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Abstract

Recent advances in deep learning have significantly im-

proved the performance of video prediction, however, top-

performing algorithms start to generate blurry predictions

as they attempt to predict farther future frames. In this pa-

per, we propose a unified generative adversarial network

for predicting accurate and temporally consistent future

frames over time, even in a challenging environment. The

key idea is to train a single generator that can predict both

future and past frames while enforcing the consistency of

bi-directional prediction using the retrospective cycle con-

straints. Moreover, we employ two discriminators not only

to identify fake frames but also to distinguish fake contained

image sequences from the real sequence. The latter discrim-

inator, the sequence discriminator, plays a crucial role in

predicting temporally consistent future frames. We experi-

mentally verify the proposed framework using various real-

world videos captured by car-mounted cameras, surveil-

lance cameras, and arbitrary devices with state-of-the-art

methods.

1. Introduction

Video prediction is the problem of generating future

frames given a set of consecutive frames, which can be used

for abnormal event detection [17], video coding [19], video

completion, robotics [6], and autonomous driving. This

problem has long been studied, and recently, deep learning

has substantially improved the performance of video pre-

diction algorithms, based on the deep architecture models

such as convolutional neural networks (CNNs) and genera-

tive adversarial networks (GANs).

Conventional video prediction approaches [25] generally

compute pixel-wise motion, and then, predict the motion of

pixels in the future frame assuming the linearity of motions.

A number of deep learning-based methods [16, 29, 31] in-

herit this idea. They explicitly compute pixel-wise motion

through deep networks, e.g., FlowNet [18], and then, the

motion information is used to generate future frames to-

gether with training images. Although the idea is similar

Figure 1. A comparison of predicted frames in a driving envi-

ronment [5]. The state-of-the-art method, PredNet [17], predicts

blurry images as the time step increases, whereas the proposed

method shows relatively sharp and accurate images. Here, PredNet

uses ten images as input whereas our method takes four images to

predict future.

to the conventional approach, deep networks show promis-

ing results while handling complex motions in a dynamic

scene. One major drawback of this approach is that com-

puting pixel-wise motion is prone to errors owing to illumi-

nation change, occlusion, and abrupt camera motion.

A number of studies [2, 11, 13, 19, 24, 32] confirmed

that deep networks can predict realistic future images with-

out explicitly computing pixel-wise motion. The majority

of them takes CNNs to predict future frames [2, 11, 13, 19],

however, CNN-based methods often give blurry predictions

because they minimize the loss against all the training im-

ages [15]. To avoid the blurry artifact, Byeon et al. [2] ex-

ploited the convolutional long term short memory (ConvL-

STM) to capture both past and spatial contexts, which cur-

rently shows the best performance for a few of datasets. On

the other hand, GANs have received a considerable atten-

tion in predicting future frames [16, 24, 32], which simulta-

neously train a discriminator network and a generator net-
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Figure 2. An overview of the proposed method. Our network consists of one generator and two discriminators, frame generator G, frame

discriminator DA, and sequence discriminator DB . We propose a retrospective prediction scheme which allows the generator to predict

a past frame by utilizing the predicted future frame. Furthermore, we train the generator with reversed input sequences and impose retro-

spective cycle constraints for the generator by minimizing the reconstruction losses between predicted frames, e.g. x′

n+1 and x
′′

n+1. The

frame discriminator decides whether the predicted frame is real or fake and the sequence discriminator distinguishes a fake contained image

sequence from the real sequence to generate the temporally consistent frames.

work. The discriminator classifies the output image as real

or fake whereas the generator predicts an image that fools

the discriminator. Liang et al. [16] proposed to use dual

generators and dual discriminators, to generate both future

frames and pixel-wise motion at the same time.

Inspired by the success of deep networks in image gen-

eration [34, 35], we propose a deep network architecture for

generating future frames having several distinct features as

follows. First, we train a generator that is capable of pre-

dicting both future and past frames. We experimentally ver-

ify that this forward-backward compatible prediction yields

better prediction performance. Second, we impose the cy-

cle consistency between predicted frames with the aid of

the retrospective prediction scheme, as illustrated in Fig. 2.

