
 

 

Abstract 

 

It is believed that eye movements in free-viewing of 

natural scenes are directed by both bottom-up visual 

saliency and top-down visual factors. In this paper, we 

propose a novel computational framework to 

simultaneously learn these two types of visual features from 

raw image data using a multiresolution convolutional 

neural network (Mr-CNN) for predicting eye fixations. The 

Mr-CNN is directly trained from image regions centered on 

fixation and non-fixation locations over multiple 

resolutions, using raw image pixels as inputs and eye 

fixation attributes as labels. Diverse top-down visual 

features can be learned in higher layers. Meanwhile 

bottom-up visual saliency can also be inferred via 

combining information over multiple resolutions. Finally, 

optimal integration of bottom-up and top-down cues can be 

learned in the last logistic regression layer to predict eye 

fixations. The proposed approach achieves state-of-the-art 

results over four publically available benchmark datasets, 

demonstrating the superiority of our work. 

 

 

1. Introduction 

When viewing visual scenes, human
∗
 visual system has 

the ability to selectively locate eye fixations on some 

informative contents. In computer science field, researchers 

normally develop computational visual saliency models to 

quantitatively predict human eye attended locations using 

computer vision techniques. In recent years, a large number 

of computational models [1-7] and applications [8-10] have 

been proposed.  

Inspired by the biological evidence that locations 

distinctive from their surroundings are more likely to attract 

our attention, most traditional approaches typically cope 

with the problem of saliency modeling by three steps in 

sequence: early feature extraction, feature contrast 

inference, and contrast integration. For early feature 

extraction, Itti et al. [1] proposed three low-level features 
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including intensity, color, and orientation. Judd et al. [2] 

considered more early features, for example, subbands of 

the steerable pyramid, 3D color histograms and color 

probabilities based features. These works rely on 

hand-crafted features. To acquire powerful hand-crafted 

features, sufficient and proper domain-specific knowledge 

is generally required. Nevertheless, a thorough 

understanding of human visual attention mechanisms has 

not been achieved yet. Meanwhile, the hand-crafted 

features may be not universally appropriate for different 

types of images. Although some machine learning methods 

have been involved in some models, e.g. ICA [11] and 

sparse coding [4, 12, 13], it’s still very hard for these 

models to mine high-level information and latent patterns 

of complex images due to the limited representational 

capability of  their shallow architectures.  

In saliency models, contrast computation over early 

features is another key procedure. Itti et al. [1] designed the 

"center-surround difference" operator across multiple 

scales to calculate contrast. Later on, a lot of works 

followed Itti’s idea to compute contrast from different 

views via using a variety of mathematical tools, for 

example, using information theories [12], frequency 

spectrum [14-17], sparse coding [13, 39] or autoencoder 

[40]. From these previous works, we can see that most of 

them resort to human-designed mechanisms to calculate 

contrast, which would be insufficient to handle large-scale 

data with complex distributions. 

The last step for saliency modeling is to integrate 

various contrast features to yield saliency maps. Itti et al. 

[1] linearly fused three contrast maps using fixed weights. 

Zhao and Koch [18] learned the optimal weights associated 

with various contrasts using a least square technique upon a 

set of eye tracking data. Judd et al. [2] learned a linear SVM 

to fuse bottom-up features. Similarly, Borji [3] explored the 

linear regression model and AdaBoost classifier for 

optimized feature fusion.  

Although most previous works mainly concentrate on 

contrast-based bottom-up saliency, it is believed that at 

early stage of free viewing, eye movements are mainly 

directed by bottom-up visual saliency and later on, by 

high-level factors (e.g., objects [19, 20], actions [21], and 

events) [22, 23]. Thus it is inevitable to combine bottom-up 

saliency information and top-down factors to build a 
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superior model for predicting eye fixations. Some works 

have pursued this direction. For instance, Cerf et al. [24] 

combined face detection with low-level saliency. Judd et al. 

[2] and Borji [3] combined bottom-up features with more 

top-down factors, including humans, faces, cars, texts, and 

animals. Although these methods achieve better 

performance than traditional models relying on visual 

saliency alone, there is still much room for improvement 

because only a small number of hand-tuned factors are used 

in these models. 

