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Predicting gastric cancer outcome from resected
lymph node histopathology images using deep
learning
Xiaodong Wang 1,9, Ying Chen2,9, Yunshu Gao3,9, Huiqing Zhang4,9, Zehui Guan5, Zhou Dong5,

Yuxuan Zheng1, Jiarui Jiang1, Haoqing Yang1, Liming Wang1, Xianming Huang4, Lirong Ai5, Wenlong Yu6,

Hongwei Li7, Changsheng Dong7, Zhou Zhou7, Xiyang Liu 1✉ & Guanzhen Yu 7,8✉

N-staging is a determining factor for prognostic assessment and decision-making for stage-

based cancer therapeutic strategies. Visual inspection of whole-slides of intact lymph nodes

is currently the main method used by pathologists to calculate the number of metastatic

lymph nodes (MLNs). Moreover, even at the same N stage, the outcome of patients varies

dramatically. Here, we propose a deep-learning framework for analyzing lymph node whole-

slide images (WSIs) to identify lymph nodes and tumor regions, and then to uncover tumor-

area-to-MLN-area ratio (T/MLN). After training, our model’s tumor detection performance

was comparable to that of experienced pathologists and achieved similar performance on two

independent gastric cancer validation cohorts. Further, we demonstrate that T/MLN is an

interpretable independent prognostic factor. These findings indicate that deep-learning

models could assist not only pathologists in detecting lymph nodes with metastases but also

oncologists in exploring new prognostic factors, especially those that are difficult to calculate

manually.
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G
astric cancer (GC) is the second leading cause of cancer-
related death worldwide1 and remains one of the most
common malignant tumors in Asia2. The American Joint

Committee on Cancer (AJCC) TNM (tumor node metastasis) staging
system is a determining factor for prognostic assessment and
decision-making for stage-based therapeutic strategies. This system
has been revised several times in order to improve its predictive
power over past three decades based on detailed analyses of ongoing
large international databases. The 7th and 8th editions of the TNM
staging system have become regarded as the best for prognostic
prediction and have superior reproducibility as compared to previous
iterations of the TNM staging system3. In the evolution of these
editions, one of the most significant updates was to lymph node (LN)
staging. The evidence used in the AJCC N-staging system is based on
the number of metastatic LNs (MLNs) observed. N-staging itself,
however, is an independent factor in predicting the overall survival of
patients with gastric cancer4. Moreover, even at the same N stage, the
outcome of gastric cancer patients may vary dramatically.

In a routine clinical workflow for diagnosing LN metastases, an
intact LN is collected, formalin-fixed, paraffin-embedded, sectioned,
and then stained with hematoxylin and eosin (H&E). Under an
optical microscope, slides of all dissected lymph nodes are then
examined for morphology by a pathologist, who assesses the status
of each lymph node and the total number of lymph nodes on each
individual’s slides. This process is time-consuming and might be
easily misdiagnosed by a pathologist alone due to habituation5. One
question is that the number of LNs acquired may be less than the
number required for prognosis because of technical problems,
leading to imprecise N-staging. To resolve this problem, the ratio of
MLNs was introduced as an adjunct to N-staging; however, it was
not shown to be superior to AJCC N-staging6. Another question is
that visual examination is considered accurate in cases with high
metastatic areas, but is inaccurate in cases with micrometastases due
to inter- and intraobserver variability. After central pathology
review of the breast cancer patients with originally diagnosed as
pN0, 18% were restaged as pN0(i+), 3% as pN1mi, and 0.5% as
pN1+5. Moreover, the prognostic value of identifying micro-
metastases and macrometastases should be quite different. How-
ever, current evidence is not strong enough to support this
hypothesis7. Two reasons lead to this underappreciation of tumor-
area-to-MLN-area ratio (T/MLN). One reason is that micro-
metastases are easily missed by pathologists, due to our visual
system can easily miss small objects. Besides, precisely quantifying
T/MLN is time-consuming, and thus significantly increases the
workload of pathologists by ~3–5-fold. Digital pathological work-
flows offer significant potential for both avoiding misdiagnoses and
accurately quantifying T/MLN in a timely manner.

Breakthroughs in digital image analysis and artificial intelligence
(AI) have the potential to help pathologists accurately calculate
T/MLN and simplify these time-consuming tasks. With the
increasingly high capacity of whole-slide image (WSI) scanners8, a
digital workflow for accurate gastric cancer staging is increasingly
available. Deep learning has been successfully used for detection of
LN metastases in women with breast cancer. The algorithm per-
formance showed diagnostic accuracy comparable to pathologists9.
Algorithm-assisted pathologists demonstrate higher accuracy than
either the algorithm or the pathologist alone10,11.

Here, we show a deep-learning framework for analyzing LN
WSIs of GC and calculating T/MLN to reduce the workload for
pathologists and improve in TNM staging, ultimately bring about
more precise therapeutic strategies for oncologists.

Results
Workflow for the automatic analysis of LN WSIs. We focused
on the Changhai (CH) Hospital 2001–2005 GC cohort for

training and validation of the deep-learning framework, and the
other two cohorts for testing the framework (Fig. 1a). In addition,
we used the CH Hospital 2001–2005 GC cohort as the discovery
cohort, and the CH Hospital 2006–2008 GC group and Jiangxi
Provincial Cancer (JX) Hospital 2016–2019 GC group as the
validation cohorts for prognostic analysis. Specifically, based on
the dataset from CH Hospital 2001–2005, we selected 120 WSIs
with tumor metastasis and 60 WSIs without tumor metastasis
each year for training and validation to improve our framework
robustness and avoid bias. The remaining slides were used as a
test set. At the same time, from their clinical experience, doctors
not only labeled the tumor area but also labeled the tissues that
were easily misidentified by algorithms such as germinal centers
and sinuses. As shown in Fig. 1b, the outer edge of each LN was
labeled red, germinal centers were labeled blue, and tumor
compartments were labeled yellow.