The underlying idea of retrospective prediction is that if

the predicted future frame is realistic, the generator should

give a realistic past frame even the predicted future frame

is given as input. Above two features significantly improves

the future frame prediction performance, especially when

predicting multiple frames ahead as shown in Fig. 1. Third,

we propose a sequence discriminator that takes fake con-

tained sequences as input, in addition to distinguishing a

fake frame. The sequence discriminator is designed to in-

crease the robustness and temporal consistency of predicted

frames, which is crucial for video prediction.

2. Related Work

We review relevant studies related to video prediction us-

ing deep neural networks.

CNNs and recurrent neural networks (RNNs) have

gained huge popularity over the last few years and a num-

ber of studies [2, 13, 19, 33] applied CNNs and RNNs to

predict future frames from an image sequence. Kalchbren-

ner et al. [13] proposed the video pixel network, a proba-

bilistic inference model consisting of resolution preserving

CNN encoders and PixelCNN [30] decoders. They utilized

convolutional LSTM to combine the output of the encoders

over time and used dilated convolutions to achieve large re-

ceptive fields. Several more studies [2, 6, 19] adopted con-

volutional LSTM to take spatial and temporal contexts into

account. Lotter et al. [19] introduced a predictive neural

network not only to predict the movement of an object but
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also to learn internal representation, e.g., the pose of an ob-

ject, based on a series of repeating stacked modules. Byeon

et al. [2] proposed parallel multi-dimensional LSTM units

and blending units to capture past and spatial contexts, re-

spectively. Finn et al. [6] proposed the action-conditioned

convolutional LSTMs, which can predict different futures

of an object conditioned on the action of an agent, e.g.,

a robot which holds the object. Xue et al. [33] tried to

find an intrinsic representation of intensity changes, i.e.,

the difference image, through the conditional variational au-

toencoder. They used image-dependent convolution kernels

to synthesize a probable future frame from a single im-

age while considering various motions of an object. Ville-

gas et al. [31] used two separate encoders for motion and

content, but trained both encoders at simultaneously with

multi-scale motion-content residual and combination lay-

ers. Luo et al. [21] proposed an unsupervised approach to

predict long-term 3D motions based on the LSTM Encoder-

Decoder method for activity recognition.

After the invention of adversarial training [8], many

studies applied this scheme to generate images in the con-

text of image-to-image translation [10, 35], super resolu-

tion [15], style transfer [12], and video prediction [17, 24].

Mathieu et al. [24] employed an image gradient loss in a

multi-scale architecture, which significantly reduces blur-

ring artifacts. Liu et al. [17] exploited spatial and mo-

tion constraints in addition to intensity and gradient losses.

They computed optical flow through FlowNet [18] and the

flow information is used to predict temporally consistent

frames. On the other hand, many researchers tried to ad-

vance GANs [1, 22, 34, 35]. For example, WGAN [1] and

LSGAN [22] modified a loss function for the discriminator

to improve the stability of training. Zhu et al. [35] suggested

a network having two generators, one takes the source im-

age and the other takes the target image as input to predict

each other image, respectively. This scheme enables to train

an arbitrary pair of images. Similarly, Yi et al. [34] sug-

gested using two discriminators to generate multiple types

of outputs. Interestingly, Liang et al. [16] employed dual

generators and dual discriminators for future frame predic-

tion. Their network predicts pixel-wise motion and a future

frame at the same time, but it requires ground truth flow

information to train the network.

3. Proposed Method

Our framework consists of one generator and two dis-

criminators, frame and sequence discriminators, as de-

scribed in Fig. 2. The generator predicts both future and

past frames, even if when the input sequence contains a fake

frame. Moreover, the frame discriminator distinguishes fake

frames individually, whereas the sequence discriminator de-

cides whether the sequence contains fake frames or not.

For the clarification of explanation, we explain the nota-

tions used in the rest of the paper. Basically, we denote the

generator as G, the frame discriminator as DA, and the se-

quence discriminator as DB. The input sequence is defined

as

Xm:n = {xm, xm+1, ..., xn−1, xn} s.t. m < n, (1)

where xi ∈ R
2 is an image, m and n are indices to the first

and last frames, the length of the sequence is n − m + 1,

and the frames are chronologically ordered. Using Xm:n as

input, the generator G predicts a future frame xn+1. Here,

the predicted frame, i.e. the fake frame, is denoted as x′
n+1

with an apostrophe. Similarly, the reversed input sequence

is defined as

X̄m:n = {xn, xn−1, ..., xm+1, xm} s.t. m < n. (2)

Using X̄m:n, the generator predicts a past frame xm−1. We

also denote the sequence containing a fake frame as

X f
m:n = {xm:n−1 ∪ x′

n}, (3)

where the last frame is a fake assuming that x′
n is predicted

from xm−1:n−1. Similarly, its reversed case is defined by

X̄ f
m:n = {x̄m+1:n ∪ x′

m}. (4)

When the sequence with fake frames, X f
m:n or X̄ f

m:n, is

given as input, we denote predicted frames as x′′
n+1 or

x′′
m−1, to distinguish them from predicted frames x′

n+1 and

x′
m−1 without fake frames.