All of the issues discussed above motivate us to design a 

new unified learning model to enhance the hand-crafted 

bottom-up saliency features and top-down factors for eye 

fixation prediction. To this end, this paper proposes a novel 

computational model based on a multiresolution 

convolutional neural network (Mr-CNN) which 

simultaneously learns early features, bottom-up saliency, 

top-down factors, and their integration from raw image 

data. To be specific, as shown in Figure 1 and Figure 2, we 

train a Mr-CNN directly from image regions centered on 

fixation and non-fixation locations over multiple 

resolutions, using raw image pixels as inputs and eye 

fixation attributes as labels. Benefitting from its 

hierarchical architecture and the purely supervised training 

manner, our model can learn saliency-related features with 

hierarchically increasing complexity in convolutional 

layers, instead of resorting to various hand-crafted features. 

These features learned with hierarchical depth can 

represent original image regions efficiently and 

discriminatively. In higher layers, the proposed Mr-CNN 

can learn diverse high-level top-down visual features due to 

its deep architecture. Meanwhile, it can also learn 

bottom-up saliency via combining information over 

multiple resolutions. Considering local image regions with 

the same center location but with fine-to-coarse resolutions 

(see the three image regions of the traffic sign in Figure 1), 

finer image regions are actually the central parts of coarser 

ones. When the deep features of both the center (the finer 

image region) and the context (the coarser image region) 

are inputted to a neural network simultaneously, the 

difference between them may be learned under the 

supervision of labels, which makes the proposed Mr-CNN 

have the capability to learn the bottom-up saliency, 

contrary to using various human-designed mechanisms in 

traditional models.  Finally, the last logistic regression layer 

learns to integrate bottom-up saliency with top-down cues 

to predict eye fixations.  

We notice that some researchers have applied deep 

learning algorithms to model visual saliency lately. Shen et 

al. [25] used a 3-layer convolutional sparse coding model to 

learn high-level concepts from fixated image regions in an 

unsupervised way. Then, a linear SVM was utilized to 

detect saliency from those learned concepts. Similarly, Vig 

et al. [26] learned a linear SVM over hierarchical optimal  

features which are optimized via a bio-inspired hierarchical 

models (hierarchical neuromorphic networks) in their 

Ensemble of Deep Networks (eDN) model. These two 

methods mainly focus on learning deep features while 

ignoring the importance of bottom-up visual saliency. Lin 

et al. [27] used a set of adaptive convolutional low-level 

filters learned by k-means algorithm to produce low-level 

and mid-level features. Then, the center-surround 

difference was performed over the learned features to 

compute local contrast. In this model, top-down factors 

were not taken into account. In contrast to these previous 

works, our proposed work builds a unified framework to 

learn both the bottom-up saliency and top-down factors 

simultaneously. 

The contributions of this paper can be summarized as 

follows. (1) By using a Mr-CNN, we implement the 

learning of early features, bottom-up saliency, top-down 

factors, and their integration from image data itself 

simultaneously. The yielded method is automated and does 

not depend on hand-tuned features or calculation 

mechanisms. (2) The proposed method is evaluated on four 

widely used eye-tracking benchmark datasets and achieves 

better results compared to 11 state-of-the-art models. (3) 

We visualize the learned hierarchical features from the 

Mr-CNN. It demonstrates that the proposed Mr-CNN can 

learn both low-level features related to bottom-up saliency 

and high-level top-down factors to improve eye fixation 

prediction. Furthermore, the learned features can also 

uncover novel insights for the psychophysics of fixation 

selection and the intrinsic biological mechanism, which we 

wish can offer novel inspiration to explore the human 

vision system.  

The rest of this paper is organized as follows. Section 2 

describes the proposed model using the Mr-CNN. Section 3 

reports the quantitative and qualitative experimental results 

on four benchmarks. Finally, we draw conclusions in 

Section 4. 

2. Proposed model 

In this section, we elaborate the approach we propose. 

As illustrated in Figure 1 and Figure 2, the model 

architecture is mainly based on a Mr-CNN. We first briefly 

review CNN, and then we depict the proposed Mr-CNN in 

details and show how to use it to predict eye fixations. 

2.1. A brief review of CNN 

A convolutional neural network (CNN) [28] is usually 

composed of alternate convolutional and max-pooling 

layers (denoted as C layers and P layers) to extract 

hierarchical features to represent the original inputs, 

subsequently with several fully connected layers (denoted 

by FC layers) followed to do classification.  