The workflow for our study is outlined in Fig.1c. First, we
digitized H&E-stained LN pathology slides. Then, we selected a
small number of samples for detailed annotation and trained the
segmentation network and classification network (see “Methods”
for details). With trained networks, we analyzed all WSIs. Next,
we calculated the T/MLN for each GC patient based on the
output of our system. Finally, based on the T/MLN, the overall
survival of GC patients was analyzed by Kaplan–Meier (KM)
analysis according to the N stage for each patient. In addition, we
validated these results on two independent datasets: GC LNs from
CH Hospital 2006–2008 cohort and JX Hospital 2016–2019
cohort.

Deep-learning framework diagnosis of LNs with metastases.
The deep-learning framework we developed is shown in Fig. 2.
This framework consists of three phases—segmentation, classifi-
cation, T/MLN calculation (see “Methods” for details). The LN
segmentation network used the U-Net architecture to extract the
LN regions from the WSIs 1× magnification thumbnails. The
network was then fully trained through 700 marked WSIs
including 1321 LNs. We tested the performance of the segmen-
tation network on the validation set, and found a mean Jaccard
index of 95.8%, and a mean Dice score of 98.6%. An example of
the algorithm output is shown in Fig. 2b, where the adipose tissue
and muscle fibers outside the LNs were excluded. After the AI-
assisted diagnosis outputs the heatmaps, the pathologist reviewed
the high-confidence area of the heatmap and corrects the wrong
area on it.

As our classification network was used to analyze the WSIs of
all LN tissues in each patient, the speed of inference and precision
needed to be balanced. We conducted experiments with a variety
of mainstream classification networks on an NVIDIA TITAN V
GPU. These networks were fully trained with labeled WSIs. We
tested the accuracy and inference speed of each network on the
validation set, as shown in Supplementary Fig. 1. Compared to
Inception V412 and ResNet-101, ResNet-50 had a similar
accuracy but a more efficient inference speed. Therefore, we
used the Resnet-50 model as the classification network to analyze
all the LN WSIs. We tested the performance of the classification
network on the validation set and achieved a mean Dice score of
94.4%, a patch-level area under curve (AUC) score of 0.990, a
slide-level AUC (nodal metastasis: present or absent) of 0.986,
and an average free response-operating characteristic score of
0.872. An example of the output of the algorithm can be seen in
Fig. 2b, which shows the degree of suspicion of the tumor area by
heatmap.

After LNs outline and tumor composition were identified, it
was straightforward for the computational analysis system to
precisely calculate the proportion of tumor components and LNs
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(ranging from 0.01 to 100%). We observed that the first three
rows in Fig. 3 are typical examples of micrometastases with a
diameter of <2 mm, and the fourth row in Fig. 3 is a typical
example of macrometastases with a diameter of >2 mm. Accurate
calculation of T/MLN, especially for those < or ~2%, is beyond
the ability of the human eye, while this is the strength of our
algorithm.

Improving diagnosis process with AI-assisted analysis. We then
tested the performance of our framework with the original

diagnosis by pathologists in the CH Hospital 2001–2005 GC
cohorts. Because of loss, destruction, mildew, or thickened slides,
68 slides of 140 LNs in the archives were not available. Resliced or
manually identified sections were used to avoid the potential
biases caused by the above flaws to a degree. For the 64 slides of
128 LNs reserved above, we only diagnosed manually and
detected 35 MLNs. In the end, 857 of 859 cases were available for
further analysis. Supplementary Figure 2a, c shows that 94.5%
(14,401/15,234) of LNs were consistent, and 86.8% (744/857) of
cases’ N stage were consistent between the original diagnosis and
the only AI diagnosis.

Fig. 1 Data and workflow for analysis of cancer lymph node metastasis with deep learning. a Summary of each dataset. b Representative images for each

of the five tissue classes we labeled in the lymph node area. c H&E pathological slides were first scanned to obtain WSIs. The WSIs were then labeled for

training networks. The trained networks were used to analyze the patient’s WSIs and applied to clinical practice.
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Pathologists have better specificity in the diagnosis of tumor
tissues, while AI has better sensitivity and speed. The synergy of the
combination of pathologists and AI is more clinically meaningful
than the clinician versus AI comparison10,13. In addition, AI system
does not need to completely surpass the level of the pathologist,
which is also impossible, but to achieve the highest possible
sensitivity with an acceptable false-positive rate11. In this study, two
senior pathologists further reviewed all WSIs based on these
heatmaps, which is the AI-assisted mode. Supplementary Figure 2b,
d shows that while in 6.8% (360/5299) of the MLNs identified with
AI assisted, the tumor lesions were not found by only pathologists,
and in 1.5% (82/5299) of the MLNs diagnosed by pathologists, the
tumor lesions were not found by only AI. In summary, the
accuracy of only AI was 96.9% (14,761/15,234), sensitivity was
98.5% (5217/5299), and specificity was 96.1% (9544/9935). The
sensitivity depended on the specific tumor type, and the missed
diagnoses of AI were mainly mucinous adenocarcinoma and signet
ring cell carcinoma (Supplementary Fig. 3).

This resulted in revised N-staging for 69 cases (8.1%)
(Supplementary Fig. 2d). For the upstaging cases, the LNs that
were incorrectly diagnosed by the pathologist came from missed
diagnosis of micrometastasis (Supplementary Fig. 2e). The
diagnosis of these micrometastases requires scanning the WSI
at low and high magnification, which takes time and patience.
This implies that our framework can help further study
micrometastasis. For the downstaging cases, these were due to
the loss of the original LNs or miscalculation of the amount of
MLNs. Therefore, 4.6% (43/857) cases were under-staged by
pathologists due to missed diagnosis of micrometastases, lower
than the average level of published data (24%)5.

