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Abstract

Bayesian networks (BNs) provide a means for representing, displaying, and making available in a usable form the knowledge of
experts in a given Weld. In this paper, we look at the performance of an expert constructed BN compared with other machine learning
(ML) techniques for predicting the outcome (win, lose, or draw) of matches played by Tottenham Hotspur Football Club. The period
under study was 1995–1997 – the expert BN was constructed at the start of that period, based almost exclusively on subjective judgement.
Our objective was to determine retrospectively the comparative accuracy of the expert BN compared to some alternative ML models that
were built using data from the two-year period. The additional ML techniques considered were: MC4, a decision tree learner; Naive
Bayesian learner; Data Driven Bayesian (a BN whose structure and node probability tables are learnt entirely from data); and a K-nearest
neighbour learner. The results show that the expert BN is generally superior to the other techniques for this domain in predictive accu-
racy. The results are even more impressive for BNs given that, in a number of key respects, the study assumptions place them at a disad-
vantage. For example, we have assumed that the BN prediction is ‘incorrect’ if a BN predicts more than one outcome as equally most
likely (whereas, in fact, such a prediction would prove valuable to somebody who could place an ‘each way’ bet on the outcome).
Although the expert BN has now long been irrelevant (since it contains variables relating to key players who have retired or left the club)
the results here tend to conWrm the excellent potential of BNs when they are built by a reliable domain expert. The ability to provide accu-
rate predictions without requiring much learning data are an obvious bonus in any domain where data are scarce. Moreover, the BN was
relatively simple for the expert to build and its structure could be used again in this and similar types of problems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction from other applications we have been involved with such
UNCOBayesian networks [1], BNs, provide a means for cap-
turing, displaying, and making available in a usable form
knowledge, often obtained from experts in a given Weld.
This knowledge is often obtained from experts and can
be based on subjective judgements as well as (or even
instead of) data. Predicting the outcome of a football
match is an ideal application (although it is far removed
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as [2,3,5]). It is in just this type of problem, with many
complex interacting factors, that BNs excel. It is possible
for a domain expert, in collaboration with a BN expert,
to construct a network detailing the important relation-
ships between the factors involved, and the node proba-
bility tables, (NPTs). In this paper, we look at the
performance of an expert constructed BN in predicting
the outcome (win, lose, or draw) of matches played by
Tottenham Hotspur (‘Spurs’). The BN was originally
developed at the start of the 1995–96 season. Since, it
involves speciWc players, the model was only relevant for
two seasons (after which some of the key players were
no longer at the club). Hence, the study is restricted to
all league matches played by Spurs during the two
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consecutive seasons 1995/1996 and 1996/1997. So why,
almost 10 years after the expert BN was developed, have
we returned to this particular problem? It is because we
had a unique opportunity for a direct comparison
between the expert BN and a range of alternative ML
models. Such studies are relatively rare and the results
and lessons learnt should be of interest to researchers
outside of this particular domain (even those readers who
have no interest in Spurs or football in general). The per-
formance of the expert BN model is compared with four
alternative machine learning (ML) models:

• A naive BN.
• A BN learnt from statistical relationships in the data [6].
• A K-nearest neighbour implementation [7].
• A decision tree [8].

The aim was to see how the expert constructed BN com-
pares in terms of both predictive accuracy and explanatory
clarity for the factors eVecting the result of the matches
under investigation.

Section 2 discusses the issues of model setup and how we
selected the football match data to learn from. Section 3 is a
brief explanation of the learning techniques used and our
approach to the analysis. Section 4 provides the results of
the learners for each of the data sets used, while Section 5
provides a summary of the predictive accuracy. Section 6
summarises our conclusions and looks at some possible
directions of future work.

2. Selecting relevant information

There are a large number of factors which could eVect
the outcome of a football match from the perspective of
one of the teams involved. One of the diYculties in any
investigation of the relationships involved in a given eVect
is that to a large extent the assumption of a particular
model determines the attributes to study and predetermines
the possible relationships that can be found. So, the act of
choosing which model and attributes to study sets a bound-
ary on what can be discovered.

2.1. Constructing an initial model

When approaching a new problem there are two tech-
niques which are commonly used. The Wrst assumes we
have some idea how the situation under investigation
works, construct a model, and using this model select the
attributes believed to contribute to the eVect under investi-
gation. An example of this approach to this type of prob-
lem is given in [9]. The second approach assumes little
knowledge of the underlying mechanisms involved so we
look at all the probably relevant attributes and try to deter-
mine those which have the most signiWcant eVect. This is
still in eVect the construction of an a priori model, but only
a very informal one. In this paper, we take the second
approach.
TED P
ROOF

2.2. The expert model

The expert BN (see Fig. 1) uses only a few features:

• The presence or absence of three players, Sherringham,
Anderton, and Armstrong. So in each match each of
these values was true or false.