 

Considering a CNN with L layers, we denote the output 

state of the l-th layer as 
l

H , where {1,..., }l L∈ , 

additionally using 
0

H  to denote the input data. There are 

two parts of trainable parameters in each layer, i.e. the 

weight matrix 
l

W  that connect the l-th layer and its 

previous layer with state 
1l −

H , and the bias vector 
l

b .  

The input data is usually connected to a C layer. For a C 

layer, a 2D convolution operation is performed first with 

convolutional kernels 
l

W . Then the bias term 
l

b is added 

to the resultant feature maps, in which a pointwise 

non-linear activation operation Actv is typically performed 

subsequently. Finally a max-pooling layer is usually 

followed to select the dominant features over 

non-overlapping square windows per feature map. The 

whole process can be formulated as: 

 
1

( ( )),
l l l l

pool Actv
−

= ∗ +H H W b   (1) 

where ∗  denotes the convolution operation and pool  

denotes the max-pooling operation. 

Several C layers and P layers can be stacked one by one 

to form the hierarchical feature extraction architecture. 

Then, the resultant features are further combined into 1D 

feature vectors by several FC layers. A FC layer first 

processes its inputs with linear transformation by weight 

l
W  and bias 

l
b , then the pointwise non-linear activation is 

followed: 

 
1

( ).
l l l l

Actv
−

= ⋅ +H H W b   (2) 

Several non-linear activation functions have been 

proposed. Here we choose the Rectified Linear Unit 

(ReLU) [29] in all C layers and FC layers for its high 

capability and efficiency: 

 ( ) max(0, ).Actv x x=   (3) 

The last classification layer is usually a softmax layer 

with the amount of neurons equaling the number of classes 

to be classified. We use a logistic regression layer with one 

neuron to do binary classification, which is similar to a FC 

layer except that the sigmoid activation function should be 

used: 

 
1

( )
1 x

Actv x
e−

=

+

  (4) 

The activation value represents the probability of the input 

belonging to the positive class. 

The weights 
1

{ ,..., }
L

W W  and the biases 
1

{ ,..., }
L

b b  

compose the model parameters, which are iteratively and 

jointly optimized through maximization of the 

classification accuracy over the training set. 

2.2. Saliency detection using Mr-CNN 

Inspired by [30-32], we develop a CNN architecture 

with multiple resolutions (or scales) to simultaneously 

learn early features, bottom-up saliency, top-down factors 

and their integration from image data for predicting eye 

fixations. Specially, we consider three properly designed 

resolutions. For the input layer, we extract image regions of 

fixed size centered on the same locations from images with 

different scales to form multiresolution inputs. We first 

rescale the input image to three scales by simply warping it 

directly and ignoring its original size and aspect ratio. Then 

Figure 1: Diagram of our Mr-CNN based model. First, the given image is rescaled to three scales, i.e. 150×150, 250×250 and 400×400, 

then 42×42 sized image regions with the same center locations are extracted from the rescaled image duplicates as inputs to the Mr-CNN.

We extract fixation and non-fixation image regions to train the Mr-CNN. When testing, we just evenly sample 50×50 locations per image 

to estimate their saliency values to reduce computation cost. The obtained down-sampled saliency map is rescaled to the original size to 

achieve the final saliency map. 



 

we extract image regions of same size at the same center 

location from the three rescaled image duplicates 

mentioned above. Thus the three image regions constitute 

the multiresolution architecture containing information 

flows with small-to-large contexts and coarse-to-fine 

granularities. In this paper, the three scales used to rescale 

the input image are empirically chosen as 150×150, 

250×250, and 400×400, respectively.  The size of image 

regions is set to 42 experimentally (see Figure 1 and Figure 

2). 

As for the network architecture, as shown in Figure 2, 

our Mr-CNN starts from three streams in lower layers. Each 

stream is composed of three C layers, three P layers, and a 

FC layer. Subsequently the three streams are fused using 

another FC layer, which is followed by one logistic 

regression layer at the end to perform classification. The 

three streams are separated shoulder to shoulder before the 

second FC layer and then are combined into one layer for 

jointly inferring the bottom-up saliency among the 

multi-resolution inputs. Here we share the parameters in 

each C layer across three streams to learn scale-invariant 

features. We use 96 filters with size 7×7 in the first C layer, 

160 and 288 filters with size 3×3 respectively in the second 

and the third C layer. We set the convolution stride to 1 and 

perform valid convolution operations, disregarding the map 

borders. We also choose to use 2×2 pooling windows in all 

P layers, 512 neurons in all FC layers and 1 neuron in the 

output layer, resulting in the whole network of size 

I[42×42×3(×3)]-C[36×36×96(×3)]-P[18×18×96(×3)]-C[1

6×16×160(×3)]-P[8×8×160(×3)]-C[6×6×288(×3)]-P[3×3×

288(×3)]-FC[512(×3)]-FC[512]-O[1] (see Figure 2), where 

we write the size and the attribute of each layer in and out of 

brackets respectively. The denotation (×3) means the layer 

has three duplicates in three streams. The input and the 

output layers are abbreviated as I and O respectively. 