Actually, we observed how comparable the performance of the
AI-assisted analysis was to manual estimation depended on the

T/MLN (much better for AI assisted in <5% T/MLN, slightly better
in 5–50% T/MLN, and no significant difference in ≥50% T/MLN).

Regarding time effort, it takes a pathologist 3–15 min to
diagnose the N-staging of a single case, depending on the total
number of resected LNs (ranging from 16 to 50) and the difficulty
of classifying each LN. Furthermore, in order to calculate the
proportion of MLNs, the pathologist also has to count all LNs and
MLNs to estimate and record the proportion of each MLN, and
then calculate the proportion of MLNs for each case. This is a
time-consuming project for a pathologist. However, the proces-
sing time of one case with our framework depends on the number
of LNs. Currently, the average consumption of computing
classification probability for each batch patches of 128 was
430 ms on a single NVIDIA TITAN V GPU, and that for each
case was about one minute. If the AI-assisted diagnostic mode is
used, the review of macrometastasis takes almost no time,
micrometastasis ~10 s, and each patient ~1 to 5 min. Therefore,
only 2–6 min is needed for an AI-assisted pathologist to diagnose
a patient’s LN WSIs.

The scanning time of LNs using KF-PRO-120 or
NanoZoomer-S60 is currently 1–3min for a slide of 3–5 LNs at
×20, and this high-throughput digital scanner can process ~2000
LNs from 600 patients per day. This represents the average
demand at a tertiary medical center. Therefore, the scanning step
is not the bottleneck for automatic computational analysis of
N-staging.

Predicting cancer prognosis with T/MLN. Accurate and efficient
identification of MLN using our framework will greatly improve
the work efficiency and reduce the rate of missed diagnosis by
pathologists, thus possibly altering the workflow of pathologists.

Fig. 2 Deep-learning framework. a Slide analysis workflow. b Representative slide identified by deep learning. The slide is first input into the segmentation

network to extract the lymph node region and remove tissues such as fat and muscle outside the lymph node. The tissues in the lymph node region are

then classified by the classification network to identify the tumor region. The area ratio of tumor metastatic lymph nodes (T/MLNs) is finally calculated

based on the heatmaps.
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However, whether or not deep-learning based on LN analysis
could be used for prognostic prediction remained to be demon-
strated. The number of LNs and the ratio of MLNs, especially the
former (Fig. 4a), are closely associated with patient outcomes in
our study and other previous studies6. However, the current N-
staging system ignores an important factor, the area of metastatic
tumor cells in an MLN (T/MLN), which is difficult to acquire
without using deep learning, but does correlate with cancer
patient outcomes (Fig. 4b).

Based on the T/MLN from deep-learning precision calcula-
tions, we provide visualized evidence that with the improvement
of N-staging, the T/MLN is likely to increase from 0.270 ± 0.318
at N1, to 0.395 ± 0.293 at N2, and to 0.517 ± 0.243 at N3.
Moreover, even at the same stage, the T/MLN varies significantly

from patient to patient (Fig. 4c). As demonstrated in Fig. 4c, half
of the GC patients at the N1 stage had a T/MLN <5%, while the
other half had a wide range of T/MLN values, ranging from 5 to
100%. We thus came to the hypothesis that there may be T/MLN-
specific differences in the prognostic power; therefore, Cox
regression analysis was performed using the median T/MLN
(0.45) of the CH Hospital 2001–2005 cohort (Table 1). Using
univariable analysis, we found that a higher T/MLN (>0.45) was
correlated with poor outcome (hazard ratio [HR]= 2.05, 95%
confidence interval [CI] 1.66–2.54, P < 0.001). To evaluate the
independent prognostic ability of a T/MLN, we next performed
multivariable analysis. In a multivariable Cox regression that
included T/MLN, N stage, histological grade, age, size, histolo-
gical type, Lauren type, pathological tumor stage, surgery type,

Fig. 3 Visualization of the prediction results of four slides selected from the CH Hospital 2001–2005 cohort. We performed the analytical workflow on

each slide to identify the lymph node areas of the gastric cancer and generate the heatmap of the tumor areas. We selected four slides with different tumor

metastasis ratios. The redder the color, the higher the confidence of the tumor. aWSIs of lymph node tissue, b lymph node areas of segmentation network

output, c heatmaps of classification network output, and d partial magnification of the detected tumor area.
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blood transfusion, location. and sex, and T/MLN had an HR of
1.39 and a 95% CI of 1.10–1.75 (P= 0.007) (Table 1).

In a stratified analysis of cancer-specific survival, the HR
between gastric cancer patients with higher T/MLN and lower T/
MLN was similar in a subgroup of each patient characteristic
(Fig. 5). In a Cox regression model of N-stage grouping, cancer-
specific survival of gastric cancer patients with higher T/MLN was
shorter than that of gastric cancer patients with lower T/MLN
(N1 stage: HR= 2.23, 95% CI 1.29–3.85, P < 0.001; N2 stage:

HR= 1.65, 95% CI 1.12–2.43, P= 0.005; N3 stage: HR= 1.55,
95% CI 1.15–2.09, P= 0.020) (Fig. 4d–f). Thus, T/MLN can
provide patients with more prognostic information based on
N-staging.