3.1. Objective function

For training, we minimize the following objective func-

tion,

L = Limage + λ1LLoG + λ2L
frame
adv + λ3L

seq
adv (5)

which consists of two reconstruction losses and two adver-

sarial losses. λ1, λ2, and λ3 are non-zero weights for bal-

ancing four loss functions.

3.1.1 Reconstruction losses

The two reconstruction loss functions are used to train the

generator. The first loss function is formulated by

Limage =
∑

(p,q)∈S
pair
m,n

l1(p, q), (6)

where l1(·, ·) stands for L1 error between two images and

Spair
m,n is a set of image pairs defined as

Spair
m,n = {(xm, x′

m), (xm, x′′
m), (x′

m, x′′
m),

(xn+1, x
′
n+1), (xn+1, x

′′
n+1), (x

′
n+1, x

′′
n+1)}.

(7)
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The first loss function (6) minimizes image reconstruction

errors for six different pairs of images. (xn+1, x
′
n+1) and

(xm, x′
m) are used to minimize prediction errors in forward

and backward directions. Therefore, the generator can pre-

dict both future and past frames. We define errors com-

puted by (xn+1, x
′′
n+1) and (xm, x′′

m) as retrospective pre-

diction errors because x′
n+1 is used to predict x′′

m and x′
m is

used to predict x′′
n+1. In other words, if the predicted image

x′
n+1 is realistic, the generator can also take x′

n+1 as one

of input frames to look back the past frame. The last two

pairs, (x′
m, x′′

m) and (x′
n+1, x

′′
n+1), take the role of cyclic

constraints because x′
m is generated by a forward sequence

and x′′
m is predicted by a backward sequence and similarly

for (x′
n+1, x

′′
n+1). We say this loss function is retrospective

and cyclic, because it utilizes frames generated through ret-

rospective prediction. These pairs further constrain consis-

tency between fake frames.

Similarly, we define the second reconstruction loss func-

tion as

LLoG =
∑

(p,q)∈S
pair
m,n

l1(LoG(p), LoG(q)).
(8)

This loss function computes difference between images

after applying Laplacian of Gaussian (LoG) [23] operation,

to better preserve image edges. In following study [3], they

efficiently suppressed low frequency information and high

frequency noise using laplacian pyramid for structurally en-

hanced image generation. We use the LoG operation to fo-

cus on the structural similarity that excludes noise.

3.1.2 Adversarial losses

Our proposed method is trained with two adversarial losses

as in (9): frame adversarial loss Lframe
adv , and sequence ad-

versarial loss L
seq
adv. The frame adversarial loss takes the

role of classifying a frame as real or fake, Specifically,

the frame adversarial loss determines whether four images,

(x′
n+1, x

′′
n+1, x

′
m, x′′

m), are real or fake as follows,

Lframe
adv = lA(Xm:n, xn+1) + lA(X

f
m:n, xn+1)

+ lA(X̄m+1:n+1, xm) + lA(X̄
f
m+1:n+1, xm),

(9)

where Xm:n, X f
m:n, X̄m+1:n+1, and X̄ f

m+1:n+1 denote

four input sequences for the generator. The loss function,

lA(p, q), is defined as

lA(p, q) = max
G

min
DA

[(DA(q)− 1)
2
+ (DA(G(p)))

2
].

(10)

Here, the generator G takes a frame sequence p and predicts

the future frame q, and DA aims to distinguish q from G(p).
Against an adversary DA, G aims at generating a fake frame

in which DA cannot distinguish it from the real frame. This

loss function is from the least square GAN [22].

Figure 3. Network architectures of the generator and discriminator

networks. Here, k, n, and s denote the kernel size, the number of

feature maps, and the stride, respectively. The generator network

learns to predict the next frame from the input image sequence,

and the discriminator network learns to classify between real or

generated frames from the generator network.