In the training stage, we randomly sample fixation and 

non-fixation locations based on the saliency values in the 

ground truth density maps which are generated by applying 

Gaussian blur on the raw eye fixation point maps. Then, we 

extract image regions centered at the sampled fixation or 

non-fixation locations as the inputs of our Mr-CNN, 

together with their corresponding binary classification 

labels. Here we consider fixation and non-fixation image 

regions as positive set and negative set respectively. 

Afterwards, we train the Mr-CNN using back propagation 

algorithm [33] and gradient descent algorithm based on the 

minimization of the cross entropy between the predicted 

labels and the ground truth labels in the last layer. 

When testing, to reduce computation cost, we sample 

2500 locations for each testing image as center locations to 

extract image regions, which is implemented by evenly 

sampling 50 locations along each side of the testing image. 

Then the activation value of the last layer in the Mr-CNN is 

obtained as the saliency value of each location to form the 

down-sampled saliency map. Ultimately, the obtained 

down-sampled saliency map is rescaled to the original size 

of the testing image to achieve the final saliency map. 

3. Experiments 

In this section, we report experimental results to 

evaluate the proposed approach in eye fixation prediction. 

We first introduce the eye fixation benchmark datasets and 

the evaluation metrics used in this paper, followed by the 

implementation details of our model. Then the results of 

our approach and comparisons with 11 state-of-the-art 

saliency models over four datasets are presented. Finally, 

the hierarchical features learned by the proposed Mr-CNN 

are visualized and some fatal parameters are analyzed. 

3.1. Datasets 

We conducted evaluation on four widely used eye 

fixation datasets with different characteristics. The first 

dataset, MIT [2], contains 1003 images collected from 

Flicker and LabelMe datasets, with resolution ranging from 

405×1024 to 1024×1024 pixels. It is the largest eye fixation 

dataset and consists of 779 landscape, 228 portrait and 

several synthetic images free-viewed by 15 human 

subjects. The second dataset, Toronto [11], contains 120 

color images of indoor and outdoor scenes with a fixed 

resolution of 511×681 pixels. These images are 

free-viewed by 20 human subjects. The third dataset, Cerf 

dataset [24], is made up of 181 images with resolution of 

1024×768 pixels. The contents of interest in this dataset are 

usually faces and some other small objects like cell phones, 

toys, etc. Each image in this dataset is viewed by 7 subjects. 

 

Figure 2: Network architecture of our Mr-CNN. Convolutional 

layer, max-pooling layer and fully connected layer are denoted as 

C, P and FC respectively. The sizes of the input image, feature 

maps, FC layers, convolution kernels and pooling windows are

marked in the last stream of the Mr-CNN, which shares the same

network architecture and the same parameters in C layers over 3 

streams. 



 

The last dataset, NUSEF [21], is a newly proposed dataset 

with 758 semantically-rich images containing affective 

contents such as expressive faces, interesting objects, and 

actions. On average, each image in this database is viewed 

by 25 subjects. In our experiments, we use 431 images in 

this dataset due to the copyright issue. 

3.2. Evaluation metrics 

One of the most widely used metrics to evaluate saliency 

models is the Area Under the ROC Curve (AUC) [11]. For 

an image, human eye fixation points are considered as 

positive set and non-fixation points are regarded as 

negative set. Then, the computed saliency map is binarily 

classified into salient region and non-salient region by a 

threshold. By varying the thresholds, ROC curve is 

achieved by plotting true positive rate vs. false positive 

rate, with its underneath area calculated as AUC score. 