Since the 7th AJCC TNM staging system14,15, the N3 stage is
subgrouped to N3a (metastasis in 7–15 regional LN) and the N3b
(metastasis in >15 regional LN). We found that the patients with
low-T/MLN have a better prognosis than those with high-T/MLN
in the N3a stages (HR= 1.47, 95% CI 1.06–2.04, P= 0.021)

Fig. 4 Kaplan–Meier analysis of cancer-specific survival and distribution statistics of T/MLN in the N stage with low-T/MLN and high-T/MLN at the

CH Hospital 2001–2005 cohort. a KM curve with the N stage. b KM curve with the T/MLN. c Distribution of T/MLN with the N stage (n= 127 patients at

N1 stage; n= 153 patients at N2 stage; n= 236 patients at N3 stage). In the violin plot, red lines indicate the median. d KM curve at N1 stage. e KM curve at

N2 stage. f KM curve at N3 stage. P values were determined by two-sided log-rank test.

Table 1 Univariate and multivariate cancer-specific survival analysis of CH Hospital 2001–2005 gastric cancer cohort.

Variable Univariable Multivariable

HR 95% CI P value HR 95% CI P value

T/mln (1: ≤0.45; 2: >0.45) 2.05 1.66, 2.54 <0.001 1.39 1.10, 1.75 0.007

N stage (1–3: n1–n3) 1.88 1.63, 2.16 <0.001 1.72 1.48, 2.00 <0.001

Pathological tumor (t) stage (1–4: t1–t4) 1.69 1.43, 1.99 <0.001 1.30 1.10, 1.576 0.004

Size (1: ≤5 cm; 2: >5 cm) 1.55 1.25, 1.91 <0.001 0.94 0.74, 1.18 0.577

Histological grade (1–3) 1.24 1.03, 1.49 0.023 1.30 1.07, 157 0.008

Surgery type (1: radical; 2: palliative care) 2.97 2.33, 3.77 <0.001 2.13 1.64, 2.76 <0.001

Age at surgery, years (1: ≤60; 2: >60) 1.66 1.34, 2.05 <0.001 1.33 1.07, 1.66 0.011

Sex (1: male; 2: female) 0.97 0.77, 1.21 0.767 – – –

Histological type (1: adenocarcinoma; 2: other) 1.01 0.76, 1.34 0.945 – – –

Lauren type (1: intestinal; 2: diffuse or mixed) 1.24 0.99, 1.55 0.061 – – –

Blood transfusion (1: no; 2: yes) 1.94 1.56, 2.41 <0.001 1.42 1.12, 1.80 0.004

Location_pylorus – – 0.003 – – 0.161

Location_cardia 1.34 0.98, 1.84 0.065 1.04 0.76, 1.43 0.806

Location_whole stomach 1.82 1.29, 2.57 0.001 1.21 0.84, 1.32 0.313

Location_gastric body 1.03 0.79, 1.33 0.838 0.80 0.61, 1.04 0.096

P values were determined by two-sided log-rank test.

T/MLN ratio of tumor area to metastatic lymph node area, HR hazard ratio, CI confidence interval.
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Fig. 5 Forest plot of T/MLN for gastric cancer patients in the analysis of cancer-specific survival from the CH Hospital 2001–2005 cohort. HRs with

95% CIs in stratified survival analysis with higher T/MLN and lower T/MLN, including age, sex, histological type, N stage, pathological tumor stage, tumor

size, histological grade, surgery type, blood transfusion, and location. P values were determined by two-sided log-rank test. Error bars represent the 95%

CIs. HR hazard ratio.
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(Supplementary Fig. 4a). Due to the insufficient number of
patients with N3b stage (46 patients), it is not significant in N3b
stage (HR= 2.13, 95% CI 0.83–5.45, P= 0.108) (Supplementary
Fig. 4b).

Whether micrometastases have the same prognostic value as
macrometastases was not well-studied. Here, we analyzed the
prognostic staging performance of LN micrometastasis with the
records corrected by the “AI-assisted model.” As shown in
Supplementary Fig. 4c, N-staging can be further grouped
according to whether there is micrometastasis (P < 0.001),
especially in the N1 stage. However, T/MLN is better than LN
micrometastasis in improving the prognostic staging performance
(P < 0.001) (Supplementary Fig. 4d). The C-index of only N stages
is 0.646, N stages with micrometastasis are 0.654, and N stages
with T/MLN are 0.694. This result indicates that the area, better
than the diameter, of tumor cell clusters does reflect the degree of
metastasis.

Performance on independent cohorts. Our framework was then
tested on independent datasets of LNs WSIs from the CH Hos-
pital 2006–2008 GC cohort (215 cases, with 2044 WSIs and 4343
LNs) and the JX Hospital 2016–2019 GC cohort (92 cases, with
904 WSIs and 2260 LNs). As demonstrated in Supplementary
Fig. 5, the performance of our framework remained satisfactory
without transfer learning. For those WSIs from the CH Hospital
2006–2008 cohort (Supplementary Fig. 5a, b), the sensitivity of
only AI was 97.9% (1730/1767) and specificity was 86.3% (2223/
2576). For those from JX Hospital 2016–2019 cohort, the sensi-
tivity of only AI was 96.0% (1013/1055) and specificity was 85.1%
(1026/1205) (Supplementary Fig. 5c, d). The sensitivity of the
framework was still high and the specificity was reduced, but it
was within the acceptable range. We also randomly selected
100 slides from JX 2016–2019 cohort to be scanned on Nano-
Zoomer-S60, and then analyzed after WSI standardization. The
experimental results are shown in Supplementary Fig. 6a–e. We
found that standardization can effectively alleviate the decrease in
model performance caused by differences in scanning between
different hospitals and different scanners. However, we also found
that several factors affect the performance of the framework,
including very poor staining of H&E-like dull staining, uneven
staining, or air bubbles, and poorly differentiated tumors are
significant obstacles to proper identification. For the better
application of AI-assisted diagnosis in the clinic, a standard
process for the preparation of H&E slides should be established
and popularized in the pathological workflow.