Similar to the frame adversarial loss, the sequence adver-

sarial loss takes the role of classifying an input sequence as

real or fake,

L
seq
adv = lB(Xm:n,Xm:n+1) + lB(X

f
m:n,Xm:n+1)

+ lB(X̄m+1:n+1, X̄m:n+1) + lB(X̄
f
m+1:n+1, X̄m:n+1),

(11)

where lB(p, r) takes two sequences as input,

lB(p, r) = max
G

min
DB

[(DB(r)− 1)
2
+ (DB(Gc(p)))

2
].

(12)

Here, the generator G takes p as input to predict a new

frame, G(p), then compare it with a real image sequence

r after concatenating p and G(p). For the sake of sim-

plicity, we denote the concatenated sequence as Gc(p) =
{p ∪ G(p)}, and all the procedures rely on a single gener-

ator G. DB decides Gc(p) as fake if at least one of the im-

ages is fake. This sequence discriminator encourages tem-

porally consistent and robust prediction because it compares

sequences rather than individual frames.

3.2. Network architecture

The generator and discriminator networks are illustrated

in Fig. 3, in which we adopt an existing network architec-

ture [12] for the generator network. The difference from

[12] is that our generator takes multiple images as input to

predict a future frame. The generator network consists of

4 convolution layers, 9 residual blocks [9], and 2 transpose

convolution layers. The discriminator network consists of 5

convolution layers with leaky rectified linear units. More-

over, the network structure is the same for both frame and

sequence discriminators except the number of input images.
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In addition, we use the instance normalization scheme [4]

for all layers of the generator and discriminator networks

except the input and output layers.

4. Experimental Results

We evaluated the proposed method with three different

types of real-world data and compared our results with the

state-of-the-art methods. We also performed ablation stud-

ies to analyze the importance of each loss term.

4.1. Datasets

Videos captured by car-mounted cameras: We use two

popular datasets that were recorded while driving various

places using vehicle-mounted cameras: KITTI [7] and Cal-

tech pedestrian [5] datasets. Since it was recorded in a driv-

ing car, it involves relatively large motions of pixels com-

pared to other datasets.

Human action videos: The UCF101 [28] dataset consists

of 13K video clips that cover 101 classes of human actions,

captured with a variety of moving objects in static and dy-

namic environments.

Surveillance videos: The surveillance videos are captured

at a fixed location. Therefore, it usually contains moving ob-

jects in a static environment. We used CUHK Avenue [26]

and ShanghaiTech Campus [20] datasets to evaluate our

method.

4.2. Training details

We set the length of an input sequence N to 4 and nor-

malized intensities to be [-1, 1]. We flipped the input se-

quence horizontally with a probability of 0.3 for data aug-

mentation. We used the Adam optimizer [14] for mini-batch

stochastic gradient descent method with momentum param-

eters, β1 = 0.5 and β2 = 0.999, a batch size of 1, and

a learning rate 0.0003 with linearly decay per every 100

epochs. For balancing different losses, we set λ1 = 0.005,

λ2 = 0.003 and λ3 = 0.003. The negative slope of

Leaky ReLU is set to 0.2. To evaluate the Caltech pedes-

trian dataset, we followed experimental protocols of Pred-

Net [19]. To train the network, we used the KITTI training

dataset, that contains 41K images, and adjusted the frame

rate of the Caltech dataset to 10 fps. We cropped the input

images to 128×160 and resized the resolution of cropped

images to 256 ×256. For the UCF 101 dataset, we used 10%

of uniformly sampled images as the test set and the others

for training as in previous studies [2, 24], for the fair com-

parison. For the surveillance datasets, we resized images to

256×256. To evaluate the method of Liu et al. [17], we cal-

culated errors by using the pre-trained model provided by

the authors.

Training took four days to train our network using the

KITTI dataset on a single NVIDIA GTX 1080ti GPU. For

Table 1. Quantitative evaluation of video prediction algorithms

using various datasets: Caltech pedestrian, UCF 101, and two

surveillance datasets. The MSE is multiplied by 1,000 to clearly

show the differences among different algorithms. The table com-

pares four and five algorithms for Caltech and UCF101 datasets,

respectively. † indicates that the corresponding method explicitly

computes pixel-wise motion from images. Numbers are copied

from original papers or citing papers. We put a dash if it is not

presented in the papers.