• The playing position of Wilson represented by him play-
ing in midWeld or not.

• The quality of the opposing team. This particular vari-
able was measured on a simple 3-point scale (high,
medium, and low). Although based on expert judgement,
it matches closely with the teams’ Wnal league positions
(‘top 6’, ‘middle 8’, or ‘bottom 6’) and so would appear
to be an accurate reXection of their average
performance.

• Venue (whether the game is played at Spurs’ home
ground or away).

The BN shows how the expert constructed the relation-
ships between the chosen factors and the outcome of the
game. In addition to the result node (win, lose, or draw) the
BN includes three other nodes to simplify the structure:

• Attack which represents the quality of the Spurs attack-
ing force (low, medium, and high).

• Spurs_quality the overall quality of the Spurs team (low,
medium, and high).

• Performance how well the team will perform given their
own quality and that of the opposition (low, medium,
and high).

2.3. The general model and its known weaknesses

We allowed the machine learners to use both the same
and an alternate set of features compared to the expert BN.
SpeciWcally, the initial set of factors were the basic factors
in the expert model, plus all the other registered Spurs’
players (as playing or not playing) rather than just the four
‘special’ players in the expert BN minus the playing posi-
tion of Wilson. The particular values for Opposition quality
in each game were the same as those used by the expert BN.

During a game players can be injured, substituted, be
sent oV, or have their playing positions changed. The solu-
tion chosen to deal with these issues was to use the informa-
tion about only those players who started the game.
Similarly Wilson’s playing position could change during
the course of the match, only his initial playing position
was considered.

In general terms this problem is not particularly easy
from a machine learning perspective. There is not much
data to go on. We have the results of two seasons’ games, a
total of 76 matches and for the general model a total of 30
attributes, (28 players, venue, and opponent quality). There
were changes to the Spurs’ squad during this period. The
simple convention of a player either playing or not was
chosen to avoid having missing data entries with regards to
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which eVect the outcome of a game. So, even in the best
case we expect to have noise in the data. Since players,
except Wilson, are only considered from the point of view
of playing or not playing, the eVect of any player who was
always present will be ignored. This is because the learners
can only compare the diVerence in the outcome of matches
with a player present or absent.

It is also worth noting that all the models (including the
expert BN) are inherently asymmetric. Whereas for Spurs
we consider the particular players involved in any given
match to be signiWcant, for all their opponents we only have
a general rating for their overall quality.

3. Machine learning techniques and our analysis assumptions

There are a large number of ML techniques each with
diVerent strengths and weaknesses. Choosing which is the
most appropriate technique often requires an understand-
ing of both the problem domain and the diVerent learning
methods. A good introduction to many machine learning
techniques can be found in [10]. The machine learners used
in this analysis were:

MC4 Decision trees.Decision trees provide a visual repre-
sentation of relationships which appear to eVect the
situation under investigation. Pruning is generally
used to reduce the size of the tree. The conWdence
method of pruning was used.

Naive Bayesian learner.The Naive Bayesian learner makes
the simplifying assumption that all the attributes are
independent.

Data Driven Bayesian learner.The complex Bayesian learner
as implemented by Hugin attempts to learn the struc-
ture of the network by looking at the correlation
between the attributes. Once the structure has been
determined data can then be used to determine the
node probability tables. The strength of a correlation
required to trigger the joining of two nodes can be
adjusted.

Expert constructed Bayesian network.When expert knowl-
edge of a given domain is to be represented as a BN
the usual process is for the domain expert(s) and BN
expert(s) to jointly construct the BN. If suYcient data
are available then the NPTs can be directly learnt and
then adjusted if required. However, when there is
insuYcient data to learn the NPTs these must also be
obtained from the expert(s).

K-nearest neighbour.K-nearest neighbour learners use a
likeness approach to prediction. That is, they look at
the instances most like the test case and usually have
some voting method by which the prediction is
TED P
ROOF

Fig. 1. Expert constructed BN for Tottenham Hotspur’s performance.
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chosen. The usual measure of likeness is Euclidean
distance as plotted on an n-dimensional graph where
each dimension is one of the supplied attributes.