We then validated the association between the T/MLN and
prognosis of T/MLN in these two cohorts, and the results were
similar to the CH Hospital 2001–2005 cohort (Supplementary
Fig. 7 and Supplementary Table 2).

Our result is one of the very interesting findings to date based
on. The algorithm solved a problem observed before that
remained difficult to address, namely, the association between
the number of metastatic tumor cells and prognosis. All of these
findings demonstrate the importance of T/MLN in predicting the
outcome of patients with gastric cancer, which will serve as a
potential complement to the current AJCC TNM staging system.

Predicting tumor metastasis from WSIs. The visual prediction
power of our system helps to demonstrate the multidimensional
spatial information presented in sections of LNs with metastasis.
On the resulting heatmaps, each patch has a color that is pro-
portional to the probability of the tumor components. The dis-
tribution of different colors represents the visual trajectory of
tumor cells invading the LN. Heatmaps of these LNs indicates
that the majority of tumor cells eroded LNs beginning from

afferent lymphatic vessels around the LN (Fig. 6a). The hilum of a
LN is a passage of blood vessels, nerves, and efferent lymphatic
vessels. As demonstrated in Fig. 6b, a number of tumor cells
eroded the LN beginning from the hilum. After eroding a LN
either from lymphatic vessels or from the hilum, the tumor cells
gradually erode the internal tissue of a LN until all of the LN is
metastatic. Previous studies have shown associations between
spatial information of tumor-infiltrating lymphocytes (TILs) and
specific patterns of breast cancer and colorectal carcinoma
(hot, altered, and cold tumors), which were both prognostic
and predictive16. This signature of TILs can be classified using
deep-learning on pathology images17. More recently, a deep
convolutional neural network (Inception V3) has been used to
correlate genotype–phenotype information from non-small cell
lung cancer cases based on WSIs18. Therefore, our system
visualization tools are powerful in extracting hidden features from
WSIs of H&E-stained cancer tissues.

We found that the frequency of T/MLN varied significantly
(N1 stage: P= 0.015; N2 stage: P < 0.001; N3 stage: P < 0.001)
between D stations (lesser curvature of stomach) and E stations
(greater curvature of stomach) (Supplementary Fig. 8a). We
performed a survival analysis based on the differences in T/MLN
between D-station and E-station LNs in gastric cancer patients
(Supplementary Fig. 8b–d). We identified that cancer-specific
survival was shorter in patients with D-station T/MLN values less
than the corresponding E-station value in N1 stage and N2 stage
(N1 stage: HR= 1.46, 95% CI 0.82–2.59, P= 0.195; N2 stage:
HR= 1.23, 95% CI 0.82–1.86, P= 0.313), whereas patients in
N3 stage showed the opposite trend (HR= 0.85, 95% CI
0.63–1.13, P= 0.260). Although not significant, considering that
HRs is less informative in the case of the survival curves crossed
at certain time points, we did find a potential tendency with the
survival curves.

Discussion
Our study demonstrates that deep-learning framework is useful
for detecting LN metastases of gastric cancer from whole histo-
pathology slides. The high performance (sensitivity 98.5%, spe-
cificity 96.1%) of our framework not only helps resolve the time-
consuming workflow of identifying metastasized LNs from a large
amount of resected LNs and calculating the total number of
metastasized LNs, but also provides an objective and reproducible
way to assess the proportion of tumor cells in each LN. Inter-
estingly, ~6.8% of the LN WSIs misdiagnosed by a pathologist
were corrected by our framework, suggesting that our framework
would be helpful in assisting pathologists in their diagnoses. The
misdiagnosis matrices in Supplementary Fig. 2 detail the dis-
crepancies between original diagnosis and the output of our
framework followed by a pathologist’s confirmation, and shows
several representative examples in which our framework correctly
detected tumor cells missed by the initial diagnosing pathologist.
Without any doubt, these slides show micrometastases with very
few and poorly differentiated tumor cells, which also scatter in the
slide without gland formation—a classic histological feature of
adenocarcinoma.

The widely accepted AJCC N-staging classification of the sto-
mach is based on the number of LN with metastases, which
requires the status of each LN and the total number of LNs
recovered to be known for the selection of the appropriate N stage.
Generally, a minimum of 15 resected LNs is recommended for
adequate staging, which also contributes to superior overall sur-
vival after gastrostomy. N classifications based on the number of
metastasized LNs neglect an important detail, T/MLN. Before
actions are taken in a clinical practice, the knowledge of the
precise quantity of T/MLN should resolve two questions. The first
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is to develop an objective and reproducible way to access the
proportion of MLNs, which has been resolved by our deep-
learning-based method. The second is to confirm the therapeutic
and prognostic value of T/MLN. The diversity and heterogeneity
of tumor tissues hides significant prognostic information,
including stroma–tumor ratio, necrosis, cancer embolus, neural
invasion, blood vessels, and inflammation, many of which have
been only identified via deep learning. In various tumors, the
stromal compartment and TILs can be quantified and visualized

from H&E images using deep-learning models that can also pre-
dict patient outcomes and/or response to immunotherapies17,19.
In addition, there are some works that directly extract features
from the original pathological image for prognosis prediction20–23.
These works have indeed proved that some features of patholo-
gical images are related to the prognosis. However, they have a
common problem is that the interpretability is very weak, which
makes them clinically unavailable. In the present study, we
accurately calculated the proportion of tumor cells in each MLN

Fig. 6 Visualization of spatial information of metastatic lymph node displaying the potential process of tumor cells spreading in lymph nodes. a

