors and their behaviour. a, PSSMs
representing binding preferences before (upper panels) and after (lower
panels) training and other parameters (absolute factor concentration,
expression contribution and self-cooperativity) as fitted by our model, for
four key transcription factors regulating segmentation (see Supplementary
Fig. 2 for all eight factors). b, Binding-site strength and contribution to
occupancy. For each factor, histograms show as a function of site strength:
the number of binding sites (expressed as fraction of all sites, light blue
columns, left scale), and the fraction of the total factor occupancy
contributed by sites of this strength (orange columns, left scale). Binding-
site strength is defined as the log-ratio between the PSSM and background
model score of the site21, using a uniform background. Over-/under-
representation of sites in modules (grey line, right scale) is calculated as the
ratio of the number of sites of a given strength in the actual module sequence

versus the number of such sites in randomly permuted module sequence
(shown is mean 6 s.d. computed from 100 permutations). The strength of
experimentally footprinted sites is represented by dark blue squares below
the histogram. c, Short-range homotypic clustering of binding sites. Shown
is the number of pairwise distances between same-factor sites that are within
a range of k to k 1 50 bp, plotted for values of k from 0 to 800 (y axis) and
expressed as average per module (blue line), compared to results of 1,000
permutation tests in which the predicted sites are randomly placed within
each module (grey line, mean 6 s.d.). d, For each factor, shown is the
measured endogenous expression (black), compared with the average
predicted total factor occupancy in modules expressed at a given antero-
posterior position (blue), and with average predicted total occupancy in
modules not expressed at that position (pink); note differing behaviour of
activators and repressors.
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expression patterns and functions, a broad abdominal pattern can be
generated through differential occupation of overlapping CAD/HB
sites along the antero-posterior axis by one or the other factor, with
CAD causing activation in the posterior portion of the embryo and
HB causing repression in the anterior and near the posterior ter-
minal. Additional repressive input then further narrows module
expression boundaries, as seen, for example, in gt_23 (Fig. 5, and
Supplementary Fig. 10).

The central biological task of the segmentation gene network is to
subdivide the embryo along the antero-posterior axis by translating
broad maternal gradients into successively narrower and sharper
patterns. Our analysis suggests that this is accomplished by parallel
combinatorial input of multiple factors and self-cooperative factor
interaction. It is intriguing that these crucial design features are
embedded locally within the cis-regulatory sequence rather than in
the trans-factor network and the basal machinery, which presumably
increases the reliability of the readout and the ability of the system to
evolve.

Conclusions

We have presented a quantitative model for transcription control in
pattern formation that integrates sequence and expression informa-
tion and seeks to capture the mechanistic core of the process. Input
factors bind DNA at thermodynamic equilibrium, dependent only
on their concentration and on the arrangement and quality of their
sites within the modules, but without introducing thresholds or other
filters. By applying the model to the segmentation network of
Drosophila, we demonstrate that these principles, in conjunction with
uniform and biologically plausible parameters for the unknown
aspects of the molecular interactions, are sufficient to produce the
patterns of most experimentally validated modules with substantial

accuracy, even across species. A notable feature of our approach is
that the network structure between factors and their target genes is
not pre-defined; rather, we assume a fully connected network in
which all possible factor–module interactions are considered and
the network structure is an emergent property of the molecular cis-
regulatory interactions, changing dynamically with the variation in
local factor concentrations. Our framework is generally applicable
and likely to prove useful for many other protein–DNA interaction
systems. Several important issues need to be addressed to improve
further the predictive accuracy of our model, such as integrating the
temporal evolution of expression patterns, modelling heterotypic
synergy (BCD/HB) or other non-additive factor interactions (for
example, repressor quenching), identifying missing input factors,
and incorporating competition with nucleosomes. The model will
also greatly benefit from additional experimentation to constrain
parameter values, such as measuring factor cooperativity and
improving the PSSMs.

METHODS SUMMARY

Spatial expression patterns and measured binding preferences for eight tran-

scription factors in the segmentation network were obtained from published

sources5,22; for selected factors, the functionality of the consensus sites was con-

firmed by insertion into a synthetic enhancer46. Expression patterns for seg-

mentation gene modules were collected from published sources4,5 or our own

work and measured as described5. The full mathematical details and fitting

procedures of our model are described in the Supplementary Information.