All the learners used were part of the MLC++ [11] pack-
age1 apart from the complex Bayesian learner which was
part of the Hugin tool2, the Hugin tool was also used to run
the expert constructed BN.

The diVerent models do not all provide the same sort of
prediction. The MC4 and KNN learners usually give a pre-
diction in the form of an unqualiWed value from the possible
range of values. BNs do not make predictions in the same
format as the MC4 or KNN learners. Rather than supply a
simple answer they supply a probability for each of the possi-
ble outcomes. This allows for a greater sensitivity of predic-
tion; the BN not only makes a prediction, but is also able to
provide some idea of conWdence in the prediction. To make a
direct comparison with the learners we had to interpret the
BN prediction as a deWnite result (win, lose, or draw). Our
approach was to choose the result with the highest predicted
probability, irrespective of how close two or more results
might be. In cases where two or more of the outcomes of the
BN were equally likely we deemed that the prediction was
incorrect (even if the actual result was one of the two most
likely). This approach clearly treats BNs harshly in the analy-
sis. In reality, a prediction involving equal (or nearly equal)
probabilities would be useful. For example, if we were betting

1 Version 2.01 of the MLC++ libraries was used, modiWed to run under
the GNU/Linux operating system. All the MLC++ learners were used
with their default settings except where noted otherwise.

2 Version 6.1 of this tool was used for this paper.
TEDon the outcome of a game, and the BN predicted Win 45E%
Draw 45E% Loss 10E% then this would indicate a likely win
for an each way bet. However, such an analysis of the poten-
tial value of a shared highest probability prediction is beyond
the scope of this paper.

We divided the match data into disjoint subsets so that
some could be used for training and separate data used to
check the accuracy of the learners. The data for each season
was divided up into three groups of ten matches and one
group of eight matches, organised chronologically. We
maintain the ordering of games and always organise the
training so that the training data set are chronologically
immediately before the test data set. For comparison we
also used each complete season’s data for training and test
set for the learners. This again prejudices the results against
the expert BN because this will tend to overestimate the
accuracy of all the other learners. The machine learners
were tested with both our general model data and with the
data used by the expert BN. Using the two data sets allows
for a direct comparison with the same, expert chosen, data
set and a more general comparison with a data set a non
expert might choose. The results for both the general data
and the expert chosen data, shown in Tables 1 and 2, are
similar. Where changes in classiWcation error are mentioned
they are relative to the error obtained by choosing the most
common result from the training data.

4. Results analysis

In this section, we compare the accuracy of the diVerent
models’ predictions (for some general information on
making comparisons between learners see [12]). We also look
 P
ROOF

Table 1
Comparison of learner accuracy with expert model data

Train period–Test period Number of correct predictions by learner

Most common MC4 Naive BN Hugin BN Expert BN KNN

95/96–95/96 season 16 (42.11%) 28 (73.68%) 26 (68.42%) 21 (55.26%) 20 (52.63%) 37 (97.37%)
96/97–96/97 season 18 (47.37%) 30 (78.95%) 31 (81.58%) 26 (68.42%) 25 (65.79%) 37 (97.37%)
Average for full seasons 17 (44.74%) 29 (76.32%) 28.5 (75.00%) 23.5 (61.84%) 22.5 (59.21%) 37 (97.37%)

Period 1–period 234 95/96 12 (42.86%) 8 (28.57%) 9 (32.14%) 8 (28.57%) 14 (50.00%) 12 (42.86%)
Period 12–period 34 95/96 7 (38.89%) 6 (33.33%) 6 (33.33%) 3 (16.67%) 10 (55.56%) 7 (38.89%)
Period 123–period 4 95/96 2 (25.00%) 2 (25.00%) 2 (25.00%) 2 (25.00%) 3 (37.50%) 2 (25.00%)
Sum for 1995/1996 periods 21 (38.89%) 16 (29.63%) 17 (31.48%) 13 (24.07%) 27 (50.00%) 21 (38.89%)

Period 1–period 234 96/97 11.5 (41.07%) 10 (35.71%) 13 (46.43%) 11 (39.29%) 19 (67.86%) 11 (39.29%)
Period 12–period 34 96/97 7.5 (41.67%) 7 (38.89%) 10 (55.56%) 3 (16.67%) 10 (55.56%) 5 (27.78%)
Period 123–period 4 96/97 5 (62.50%) 2 (25.00%) 5 (62.50%) 2 (25.00%) 3 (37.50%) 1 (12.50%)
Sum for 96/97 periods 24 (44.44%) 19 (35.19%) 28 (51.85%) 16 (29.63%) 32 (59.26%) 17 (31.48%)