However, AUC can be greatly influenced by center-bias 

[34] and border cut [35]. Consequently, it would generate a 

large value for a central Gaussian blob, leading to unfair 

evaluation. To cope with these issues, shuffled AUC is 

introduced by [34, 35]. Contrary to AUC, shuffled AUC 

adopts all fixation points (except for the positive set) over 

all images from the same dataset as the negative set. Using 

shuffled AUC, the score of a central Gaussian blob is 0.5 

while the score of a perfect prediction is 1. Considering the 

sensitivity of the shuffled AUC score to different levels of 

blurring applied on saliency maps, we follow many recent 

works [4, 6] to smooth the saliency maps using small 

Gaussian filters with various standard deviation (STD) σ . 

Then we show the curve of average shuffled AUC scores 

over a datasets vs. various σ  and report the best score 

under the optimal σ  to evaluate a model. 

3.3. Implementation details 

Data processing. We did data augmentation by 

horizontally flipping each image to double image samples 

so as to enhance model generalization. During training, we 

sampled 10 fixation locations and 20 non-fixation locations 

per training image based on whether the corresponding 

saliency values in the eye fixation density maps are greater 

than 0.9 or smaller than 0.1. When testing, for an original 

testing image, we averaged its saliency map and the one of 

its horizontally flipped version as the final saliency map. 

When extracting image regions given the center locations, 

if the center pixel close to image borders, it will result in 

insufficient pixels to extract. In this situation, we copied 

image borders to form image regions with the same size. 

Before training, each dimension in the training image 

regions was mean-centered and normalized to unit variance 

over each training set, and the same normalization process 

was also used in the testing stage. 

 
 

Figure 3: Qualitative model comparisons. Fixation prediction accuracy of our Mr-CNN model compared with 11 state-of-the-art models 

over 4 benchmark datasets. The result of eDN over the Cerf dataset is not shown. X-axis indicates the Gaussian blur STD σ (in image 

width) by which saliency maps are smoothed and Y-axis indicates the average shuffled-AUC score on one dataset. 

 

Dataset AWS BMS CA eDN HFT ICL IS JUDD LG QDCT SDSR Mr-CNN 
      

MIT 

Opt. σ  
.6945 

.010 

.6939 

.020 

.6718 

.025 

.6273 

.010 
.6526 

.025 

.6667 

.020 

.6686 

.040 

.6631 

.025 

.6823 

.035 

.6686 

.025 

.6588 

.045 
.7190 

.030 

Toronto 

Opt. σ  
.7184 

.010 
.7221 

.025 

.6959 

.025 

.6292 

.010 
.6926 

.030 

.6939 

.010 

.7115 

.040 

.6901 

.030 

.6990 

.030 

.7174 

.025 

.7065 

.040 
.7236 

.030 

Cerf 

Opt. σ  
.7241 

.010 
.7367 

.010 

.7152 

.025 

- 

- 
.7001 

.035 

.7137 

.010 

.7276 

.035 

.7154 

.025 

.7035 

.035 

.7267 

.020 

.7227 

.050 
.7781 

.030 

NUSEF 

Opt. σ  
.6403 

.020 

.6328 

.025 

.6174 

.035 

.5761 

.010 
.6065 

.045 

.6105 

.020 

.6213 

.045 

.6124 

.030 

.6256 

.035 

.6176 

.025 

.6093 

.045 
.6702 

.035 
      

Average .6943 .6964 .6751 .6109 .6630 .6712 .6823 .6703 .6776 .6826 .6743 .7227

Table 1: Maximum performance of models shown in Figure 3. Optimal scores of each model over different datasets and the corresponding 

Gaussian blur STD are reported. The highest scores over the compared 11 models on each dataset are shown in bold face font, the highest 

ones over all models are both in bold face font and underlined. The result of eDN model over the Cerf dataset is not available. The average 

score of eDN is calculated over three datasets. 



 

CNN parameters and settings. We trained and tested 

our model over each dataset using 10-fold cross-validation. 

Specifically, we averagely and randomly divided the 

dataset into 10 partitions. 9 partitions were used for training 

and the remaining 1 partition was used for testing. This was 

repeated such that each partition in the dataset is used once 

as the testing data. During the iterative process in training 

the Mr-CNN, we set the training step to 5,000 where one 

mini-batch was trained per step. Meanwhile we used 1/9 of 

the training set as the validation set to avoid overfitting. In 

details, we evaluated the performance of the Mr-CNN 

every 200 training steps, and selected the best trained 

network with the minimal cross entropy over the validation 

set. We set the size of mini-batch to 256 and 128 

respectively for MIT dataset and other 3 datasets during 

training, with respect to the different image amount of these 

datasets.   Besides, we used weight decay of 0.0002 and 

momentum linearly increased from 0.9 to 0.99 along with 

the increasing training step in all networks. To alleviate 

overfitting, dropout [36] was used with the corruption 

probability of 0.5 in the third C layer and the subsequent 

two FC layers for all networks. We also used a weight 

constraint [36] of 0.1 to the convolutional kernels of the 

first C layer so that once the 
2

-norm of a kernel is larger 

than the constraint, it could be renormalized by division. 