Representative images of HE slides and heatmaps of MLNs and diagrammatic sketch of MLNs showing that tumor cells invaded lymph nodes through

afferent lymphatic vessels and gradually eroded the whole lymph nodes. b Representative images and heatmaps of MLNs and diagrammatic sketch of

MLNs showing that tumor cells invaded lymph nodes through the hilum of lymph nodes.
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and validated our deep-learning-based assessment as a prognostic
marker for human GC. In a stratified analysis of cancer-specific
survival, the HR between gastric cancer patients with higher T/
MLN and lower T/MLN was similar in subgroups of each patient
characteristic. To avoid bias based on the number of LNs, we
further performed survival analysis using T/MLN on the basis of
N stages. Not surprisingly, we found that deep-learning-
determined T/MLN values are highly capable of predicting out-
comes for GC patients at each N stage, especially at the N1 and
N2 stages. In addition, we also confirmed that micrometastasis can
indeed improve prognosis prediction. However, it is impossible to
calculate the diameter of disseminated metastases manually
(Supplementary Fig. 10a). For tumor cells that metastasized along
the subcapsular sinus, although long in diameter, the areas are
small, which could not reflect the real status of LN metastasis
(Supplementary Fig. 10b). Moreover, T/MLN has better prog-
nostic performance than micrometastasis in subdividing patients
at the same stage into two groups with different outcome.
Therefore, our two research questions were answered, and our
deep-learning-based algorithm could precisely give an objective
pathological evaluation of T/MLN, with T/MLN being prognostic
of OS in GC patients. Another two independent GC cohorts
during a later period yielded similar results with our algorithm.
Therefore, although it is necessary to validate its prognostic value
in larger and more diverse cohorts from other hospitals, we sug-
gest that T/MLN values may be of great utility when incorporated
into existing clinical N-staging workflows because of their con-
venience, reliability, and strong prognostic power.

Another advantage of our deep-learning framework is its
ability to identify hidden information from medical imaging in
human solid tumors. In the present study, visualized MLN
demonstrated two potential patterns for the metastatic modes of
tumor cells eroding LNs. This information will be of great help in
investigating the underlying mechanisms of tumor metastasis.
Overall, our study confirmed that a deep-learning framework is a
useful tool for assisting pathologists and oncologists in their
diagnosis and evaluation of WSIs of LNs, accompanied by pro-
viding quantitative and spatial assessments in the associated
heatmaps. This information can be crucial in selecting appro-
priate therapeutic strategies and predicting the overall survival of
GC patients.

The main limitation of this study is that our prognostic analysis
of T/MLN was a retrospective dual-center retrospective study of
gastric cancer from one nation. Whether it impacts the general-
izability of our algorithms in other regions and whether it affects
subsequent treatment also requires large-scale clinical trials. In
the future, we will validate this algorithm in large and separate
cohorts of various cancer patients from various regions. We will
also compare whether the sensitivity of our AI assistant system is
equivalent to immunohistochemical (IHC) staining. Moreover,
we will extend this recognition to histological subtypes and
Lauren classification of GC, as well as to non-neoplastic char-
acteristics, including necrosis, fibrosis, and TILs in the tumor
microenvironment. Recently, the International Gastric Cancer
Association proposed a new GC staging system. This system
shares the same TNM classification with the AJCC7 system, but
introduces N3a and N3b into the staging24. Some clinical studies
have also confirmed that this system improves the prognostic
prediction performance of TNM classification25. We believe that
T/MLN can be introduced into the TNM classification after
conducting a prospective multicenter clinical trial.

We believe that T/MLN is only one of these indicators, and
there will be more quantitative indicators to improve prognosis
staging. Finally, we will establish a cloud-based platform where
the WSIs of LNs will be passed to this platform with permission,
and our algorithm will automatically recognize MLN and give

accurate T/MLN. With the increasing amount of data available in
the future, we hope that this computational approach will help
pathologists and clinicians develop more accurate sub-N-staging,
thereby improving treatment decisions and outcomes for patients.

Methods
Dataset. WSIs of LNs of GC were obtained from CH Hospital and JX Cancer
Hospital. Characteristics of dataset and the overall computational strategy are
summarized in Fig.1 and Supplementary Table 1. We only included patients with a
malignant tumor of epithelial origin. Patients treated with neoadjuvant therapy
were excluded. Images of H&E-stained, formalin-fixed, paraffin-embedded sections
of diagnostic LNs from these cohorts were reviewed to choose images without
tissue processing artifacts (bubbles, section folds, and poor staining). Since the
importance of each single LN in N-staging, these slides with severe artifacts were
resliced and restained. Two pathologists performed an initial quality review of 2024
cases. Only these with a total number of resected LNs over 7 and good quality were
enrolled in this study. Finally, a total of 21,965 LNs from 1164 patients’ 9366 slides
were selected, out of which, 7736 had metastatic lesions. According to the 8th
AJCC TNM staging system26,27, we revised the original N-staging for all patients.
The GC LNs used comprised of three cohorts: one from CH Hospital during
2001–2005 (15,362), one from CH Hospital during 2006–2008 (4343) and one
from JX Hospital during 2016–2019 (2260) (Fig.1a). These LN slides were digita-
lized according to standard protocols to obtain WSIs28. Among these cases, we
selected GC cases with follow-up records and at least one tumor metastatic lesion
for prognostic studies (Supplementary Table 1). Detailed information of the GC
cases from CH Hospital 2001–2005 had been published previously29, and re-
followed up over the period from 2010 to 2012 in 516 of these cases.