The significance of local clustering of binding sites was assessed by calculating
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of the participating transcription factors at every position along the antero-
posterior axis for selected modules, thus indicating which factors control
expression at a particular position. Occupancy curves are colour-coded by
factor; the curves for activators (middle) and repressors (bottom) are
superimposed and plotted separately; the resulting predicted expression
level (grey) is shown on top, superimposed on measured expression level
(orange); see also Supplementary Fig. 10.
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the number of all pairwise distances between sites for the factor(s) considered
that fall within moving windows of 50 bp, and comparing this to the results

obtained when the same number of binding sites are randomly placed within

each module. The occupancy of a factor at a base pair and antero-posterior

position is defined as the sum of the probabilities of all configurations in which

the base is occupied by the factor; the total occupancy contribution of a binding

site is then the sum of its occupancy across all antero-posterior positions, and the

fractional occupancy contribution of a binding site is equal to its total occupancy

divided by the total occupancy of all binding sites for the factor. For input data

and results, see our website http://genie.weizmann.ac.il/pubs/segnet08.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Data sets. Spatial expression patterns for eight transcription factors in the net-

work were obtained from ref. 22, and measured binding sites for these factors

were obtained from ref. 5. Sequences and expression patterns for 44 gap and pair-

rule gene modules are from ref. 5, S. Sinha et al., manuscript in preparation, and

M.S and U.G., unpublished, and are available at our website (see below). Module

expression patterns were measured as described5. Binding-site information is

available for all eight transcription factors5, but varies considerably in extent and

quality, with two factors, KNI and TLL, having fairly unspecific PSSMs, and

TorRE an overly specific one, owing to the paucity of known binding sites
(Supplementary Fig. 2a). Despite such differences, the consensus sequences for

BCD, HB, GT, KR47 and KNI48 show excellent in vivo binding when placed in

synthetic modules (Supplementary Fig. 12) and can thus be considered reliable.

We therefore constrained our procedure for fitting the factor weight matrices

such that they maintain the experimentally derived consensus.

Thermodynamic model. The full mathematical details and fitting procedures of

our model are provided in Supplementary Information.

Testing the significance of local clustering of binding sites. We define the

occupancy of a factor at a base pair and a particular antero-posterior position

as the sum of the probabilities of all those configurations at that antero-posterior

position in which the base pair is occupied by the factor. This quantity can be

computed exactly using dynamic programming (see Supplementary Infor-

mation). To test whether binding sites of a factor are significantly locally clus-

tered in modules, we defined discrete binding sites for each factor as those sites

that have an occupancy for the factor of $0.2 in at least one antero-posterior

position. We then calculated the number of all pairwise distances between sites

for the same factor that fall within a window k to k 1 50 base pairs, for different

values of k ranging from 0 to 1,000. To test for significance, we randomly
permuted the locations of the binding sites for the tested factor within each

module (while preserving the number of binding sites per module), and repeated

the computation for the randomly placed sites. Each permutation was per-

formed 1,000 times.

Calculating the occupancy contribution of binding sites. The occupancy of a

binding site by a factor at each particular position is computed as above. We

define the total occupancy contribution of a binding site as the sum of its

occupancy across all antero-posterior positions. The fractional occupancy con-

tribution of a binding site is then equal to its total occupancy divided by the sum

of the total occupancy of all binding sites for the factor. For the histograms in

Fig. 3b, we only considered binding sites that achieve occupancy $0.01 at any

antero-posterior position.

Experimental methods. The functions of transcription-factor-binding sites

were tested by insertion into a synthetic ventral enhancer driving a lacZ

reporter46 and examination of the resulting in vivo expression by RNA in situ

hybridization.

URLs. For input data and results, see http://genie.weizmann.ac.il/pubs/segnet08.

The results are viewable in Genomica (http://Genomica.weizmann.ac.il), a geno-
mic analysis software freely available for academic use.

47. Gray, S. & Levine, M. Short-range transcriptional repressors mediate both
quenching and direct repression within complex loci in Drosophila. Genes Dev. 10,
700–710 (1996).

48. Arnosti, D. N., Gray, S., Barolo, S., Zhou, J. & Levine, M. The gap protein knirps
mediates both quenching and direct repression in the Drosophila embryo. EMBO J.
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