This also may relieve overfitting. 

Transfer learning. Given that the MIT dataset contains 

the largest amount of images among the four datasets and 

consists of various salient contents, including both 

bottom-up and top-down ones, we utilized models trained 

on it to transfer domain knowledge to other three datasets to 

overcome the problem of lacking training images. We first 

trained the networks over MIT dataset with the learning 

rate initially set to 0.002 and subsequently decay along with 

the increasing training step. Then we simply adopted one of 

the networks trained in the 10-fold cross-validation process 

as the pre-trained network for the other three datasets, 

instead of training a new model using all MIT images. On 

other three datasets, the networks are fine-tuned given a 

relatively small learning rate initially set to 0.0001 and a 

smaller one fixed to 0.000001 respectively for the last 4 

layers and the first 2 C layers, considering the low-level 

features can generalize well over natural scene images. 

 

Figure 4: Visual comparisons of different models. We compare some saliency maps of our Mr-CNN model with other 6 models, i.e. AWS, 

BMS, IS, LG and QDCT, which perform best over 4 datasets based on the average shuffled AUC scores in Table 1. The first row shows the 

input images from the MIT (the first 4 columns), Toronto (the 5th to 7th columns), Cerf (the 8th column) and NUSEF (the last 3 columns)

datasets. The second row shows the corresponding ground truth fixation density maps (GT) which are generated by applying Gaussian blur 

on the raw eye fixation point maps.  



 

Platform and routine. The proposed model was 

implemented using Matlab, python and CUDA, run on a 

workstation with 2 2.8GHz 6-core CPUs, 32GB memory, 

64-bit Windows sever 2008 OS, additionally with a GTX 

Titan black GPU for acceleration. The CNN routine we 

used is based on the deepnet
1
 library. The average time 

taken to test an image is 14s. 

3.4. Results 

To demonstrate the effectiveness of the proposed 

Mr-CNN model in predicting eye fixations, we evaluated it 

by comparison to 11 state-of-the-art models, including 

AWS [5], BMS [6], CA [7], eDN [27], HFT [37], ICL [12], 

IS [16], JUDD [2], LG [4], QDCT [17], and SDSR [38] . 

These methods selected for comparison have been 

proposed in recent years and their codes or calculated 

saliency maps are publicly available
2
. We first evaluated 

the shuffled AUC scores over our model and other 11 

models for quantitative comparison. The saliency maps 

were smoothed by Gaussian kernels with various blur STD 

σ  first, then average shuffled-AUC scores of each model 

on different datasets over varying σ  were presented in 

Figure 3. Optimal scores of each model over different 

datasets and the corresponding Gaussian blur STDs were 

reported in Table 1. 

As shown in Fig. 3 and Table 1, the proposed Mr-CNN 

model achieves the best performance on all four benchmark 

datasets. Especially, it is significantly better than other 11 

methods on the MIT, Cerf, and NUSEF datasets. On the 

Toronto dataset, our model is slightly better than other 

models. We presume that this is because the Toronto 

dataset contains relatively less images, which usually hurts 

the performance of deep learning models. From our 

comparison results, AWS and BMS ranked the second 

echelon. We also notice that in [26], authors adopted AUC 

as the metric and eDN method shows the best performance. 

                                                           
1 https://github.com/nitishsrivastava/deepnet 
2 The authors of the eDN model only published their saliency maps on 

three datasets, i.e. MIT, Toronto, and NUSEF. Thus we didn’t evaluate the 
eDN model on Cerf dataset. 

However, its performance is not good using the metric of 

shuffled-AUC scores. It is well recognized that 

shuffled-AUC is a better metric to fairly compare different 

saliency models.  

We also give the qualitative comparison of our model 

with other 6 best models in Figure 4. As we can see, our 

Mr-CNN model can detect not only bottom-up saliency 

patterns (e.g., Column 3, 5, 6, 7, 9), but also diverse 

top-down factors, such as faces (e.g., Col 1, 8, 9), text (e.g., 

Col 4, 5), animal heads (e.g., Col 2, 11), which are difficult 

for traditional methods. 