Method
Caltech pedestrian UCF101

MSE PSNR SSIM MSE PSNR SSIM

Last frame copy 7.95 23.3 0.779 4.09 30.2 0.89

PredNet [19] 2.42 27.6 0.905 - - -

DM-GAN† [16] 2.41 - 0.899 - - -

BeyondMSE [24] 3.26 - 0.881 - 32 0.92

ContextVP [2] 1.94 28.7 0.921 - 34.9 0.92

MCnet+RES† [31] - - - - 31 0.91

EpicFlow† [27] - - - - 31.6 0.93

DVF† [36] - - - - 33.4 0.94

Ours 1.61 29.2 0.919 1.37 35.0 0.94

Dataset Method MSE PSNR SSIM

CUHK Avenue
Liu et al. † [17] 0.51 34.8 0.98

Ours 0.39 35.2 0.98

ShanghaiTech
Liu et al. † [17] 0.93 31.4 0.97

Ours 0.64 34.1 0.97

Table 2. Quantitative evaluation of the proposed method accord-

ing to different lengths of input sequences. We differentiated the

length of input from 2 to 10 and computed prediction errors using

the Caltech pedestrian dataset trained on the KITTI dataset.

# of images 2 4 6 8 10

PSNR 29.167 29.222 29.006 28.940 29.009

SSIM 0.9193 0.9189 0.9208 0.9197 0.9189

testing, it took about 23ms to predict a single frame on a

single GPU.

4.3. Quantitative and qualitative evaluation

For quantitative evaluation, we use three metrics, mean

squared error (MSE), structural similarity square error

(SSIM), and peak signal to noise ratio (PSNR), that are fre-

quently used for video prediction. Lower is better for MSE

and higher is better for PSNR and SSIM.

Table 1 describes the quantitative evaluation result of the

state-of-the-art methods and the proposed method, with var-

ious datasets. The Caltech dataset is the most challenging

dataset due to the fast motion of a camera, therefore, the er-

rors tend to be high compared to other datasets. To deal with

abrupt camera motions, PredNet [19] and ContextVP [2]

took ten frames as input for this dataset whereas we used

four images as input. Nevertheless, our method shows the

best results in terms of MSE and PSNR and a couple of

predicted images are shown in Fig. 4.
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(a) PredNet [19] (b) ContextVP∗ [2] (c) Ours (d) Ground Truth

(e) BeyondMSE [24] (f) MCnet [31] (g) ContextVP∗ [2] (h) Ours (i) Ground Truth

(j) Liu et al. [17] (k) Ours (l) Ground Truth (m) Liu et al. [17] (n) Ours (o) Ground Truth

Figure 4. Qualitative comparisons of the predicted frame on the Caltech Pedestrian (a-d), UCF101 test set (e-i), CUHK Avenue test set,

and ShanghaiTech test set (j-o). Each row shows the prediction results from consecutive sequence and network trained on the according to

the dataset. Our method less artifact and blur around the ambiguity region that occur with fast motion, and denote the remarkable region in

color. (∗) This result is provided by ContextVP [2].
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For UCF101 dataset, we compare five state-of-the-art

methods. As in BeyondMSE [24], we exclude pixels in

static regions in computing errors. For this dataset, many

papers explicitly compute pixel-wise motion, i.e. MC-

net [31], EpicFlow [27], and DVF [36]. However, the per-

formance of prediction is lower than ContextVP [2] and the

proposed method, that directly generate future frames from

an input sequence. For the surveillance datasets, we com-

pare the proposed method with the method of Liu et al. [17].

Here, the average accuracy is higher than other datasets,

because the surveillance video contains a large number of

static regions. Figure 4 compares a few results of Liu et al.

and ours, where the method of [17] shows unexpected arti-

facts because of the failure of motion estimation for pixels

undergo large motions.

In addition, we also evaluate the sensitivity to the num-

ber of input frames. The optimal length of input sequences

is four and six in terms of PSNR and SSIM, respectively.

There is no big difference according to the number of in-

put images as shown in Table 2; however, it is interesting

to see that the use of two images showed better results than

using eight or ten images. We presume that the use of two

images is adequate for predicting the next frame in most

cases, as long as a sufficient amount of training data is used

for training. Hence, the larger number of input is desirable

for long-term prediction.