Period 23 95/96–period 4/1 95/97 6 (33.33%) 4 (22.22%) 6 (33.33%) Unavailable 9 (50.00%) 7 (38.89%)
Period 234 95/96–period 1 96/97 4 (40.00%) 2 (20.00%) 4 (40.00%) 3 (30.00%) 6 (60.00%) 3 (30.00%)
Period 34 95/96–period 12 96/97 8 (40.00%) 6 (30.00%) 8 (40.00%) 11 (55.00%) 15 (75.00%) 7 (35.00%)
Period 4 95/96–period 123 96/97 6 (20.00%) 8 (26.67%) 6 (20.00%) 10 (33.33%) 22 (73.33%) 8 (26.67%)
Period 4/1 95/97–period 23 96/7 6.67 (33.33%) 7 (35.00%) 8 (40.00%) 7 (35.00%) 16 (80.00%) 7 (35.00%)
Season 95/96–season 96/97 13 (34.21%) 8 (21.05%) 13 (34.21%) 20 (52.63%) 25 (65.79%) 15 (39.47%)
Sum for cross season periods 43.67 (32.11%) 35 (25.74%) 45 (33.09%) 51 (43.22%) 93 (68.38%) 47 (34.56%)

Overall average percentage 40.05% 41.72% 47.86% 39.69% 59.21% 50.58%
Overall disjoint training/data 38.48% 30.19% 38.81% 32.31% 59.21% 34.98%
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eVecting the outcome of the games. Note that, because of
space limitations, we do not include the full set of data and
models. This is, however, all available on-line here [4].

4.1. The MC4 Learner

Decision tree learners like MC4 are good at dealing with
relatively static situations, that is, situations in which the
relationships between the various attributes are Wxed. We
were not sure how true this was of the Spurs team, and its
performances, over the period being examined. The overall
classiWcation error of the MC4 learner for disjoint training
and test data sets in the general model was 69.81% and
61.35% for the expert chosen data.

4.1.1. Complete seasons
The basic tree produced by MC4 when looking at the

general model data for the 1995/1996 season is a fairly sim-
ple tree using only 6 of the available 30 attributes, the play-
ers Dozzell, Campbell, and Nethercott, the venue and the
opposing team ranking. The tree, Fig. 2, shows Dozzell as a
key player3. For the 1995/1996 season the MC4 analysis

3 It is interesting to note that after seeing this analysis the expert stated
that while he suspected Dozzell was a key player this was not the general
opinion at that time and he thus left Dozzell out of the expert BN.
T
give a reduction in the classiWcation error of 34.57% and
23.68% for the general and expert models, respectively.

An analysis of the 1996/1997 seasons matches produced
a slightly more complex tree (which can be seen in [4]),
using 8 rather than 6 attributes. MC4 analysis gives a
reduction in the classiWcation error of 31.58% using the
general model and a reduction of 21.05% using the expert
chosen data.

4.1.2. Separate training and test data – single season
The performance of the MC4 learner was, as expected,

less impressive when it was only given part of a season’s
data and used to predict the remainder. The classiWcation
error for the tests using general model data from 1995/1996
season increased by 9.26%, and the same tests for the 1996/
1997 season showed an increase in the error of 9.25%. The
learner faired slightly better with the expert chosen data
giving an increase in error of 7.41% and 5.55% for the 1995/
1996 and 1996/1997 seasons, respectively. The performance
of the learner did not seem to improve with increasing
amounts of training data. The trees built by MC4 with
increasing data develop towards that built with the full sea-
son’s data.

The performance of the learner over all Wve cross season
periods, for the general model, was quite poor. The classiW-
cation error for the general model averaged over all the
cross season tests increased by 6.37%. The learnt tree for the
ED P
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Table 2
Comparison of learner accuracy with expert model data

Train period–Test period Number of correct predictions by learner

Most common MC4 Naive BN Hugin BN Expert BN KNN

95/96–95/96 season 16 (42.11%) 25 (65.79%) 22 (57.89%) 23 (60.53%) 20 (52.63%) 27 (71.05%)
96/97–96/97 season 18 (47.37%) 26 (68.42%) 25 (65.79%) 26 (68.42%) 25 (65.79%) 32 (84.21%)
Average for full seasons 17 (44.74%) 25.5 (67.11%) 23.5 (61.83%) 24.5 (64.47%) 22.5 (59.21%) 29.5 (77.63%)