3.5. Feature visualization 

 To further understand the learned Mr-CNN, we 

visualized the hierarchical features of the C layers learned 

on MIT dataset and the features of the third C layer learned 

on Toronto dataset. Considering the low-level features can 

generalize well over different natural images, we didn’t 

visualize the features in lower layers learned over  Toronto 

dataset. As it is difficult to visualize convolutional kernels 

in higher layers of CNNs, for each kernel we uniformly 

show 9 optimal stimuli which most strongly activate the 

corresponding neuron. We just show 64 kernels per 

layerfor space limitation, forming an 8 × 8 matrix (see 

Figure 5). As shown in Figure 5, our Mr-CNN mainly 

learns various edges and color blobs in layer 1, diverse 

corners and edge/color conjunctions in layer 2. The features 

learned in layer 3 are very informative. On MIT dataset, 

there contain many low-level patterns, for instance, 

complex corners ((Row 2, Col 7), and (Row 5, Col 2)), edge 

conjunctions ((Row 1, Col 3), (Row 6, Col 1), (Row 6, Col 

2), (Row 6, Col 4) and so on), complex textures ((Row 4, 

Col 2) , (Row 5, Col 7), (Row 7, Col 6) and so on), and 

other contrast-like patterns ((Row 1, Col 7), (Row 3, Col 6), 

(Row 8, Col 8) and so on). These features are essentially 

related to bottom-up saliency. Meanwhile, we can see on 

MIT dataset, layer 3 also learns some high-level semantic 

concepts, for instance, eyes or eye-like patterns ((Row 4, 

Col 6)), faces ((Row 7, Col 1)), human heads ((Row 8, Col 

1)), human body profiles or similar patterns ((Row 7, Col 

8)), and text ((Row 2, Col 8), (Row 3, Col 8), (Row 4, Col 

Figure 5: Feature visualization on MIT and Toronto datasets. Best viewed in digital version. 



 

8)). This indicates that our Mr-CNN can learn both 

bottom-up saliency cues and high-level top-down factors. 

On Toronto dataset, layer 3 mainly learns many low-level 

and mid-level patterns. It seems it fails to learn much 

semantic concepts as this dataset mainly consists of diverse 

plain objects and lacks obvious semantic contents. 

3.6. Network structure analysis 

Here we analyze how the network structure influences 

the model performance. We mainly tested two fatal factors, 

namely, the number of resolutions we used and the number 

of convolutional layers, on MIT dataset. As shown in 

Figure 6(a), when we increase the number of resolutions, 

the model performance goes up first, then reaches the peak 

when three resolutions are used as in our model, 

subsequently drops down. As for the effect of different 

numbers of C layers, considering it’s too naive to just use 

one C layer in a deep convolutional network, we just 

additionally test our model with 2 and 4 C layers. As shown 

in Figure 6(b), increasing the number of C layers from 2 to 

3 boosts the model performance apparently, then the model 

performance nearly saturates. Although using 4 C layers 

can still enhance our model performance a little, it also 

increases much more training and testing time. Thus we 

adopted three C layers regarding the tradeoff between 

model capability and computation cost. 

4. Conclusions and future works 

In this work, we have proposed a novel convolutional 

neural network based eye fixation prediction model. Our 

model has achieved the best performance with significant 

improvement to 11 state-of-the-art saliency models on four 

publically available benchmark datasets. The superior 

performance of our method indicates that the human visual 

system is more likely to process low-level contrast and 

high-level semantics jointly rather than separately. The 

learned hierarchical features were visualized to show that 

our Mr-CNN learns both low-level saliency cues and 

high-level factors. The above results demonstrated that the 

proposed model can obtain promising performance by 

simultaneously learn early features, bottom-up saliency, 

top-down factors, and their integration directly from image 

data. More importantly, the proposed model architecture 

can also help to improve our understanding of the internal 

mechanism of fixation selection in the human visual 

system.  

In the future, we will further extend the proposed work 

in two aspects. First, we can explore the effect of each 

saliency related feature uncovered in the visualization 

experiment section, this may offer novel insights for the 

understanding of human vision system. The second aspect 

is to extend our model to predict eye fixations while 

viewing video sequences. 
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