Data preparation

Data annotation. The dataset for training networks was manually annotated by
pathologists using a web-based annotation program we developed. We train
pathologists to annotate by pen on the iPad. Next, we developed the labeling
protocol: Each WSI was annotated in detail by a pathologist. The pathologists
annotate the four types of tissue with different colors, and finally annotate the
outline of the LNs (Fig. 1b). For tumor tissue, the pathologist needs to label all. For
easily misidentified by algorithms such as germinal centers, fat, and sinuses,
pathologists should also label as much as possible. For these difficult to judge
tissues, the two pathologists would discuss it to give a final result.

Data standardization. The staining of digital tissue slides is filled with undesirable
color changes due to differences in raw materials, staining protocol, digital scan-
ners, and fading from long-term storage. In order to analyze WSIs from different
sources using our framework, we first standardized the staining of WSIs using
SPCN30 based on CH 2005 WSIs. Due to the WSI background digitized by the
scanner is not really white, we set the RGB channel cutoff of the background color
to [210, 210, 210] according to the statistical results. When calculating the global
stain color appearance matrixW, we sampled 32 patches with the background pixel
ratio <0.2 in each WSI. At the same time, when calculating the global stain density
map matrix H, we chose the robust pseudo-maximum of each row vector at 99.9%.
Our data standardization was performed at ×20 magnification, which shortens the
processing time by nearly five times, compared to ×40 magnification (original
image).

In addition, there are differences in the specimen-level pixel size of different
scanners. The ×40 objective lens of the Jiangfeng scanner is 0.2513 μm× 0.2513 μm,
and the Hamamatsu scanner is 0.2206 μm× 0.2206 μm. We also standardized the
WSIs of the Hamamatsu NanoZoomer-S60 scanner based on the Konfoong KF-
PRO-120 scanner.

Training segmentation network. The dataset we used to train the LN segmen-
tation network included 900 WSIs with LN markers. We randomly selected 700
WSIs for training and 200 WSIs for validation. We used Openslide to extract ×1
magnification thumbnails and generate a mask based on the doctor’s markup for
each thumbnail. In addition, to avoid the influence of visible variabilities in staining
on our model, we converted the data into grayscale in the data preprocessing stage
using decolorization31.

We adopted the U-Net architecture for the segmentation network, which
included an encoding module, a decoding module, and shortcut connections
between blocks of the same level and different paths. The encoding and decoding
modules extracted semantic information layer by layer so that the model extracted
rich features, and the skip connection combined low-level semantic features and
high-level semantic features to make the model more sensitive to texture and other
information. During the training process, we cropped images to 700 × 700 pixels,
used random cropping and rotation to augment our dataset. We also used a cross-
entropy loss function to calculate loss and used a stochastic gradient descent with a
momentum of 0.9, a weight decay of 1e− 4, and a batch size of 32 during training.
The initial learning rate was 0.001, and was then set to 0.001/2 after 20% of total
iterations, 0.001/8 after 40%, 0.001/16 after 60%, and 0.001/32 after 80%. The
training process was iterated 12,000 iterations.
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Training classification network. Our dataset for training classification network
included 900 labeled WSIs, including 300 WSIs without tumor metastases and 600
WSIs with tumor metastases. We randomly selected 500 WSIs with tumor
metastases and 200 WSIs without tumor metastases for network training, and the
remaining 200 WSIs were used to verify the network performance. The background
area (non-LN area) of each WSI was excluded based on the LN mask. We cut these
WSIs in 768 × 768 pixels windows at a magnification of ×20 with sliding step of 768
using the Openslide. Each 768 × 768 patch consists of nine 256 × 256 patches.

We implemented the classification network to classify LN regions into tumor
regions and lymphocyte regions. During training, we used color jitter in
torchvision transforms with parameters: brightness with a maximum delta of 64/
255, contrast with a maximum delta of 0.75, saturation with a maximum delta of
0.25, and hue with a maximum delta of 0.04. Patches were also randomly flipped
and rotated with multiplies of 90°.

Our experiments used binary labels, and a patch was called positive if the center
point was annotated as tumor. Due to the imbalance between the number of
positive and negative samples, we sampled the negative samples in each epoch to
ensure a positive and negative sample balance during training.

In order to improve the learning effect of the network on unconventional
lymphocytes, such as germinal centers and sinus tissues, which are easily
misidentified, we first added all these tissues to the negative sample set, and then
sampled from other normal tissues during each epoch. We used the neural
conditional random field32 as the classification network. VGG1933, AlexNet34,
ResNet-1810, ResNet-3410, ResNet-50, ResNet-10110, Inception V335, Inception
V4, and MobileNet V22 was used to extract features of patches, and the conditional
random field was used to model the spatial correlation of patches. The output of
the last layer of the network was the confidence of the tumor regions. The
parameters of each network were initialized using the ImageNet dataset pre-trained
model. We calculated the loss using the cross-entropy between the predicted
probability and the real label, and used a stochastic gradient descent with a
momentum of 0.9, a weight decay of 1e− 4, and a batch size of 1024 during
training. For each network, the initial learning rate was 0.001 and was then set to
0.001/2 after 10% of the total iterations, 0.001/4 after 20%, 0.001/8 after 40%, 0.001/
16 after 60%, 0.001/32 after 80%, and 0.001/64 after 90%. The training process was
iterated 80,000 iterations.

We then calculated the classification performance and reasoning efficiency of
each network, and finally selected ResNet-50 as the feature extraction module of
the classification network for subsequent experiments.

Performance verification
Reference standard. Two senior pathologists reviewed all slides to generate the
reference standard for these datasets. Due to high specificity of senior pathologists
in diagnosing tumor metastasis within LNs, most slides can be precisely diagnosed
based only on H&E. In clinical practice, IHC staining is considered to be the most
accurate method for assessing metastasis9,36,37. In our study, we used IHC
(CAM5.2, MAB-0687, Fuzhou Maixin Biotech. Co., Ltd) restaining to resolve the
slides of diagnostic uncertainty, without using for obvious metastases (Supple-
mentary Fig. 9). Finally, we restained a total of 50 WSIs.