Period 1–period 234 95/96 12 (42.86%) 8 (28.57%) 7 (25.00%) 8 (28.57%) 14 (50.00%) 9 (32.14%)
Period 12–period 34 95/96 7 (38.89%) 5 (27.78%) 9 (50.00%) 0 (0.00%) 10 (55.56%) 8 (44.44%)
Period 123–period 4 95/96 2 (25.00%) 4 (50.00%) 3 (37.50%) 2 (25.00%) 3 (37.50%) 4 (50.00%)
Sum for 1995/1996 periods 21 (38.89%) 17 (31.48%) 19 (35.19%) 10 (18.52%) 27 (50.00%) 21 (38.89%)

Period 1–period 234 96/97 11.5 (41.07%) 11 (39.26%) 12 (42.86%) 13 (46.43%) 19 (67.86%) 7 (25.00%)
Period 12–period 34 96/97 7.5 (41.67%) 6 (33.33%) 8 (44.44%) 6 (33.33%) 10 (55.56%) 8 (44.44%)
Period 123–period 4 96/97 5 (62.50%) 4 (50.00%) 2 (25.00%) 2 (25.00%) 3 (37.50%) 3 (37.50%)
Sum for 1996/1997 periods 24 (44.44%) 21 (38.89%) 22 (40.74%) 21 (38.89%) 32 (59.26%) 18 (33.33%)

Period 23 95/96–
period 4/1 95/97

6 (33.33%) 7 (38.89%) 7 (30.89%) 7 (30.89%) 9 (50.00%) 8 (44.44%)

Period 234 95/96–
period 1 96/97

4 (40.00%) 7 (70.00%) 3 (30.00%) 6 (60.00%) 6 (60.00%) 5 (50.00%)

Period 34 95/96–
period 12 96/97

8 (40.00%) 14 (70.00%) 9 (45.00%) 11 (55.00%) 15 (75.00%) 11 (55.00%)

Period 4 95/96–
period 123 96/97

6 (20.00%) 6 (20.00%) 8 (26.67%) 4 (13.33%) 22 (73.33%) 7 (23.33%)

Period 4/1 95/97–
period 23 96/97

6.67 (33.33%) 6 (30.00%) 8 (40.00%) 6 (30.00%) 16 (80.00%) 8 (40.00%)

Season 95/96–season 96/97 13 (34.21%) 22 (57.89%) 13 (34.21%) 21 (55.26%) 25 (65.79%) 14 (36.84%)
Sum for cross 

season periods
43.67 (32.11%) 62 (45.59%) 48 (35.29%) 55 (40.44%) 93 (68.38%) 53 (38.97%)

Overall average percentage 40.05% 45.77% 42.26% 40.58% 59.21% 47.21%
Overall disjoint 

training/data sets
38.48% 38.65% 35.74% 32.62% 59.21% 37.06%
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end of the 1995/1996 season, period 4, and the beginning of
the 1996/1997 season, period 1, is the largest of the trees for
any two period group. This may indicate that signiWcant
changes take place between seasons, which would not be
contradicted by the slight drop in performance of cross sea-
son tests compared to similar intra-season tests. There is
also a drop in the predictive ability of the most common
test result which means that overall for the cross seasons
tests the classiWcation error from the MC4 learner was
6.37% worse than that from choosing the most common
test result. Over the same period the expert chosen data
gave a better result with an average reduction in the error
of 13.48%.

4.2. Naive Bayesian learner

While the attributes of the problem do not adhere to the
strict independence assumption of the naive Bayesian
learner we would expect there to be a reasonable match and
thus for this learner to perform relatively well. This is
reXected in that for non-overlapping training and test data
sets on the general model this learner came second overall
with a classiWcation error of 61.19%. Interestingly on the
expert chosen data the naive Bayesian learner only came in
Wfth best with a classiWcation error of 64.26%.

4.2.1. Complete seasons
For the 1995/1996 season the Naive Bayesian learner

correctly predicted the result of 26 and 22 of the 38 games
in the general and expert models respectively. This is a
reduction in the classiWcation error of about 26.31% and
15.78%. The naive Bayesian classiWer gives no direct indica-
tion of the importance of any given attribute. However,
looking at the NPT for the classiWer in the general model
we can see that the six most signiWcant attributes in
descending order are: Team Ranking, Dozzell, Edinburgh,
Anderton, Du-mitrescu, and Calderwood. There is some,
limited, agreement between MC4 and the naive Bayesian
TED P
ROlearner on the signiWcant attributes, they agree on the two

most important of the thirty attributes for the 1995/1996
season. For the 1996/1997 season the Naive Bayesian
learner correctly predicted the result of 31 and 25 of the 38
games for the general and expert models, respectively. This
is a reduction in the classiWcation error of about 34.21%
and 18.42%.