4.4. Multi­step prediction evaluation

The multi-step prediction experiment is carried out to see

how far the proposed method can predict future frames, e.g.,

fifteen frames later. The procedure of this experiment is as

follows. First, we predict the next frame from an input se-

quence, i.e. four consecutive images. Then, we construct

a new sequence by concatenating the last three frames of

the input sequence and the predicted frame. Then, the new

sequence is used to predict the next frame, this procedure

is repeated until the designated frame, e.g., fifteen frames

ahead, is predicted. This experiment was frequently adopted

to verify the temporal and spatial consistency of predicted

frames [16, 24, 36]. Table 3 shows quantitative evaluation

results. Though the errors of predicted images increase as

we predict farther future, the proposed method consistently

shows better results than PredNet [19], which takes ten im-

ages as input. Qualitatively, the proposed method tends to

show distorted images as shown in Fig. 5. However, pre-

dicted images do not suffer from blurry artifacts while cap-

turing important characteristics of future frames, e.g. lanes

and cast shadow. These experiments verify that the pro-

posed network architecture is good at predicting far future

frames, with the aid of retrospective cycle constraints and

multiple discriminators.

Table 3. A quantitative comparison of multi-step prediction results

with PredNet [19] and the proposed method. T indicates the time

step, e.g., if T is 1 then the predicted frame corresponds to the im-

age at 1 time steps ahead. The performance of prediction gradually

decreases as T increases.

Method T = 1 3 6 9 12 15

PredNet [19]
PSNR 27.6 21.7 20.3 19.1 18.3 17.5

SSIM 0.90 0.72 0.66 0.61 0.58 0.54

Ours
PSNR 29.2 25.9 22.3 20.5 19.3 18.4

SSIM 0.91 0.83 0.73 0.67 0.63 0.60

Table 4. An ablation study of the proposed method with various

loss configurations. ✔ and ✘ indicate that whether the correspond-

ing part, e.g. a discriminator, is used or not for training the net-

work. Forward and Backward with or without the retrospective

loss (w/ res. or w/o res.)

Forward Backward
Limage LLoG Lframe

adv
L
seq
adv PSNR SSIM

(w/o res.) (w/ res.) (w/o res.) (w/ res.)

✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ 26.3 0.892

✔ ✘ ✔ ✘ ✔ ✔ ✘ ✘ 26.8 0.899

✔ ✔ ✘ ✘ ✔ ✔ ✘ ✘ 26.9 0.900

✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ 27.5 0.904

✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ 28.4 0.912

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 29.2 0.919

4.5. Ablation study

We carried out an ablation study under various settings,

to see the impact of core ideas such as backward predic-

tion, frame discriminator, and sequence discriminator. Ta-

ble 4 compares quantitative results with different settings,

in the ascending order of PSNR from the top to the bottom

row. Overall, the absence of each module degraded the per-

formance of predicting future frames. It is important that

the absence of backward prediction implies that all the loss

terms related to the backward prediction are eliminated dur-

ing training; it reduces the number of input images into half

for the discriminators. Two different settings, forward pre-

diction with the frame discriminator and bi-directional pre-

diction with the frame discriminator, show near the state-

of-the-art performance. The use of all components, the pro-

posed method shows the best performing result, meaning

that the combination of all components is crucial for the

prediction of future frames.

5. Conclusion

We have proposed an unsupervised framework for pre-

dicting future frames, named as Retrospective Cycle GAN,

consisting of one generator and two discriminators. The

generator takes forward and backward sequences as input

during training and the consistency of bi-directional predic-

tion is leveraged through the retrospective cycle constraints.

In addition, we exploited two discriminators for adversarial
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Figure 5. A comparison of multi-step prediction results. The second results of each image (w/o res. cons.) represent without retrospective

constraint. The first sequence is captured by a forward moving vehicle while changing the lane and the second sequence contains a cast

shadow which is going to dominate the entire road. The proposed method can predict the important characteristics of future frames; for

example, the position of cars and lane marking as well as the area of cast shadows. More results can be found in the supplementary material.

training, the frame discriminator is for discriminating fake

frames likewise conventional GANs. The sequence discrim-

inator takes fake contained sequences to improve the robust-

ness and accuracy of predicted frames over time under the

temporal consistency. We experimentally verified the supe-

riority of the proposed method from various perspectives,

showing the state-of-the-art performance in predicting fu-

ture frames.
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