Only AI mode. We analyzed 9366 WSIs of LN tissue in total. We first resized these
WSIs to a magnification of ×1 using the Openslide library, and then input these to
the segmentation network to get LN segmentation masks. Next, we cut each WSI
sequentially with a sliding window of 768 × 768 pixels with a sliding step of 256 at
×20 magnification and excluded patches outside the valid area of the LN seg-
mentation mask. We input the patches of each WSI into the classification network
and then obtained the classification confidence of each patch. We stitched the
classification confidences together based on the position of each patch and
obtained a heatmap for each WSI.

Since it is difficult for us to thoroughly annotate all WSIs, we used the MLN in
each WSI from the corrected clinical record as labels and calculated the MLN of
each WSI as the predicted value to test the performance of only AI.

AI-assisted mode. Three senior pathologists were involved in this study. Based on
the heatmap output by the framework, two of them who also made the reference
standards before this reviewed the original WSI region. First, the pathologists
checked the area of the original WSI highlighted in the heatmap to determine
whether it was tumor tissue, and then quickly reviewed the suspicious tumor area
with reference to the heatmap. Finally, the pathologists referred to the reference
standard to confirm the existence of missed diagnosis, and manually corrected the
wrong area of the heatmap. The third pathologist was required to help identify the
result in which the AI and pathologist’s cognition were inconsistent. If in doubt, we
used IHC to restain to give the final result. We define the above process as the AI-
assisted mode.

Obtaining T/MLN for all patients. We used the trained networks to analyze all of
the LN WSIs from the CH Hospital 2001–2005 GC cohort, the CH Hospital
2006–2008 GC cohort, and the JX 2016–2019 GC cohort.

The T/MLN of LN level is a ratio of the area of the tumor regions of a MLN to
the area of that MLN. T/MLN of patient level is the average of T/MLN for all of the
MLNs from each patient.

Based on the heatmaps pathologists reviewed, we calculated the area of the LN
and tumor (0.5 as the classification threshold) for all of the MLNs from each
patient. We then figured out the T/MLN using the Eq. (1),

T=MLN ¼
1

m

X

m

i¼1

Ai
tumor

Ai
MLN

� �

ð1Þ

where m is the number of MLNs, Atumor is the total number of tumor pixels in each
MLN, and AMLN is the total number of pixels of that MLN.

Statistics and reproducibility. At the end of the training phase, we used the
validation set to evaluate the performance of our segmentation and classification
networks. The validation set contained 200 WSIs. For the segmentation network,
we generated 200 ×1 magnification thumbnails as inputs. We used the Dice score
and Jaccard index38 to evaluate the performance of segmentation network with 0.5
as the segmentation threshold. For the classification network, we used the Dice
score and the metrics employed in CAMELYON16 challenge to evaluate our
classification model8. For slide level, the AUC score, accuracy, sensitivity, and
specificity (0.5 as the classification threshold) was used for performance evaluation.
For patch level, the average free response-operating characteristic curve was used
for evaluation, which was defined as the average detection sensitivity at six pre-
defined false-positive rates per slide: 1/4, 1/2, 1, 2, 4, and 8. At the same time, for
patch level, we also evaluated AUC, which is important for accurate calculation
of T/MLN.

We then measured the cancer-specific survival for each patient, as it is
considered to be the most common clinically relevant endpoint for GC patient
cohorts. Here, the definition of an event was limited to the death of the same cancer
patient. Follow-up time was calculated from enrollment to death or loss of follow-
up. When HRs are less informative in the case of the survival curves crossed at
certain time points, the survival curves will provide more intuitive information39.
Clinical and pathological markers were included in the multivariate analysis. We
also used Harrel’s concordance index (C-index) as a metric for assessing the
predictive performance. The two-sided Mann–Whitney test, Wilcoxon’s matched-
pairs signed-rank test, and Mantel–Cox log-rank test were used as appropriate. A
two-sided P value < 0.05 was considered statistically significant.

We tested the performance of the deep-learning framework and the prognostic
predictions using three independent cohorts without retraining the networks. All
attempts at replication were successful with similar results.

Hardware and software. The segmentation network and classification network
were trained using PyTorch v1.340 on servers equipped with eight NVIDIA TITAN
V GPU cards. All slides were digitized using KF-PRO-120, and part of the slides
was also scanned using NanoZoomer-S60. WSIs were formatted using OpenSlide
(https://openslide.org/). SPSS 25.0 was used for survival analysis. Scikit-learn was
used to calculate the AUC.

Ethical compliance. All patients in this study signed an informed written con-
sent form before the operation, which contained a statement on the pathological
tissue and clinical data for clinical research. This study was approved by the
ethics committees of the Changhai Hospital and Jiangxi Provincial Cancer
Hospital.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The publicly shared gastric cancer metastases imaging dataset to test the models in this

study is available at https://doi.org/10.6084/m9.figshare.13065986. The dataset consists of

500 WSIs of lymph node specimens, including 250 with tumor metastasis and 250

without tumor metastasis. The dataset is accessed under the approval of the Ministry of

Science and Technology of China (authorization number, 2020BAT1012). The remaining

datasets are not publicly available due to hospital regulations and patient privacy. Source

data are provided with this paper. The remaining data are available within the Article,

Supplementary information, or available from the authors upon request.

Code availability
All code related to this method was written in Python. Custom code related to the deep

learning models is available at https://github.com/MHMAILab/auto_lymph.
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