4.2.2. Separate training and test data – single season
The results for the 1995/1996 season showed the average

classiWcation error to be 7.41% and 3.70% higher for the
general and expert data sets, respectively. However, for the
1996/1997 season the general model classiWcation error was
7.41% lower while that for expert data set model increased
by 3.70%. Most classiWers achieved better results for the
1996/1997 season than the 1995/1996 season which may
indicate greater stability in the team in the later season.

4.2.3. Separate training and test data – cross seasons
The cross season results for the naive Bayesian learner

were roughly comparable to its in-season results. Overall it
achieved a classiWcation accuracy of 33.09% and 35.29% for
the general and expert models which only bettered the most
common classiWer by 0.98% and 3.18%, respectively. Ignor-
ing the case using the same training and test data for the
complete seasons, the naive Bayesian learner came out sec-
ond best overall on the general model and Wfth overall on
the expert model.

4.3. Data driven Bayesian learner

The BNs for the data driven Bayesian learner were gen-
erated using the structural learning wizard from the Hugin
Developer version 6.1 program. The process used was to
run the program using an initial Level of SigniW-

cance of 0.1. If no link directed to the result node was
formed the process was rerun doubling the Level of

SigniWcance until a network with at least one link
OF
Fig. 2. Decision Tree for the general model 95/96 season with error estimates.
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directed to the result node was achieved. Since, in this prob-
lem all of the nodes except the result node have their values
speciWed any nodes in the network with no links directed to
the result node were removed. The remaining network was
used for the testing. The overall classiWcation error of the
various learnt networks for disjoint training and test data
sets was 67.69% and 67.38% for the general and expert
models, respectively.

4.3.1. Complete seasons
The learned network using the general data for 1995/

1996 season is shown in Fig. 3. It is possibly signiWcant
that the two nodes with the greatest number of dependen-
cies are dozzell and wilson. We know from our other anal-
ysis that these are two important players, but with the
network as shown we are unable to usefully include them.
A crucial feature of this network is the result node has no
children and its only parent is the team_ranking node.
Since, in this problem the data for all the nodes except
result are speciWed, we can infer the outcome of the game
simply by knowing the quality of the opposition, the other
attributes become irrelevant if the team ranking is speci-
Wed. See Section 6 for further comment on this issue.
Using the quality of the opposing team it is possible to
correctly predict the outcome of 21 of the 38 games for the
1995/1996 season. This amounts to a reduction in the clas-
siWcation error of 13.15%. Using the expert data for the
1995/1996 season the network obtained is that shown in
Fig. 4. This network correctly predicted 23 of the 38
games for the season a reduction in error of 18.42%. The
Hugin BN learnt networks for the general and expert
models for the 1996/1997 season are identical, consisting
TED P
ROOFof the team_ranking and result nodes. These particular

networks were extracted using a Level of SigniW-

cance of 0.1 for both models.

4.3.2. Separate training and test data – single season
It is interesting to note that for the general model the

attributes chosen by the Hugin learner for the periods in
1995/1996 season are a subset of those chosen by the MC4
learner for the same periods. There is a less strong relation-
ship for the general model between the chosen attributes of
the Hugin and MC4 learners for the 1996/1997, but still a
lot of shared attributes. This is reasonable given that both
learners are presumably choosing attributes with a strong
correlation with the result. For both seasons the intra-sea-
son average classiWcation error using the general data
increased by 14.81%. Using the expert data set the average
intra-season classiWcation error increased by 20.37% and
5.55% for the 1995/1996 and 1996/1997 seasons, respec-
tively Fig. 5.

Fig. 4. Learnt BN for the expert model 95/96 season with Level of

SigniWcance 0.1.
UNCORRE
Fig. 3. Learnt BN for the general model 95/96 season with Level of SigniWcance 0.1.
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418



8 A. Joseph et al. / Knowledge-Based Systems xxx (2006) xxx–xxx

KNOSYS 1562 No. of Pages 10; Model 5+
ARTICLE IN PRESS

22 June 2006 Disk Used  Sasi (CE) / Selvi (TE)
UNCORREC

4.3.3. Separate training and test data – cross seasons
Similar to the intra-season networks there is a striking

similarity between the attributes chosen by the Hugin
learner and the MC4 algorithm for the general model. We
encountered a problem with the network produced by the
Hugin learner for the period 2 and 3 general model data in
the 1995/1996 season. This network crashed when we tried
to run it so no results could be obtained for this training
period. The classiWcation error for the cross season data
showed reductions of 11.11% and 8.33% for the general and
expert data sets, respectively.

4.4. K-nearest neighbour

The IB classiWer from the MLC++ library is a version of
the K-nearest neighbour algorithm. In eVect the KNN algo-
rithm constructs a graph with as many dimensions as we
have attributes. We are not aware of an easy to interpret
representation for graphs of high dimension so we provide
no visual representation of the model constructed by this
learner. We chose to use 3 neighbours for the voting com-
parison in this paper. Overall for the disjoint training and
test data sets KNN proved to be an average performer with
a classiWcation error of 65.02% and 62.94% for the general
and expert models, respectively. However, as expected with
the same training and test data provided KNN performs
exceptionally.

4.4.1. Complete seasons
For the 1995/1996 season KNN correctly predicts the

result of 37 of the 38 games for the general model and 27
games for the expert model data. This amounts to an error
reductions of 55.26% and 28.94%. For the 1996/1997 season
the KNN algorithm again correctly predicts the result of 37
of the 38 games for the general model and 32 for the expert
model giving error reductions of 50.00% and 36.84%,
respectively.

4.4.2. Separate training and data – single season
With separate training and test data sets the perfor-

mance of the KNN learner dropped dramatically, and
interestingly providing more training data did not seem to
improve its performance. The overall classiWcation error
for the 1995/1996 season for both general and expert

Fig. 5. Learnt BN for the general model 96/97 season with a Level of
SigniWcance 0.1.
TED P
ROOF

models was 61.11% and for the 1996/1997 season it was
68.52% and 66.67% for the general and expert models,
respectively.

4.4.3. Separate training and data – cross seasons
Cross season performance was generally a bit weak for

the KNN learner. This might be because of an inability to
Wlter out unimportant attributes involved in cross season
changes. KNN produced an overall classiWcation error for
the cross season test periods of 65.44% for the general and
61.03% for the expert models respectively.

4.5. Validation and overWtting

In this problem we would not expect to get a completely
accurate classiWcation for the outcome of a given game. We
have only a small sample of data a situation that will tend
to cause a strong bias towards the speciWc data set. How-
ever, what we are interested here is in the relative perfor-
mance of each learner and, since each learner could be
expected to generate the same data set bias, the compari-
sons should be valid. We also have a situation in which the
underlying mechanisms that determine the performance of
the football team, the members of the team, their playing
positions, Wtness and tactics can all change. We would not
expect our chosen attributes to account for all of the likely
variations so its diYcult to determine what is a reasonable
level of predictive accuracy to expect.

4.6. Expert constructed Bayesian network

We already noted that the expert BN (Fig. 1) contained 3
nodes Attack, Spurs_Quality, and Performance, which do
not directly represent any of the supplied attributes or the
result. These nodes are a result of the model the expert has
built to capture more detailed relationships between the
attributes and the result than those provided by the other
learners. Another diVerence with the expert BN is that is
does not use the supplied training data for any of the tests.
The structure of the BN and the value of the NPTs have all
been Wxed by the expert. This means it is unable to take into
account any change that may occur outside of the expert
chosen attributes. Despite these limitations, and the inher-
ent analysis bias against the BN already discussed, the
expert BN was the most accurate predictor of the outcome
of the Spurs games with a classiWcation error over the dis-
joint training and test data sets of 40.79%. Since, the expert
BN only used the expert data set only one set of accuracy
Wgures are given.

4.6.1. Complete seasons
The expert BN is the only learner we would not expect to

appear overly accurate when looking at a complete season’s
data for both training and testing as it does not use training
data. The expert BN did better than the most common
value predictions for both the 1995/1996 and 1996/1997
seasons with a classiWcation error of 40.79%.
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4.6.2. Separate training and test data – single season
The expert BN had its poorest performance on the data

for the 1995/1996 season. This is not diYcult to understand
given that: Sherringham played in every match for Spurs
during that season; Anderton played only 6 matches in the
season; Armstrong played in all bar one game of the sea-
son; Wilson only played in midWeld in 3 games in the sea-
son. Thus given its chosen set of attributes there was little
variation the expert BN could produce over the 1995/1996
season. However, it is worth noting that with classiWcation
errors of 50.00% and 40.74% for the 1995/1996 and 1996/
1997 seasons, respectively, it was still the best classiWer for
the intra-season data.

4.6.3. Separate training and test data – cross seasons
The expert BN produced the best results of any of the

classiWers for every one of the cross season test periods.
Since, it does not use the training data, any changes that
occur between season not involving its key attributes are
ignored. This is really a case of the expert being able to
select the key features, and thus remove any other features
which could adversely eVect its predictions. However, in the
case of something like a football team where over the
course of a few seasons all the players may change it does
potentially limit the useful lifetime of any given expert con-
structed BN. The classiWcation error averaged 33.62% for
the cross season data.

5. Predictive accuracy

Tables 1 and 2 show the relative accuracy of the diVerent
learners in predicting the outcome of the games using the
general and expert model data, respectively. When using the
same training and test data for the complete seasons all of
the learners perform signiWcantly better than the most com-
mon assumption with KNN as the best performer. When
disjoint training and test data sets were used the perfor-
mance of the KNN learner dropped signiWcantly and the
expert BN outperformed all the other learners. The learners
generally performed similarly with both the general and
expert chosen data sets.

6. Conclusions and way forward

The process of machine learning, and learning in gen-
eral, provides us with two tangible beneWts, understanding
and prediction. While it is true that the better our under-
standing the better we should be able to make predictions,
it is possible to make accurate predictions with limited
understanding. We can treat these as qualitative and
quantitative results from the learning process. The under-
standing we gain from the learning process allows us to
construct models which reXect what we have learned
about the relationships between the attributes and the rel-
ative importance of each attribute. In terms of the foot-
ball matches it lets us see which of the selected attributes
are the crucial factors eVecting the outcome of a game,
TED P
ROOF

and gives some clues as to the relationships between some
of those factors.

The diVerent learning techniques vary in what they pro-
vide in terms of understanding of the interrelationships
between the attributes and the outcome of a game. The MC4
learner identiWes those attributes which have the largest eVect
on the outcome of the game. It shows their relationships to
each other in terms of their eVect on the outcome of the
game. This is a very simpliWed model of the game itself. The
naive Bayesian learner does not construct a model as such, its
model is predeWned. The learning process for the naive
Bayesian learner is then simply one of discovering the rela-
tive strength, and polarity, of the eVect of each attribute with
respect to the result. The learnt BN looks for correlations
between the values of the attributes including the result. Once
a BN is constructed using the correlations that lie within the
required sensitivity, then the NPTs can be learnt from the
available data. KNN does not construct a model as such, it
simply uses the existing data and provides a likeness compar-
ison with any test data. Thus KNN does not signiWcantly
enhance our understanding. The expert constructed BN rep-
resents the knowledge of the expert, that is, it is a model is the
expert’s belief of the interrelationships between the attributes
and their relative importance. One of the limitations of all the
non expert methods used here is that they only use the sup-
plied attributes. This is particularly limiting in its eVect on the
learnt BNs. In a problem where most of the supplied attri-
butes have deWned values the possible network structures for
a learnt BN are very restricted and, in eVect, become just
reduced versions of the naive Bayesian model. While they are
not observed the nodes Attack, Spurs_Quality, and Perfor-
mance in the expert BN help build a model of the games
Spurs played. This model gives us some additional insight
into how the observed attributes eVect the outcome of the
game.

Given the inherent analysis bias against the BN model,
its performance is genuinely impressive. Although the
model has now long been irrelevant (since it contains vari-
ables relating to key players who have retired or left the
club) the results here tend to conWrm the excellent potential
of BNs when they are built by a reliable domain expert. The
ability to provide accurate predictions without requiring
much learning data are an obvious bonus in any domain
where data are scarce. Moreover, the BN was relatively sim-
ple for the expert to build and its basic structure could be
used again in this and similar types of problems.

There are a number of directions in which future work
could be done. As pointed out this method of prediction is
inherently asymmetric. It should be possible to construct a
more symmetrical model using similar data for all the
teams in the league. However, this would involve at least
multiplying the amount of computational work by the
number of additional teams in the league. Another obvious
potential improvement would be to qualify the inherent
quality of each player who plays – a simple 3-point scale
based on objective criteria like international performances
could be feasible. This approach would provide much
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greater longevity to the model. Also, learning from the
expert BN here, we could use abstract nodes like ‘attack
quality’ and ‘defence quality’ to both improve the model
and ensure its longevity.
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