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The Gene Ontology (GO) Consortium has produced a controlled vocabulary for annotation of gene function
that is used in many organism-specific gene annotation databases. This allows the prediction of gene function
based on patterns of annotation. For example, if annotations for two attributes tend to occur together in a
database, then a gene holding one attribute is likely to hold the other as well. We modeled the relationships
among GO attributes with decision trees and Bayesian networks, using the annotations in the Saccharomyces
Genome Database (SGD) and in FlyBase as training data. We tested the models using cross-validation, and we
manually assessed 100 gene–attribute associations that were predicted by the models but that were not present
in the SGD or FlyBase databases. Of the 100 manually assessed associations, 41 were judged to be true, and
another 42 were judged to be plausible.

[Detailed lists of hypotheses including the curators’ comments on each hypothesis, are available at
http://llama.med.harvard.edu/∼king/predictions.html.]

The Gene Ontology Consortium (Gene Ontology Consortium
2000) provides a standardized vocabulary for the annotation
of gene attributes, which fall into the three general categories
of molecular function, biological process, and cellular com-
ponent. Organism-specific databases such as FlyBase (FlyBase
Consortium 2002), Saccharomyces Genome Database (SGD;
Cherry et al. 1998), Mouse Genome Database (MGD; Blake et
al. 2002), and WormBase (Stein et al. 2001), have codeveloped
this vocabulary, and have used it to annotate genes with the
attributes that the biomedical literature asserts that they hold.

These databases are incomplete because there are genes
whose attributes are not yet all known, and because there is
literature that has not yet been digested by the database cu-
rators. In such cases it is useful to have a prediction of
whether a gene has a certain attribute. Such predictions can
help to make the databases more complete (and consequently
more useful to researchers) by directing curators toward lit-
erature that they may have overlooked. Also, predictions that
are not presently supported by the literature provide new hy-
potheses that may be tested experimentally.

A variety of approaches for predicting Gene Ontology
(GO) attributes have been attempted. Natural language pro-
cessing was used in Raychaudhuri et al. (2002) to automate
the curator’s task of extracting gene–attribute associations
from literature abstracts. Others have assigned attributes to
genes on the basis of microarray data (Hvidsten et al. 2001) or
protein folds (Schug et al. 2002). These approaches are espe-
cially valuable for assigning attributes to genes with otherwise

unknown function. But once some attributes of a gene are
known, statistical patterns among the annotations them-
selves can be useful for predicting additional attributes. In this
paper, we model the probabilistic relationships between the
GO annotations using two approaches, one based on decision
trees and the other based on Bayesian networks. We assess the
models using cross-validation on the SGD and FlyBase data-
bases. We also manually assess 100 of those gene–attribute
associations that the models indicate are likely to hold but
that have not been annotated in the databases.

RESULTS
We downloaded the files containing the three branches of the
Gene Ontology (GO) and the lists of SGD and FlyBase anno-
tations from http://www.geneontology.org. These files are up-
dated frequently; the versions we used are from January 22,
2002. From these, we constructed a matrix Z for each organ-
ism, where Z(i,j) = 1 if gene i is associated with attribute j in
the database and Z(i,j) = 0 otherwise. The set of attributes
listed in the GO is organized as a directed acyclic graph
(DAG)—this is like a hierarchy in which GO terms are subdi-
vided into increasingly detailed or specific child terms; it dif-
fers from a hierarchy in that terms may have multiple parents,
not just multiple children. An edge from attribute j to at-
tribute k means that k is an instance of attribute j or a com-
ponent of attribute j, so that any gene associated with at-
tribute k is also associated with attribute j.

The gene association files usually contain explicit anno-
tations only at the most detailed levels that are supported by
the literature, but in constructing Z we also include those
associations logically implied by the GO DAG. Thus, Z(i,j) = 1
if gene i is explicitly annotated as having attribute j or any of
the descendants of attribute j in the GO DAG. We excluded
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annotations for the three attributes “biological process un-
known,” “molecular function unknown,” and “cellular com-
ponent unknown,” although in principle these are semanti-
cally different from the lack of any annotations, because
they indicate that someone has looked (Gene Ontology An-
notation Guide; http://www.geneontology.org/doc/GO.
annotation.html).

There are roughly 13,000 attributes in the GO DAG, but
for any given organism only a subset A1 of them is used. We
further restricted our attention to the subset A10 of those at-
tributes that at least 10 genes were annotated as holding, be-
cause the probabilistic relationships between these attributes
might be estimated with greater confidence. The approach
taken in this paper is to use some of the attributes in A10 to
predict other attributes in A10.

Let Xj be an indicator random variable for the attribute
j ∈ A10, with Xj(i) = 1 if gene i is annotated as having j and
Xj(i) = 0 otherwise. [Note that Xj(i) = Z(i,j).] Let nad(Xj) de-
note the vector consisting of all those random variables
Xk ∈ A10 for which k � j and k is neither an ancestor nor a
descendant of j in the GO DAG; and let nad(Xj)(i) denote the
vector of the values of these random variables for the gene i.

We used standard machine learning techniques (de-
scribed in the Methods section) to construct, for each at-
tribute j, models MDT (using decision trees) and MBN (using
Bayesian networks) for the probability that a gene i is anno-
tated as having attribute j, given knowledge of the other at-
tributes that gene i is annotated as holding, excluding at-
tributes that are ancestors or descendants of attribute j in the
GO DAG. That is, we constructed models MDT and MBN for
Pr(Xj | nad(Xj)), which we use for making predictions. (The
motivation for ignoring ancestors and descendants when
making predictions is discussed in the Manual Assessment
section below.) Our approach may be viewed as a supervised-
learning approach to pattern recognition, in contrast to un-
supervised methods such as clustering; other supervised ap-
proaches that might be fruitful, but which we have not evalu-
ated, include support vector machines and artificial neural
networks.

Cross-Validation
We assessed our models using 10-fold cross-validation on the
SGD and FlyBase databases. This was done separately for the
two organisms, and in what follows we use ORG to refer to a
generic organism, either fly or yeast. First, from among the set
A10 of attributes with at least 10 associated ORG genes, we
selected a subset T of the most specific attributes in A10 to be
used for the assessment. (See the Methods section for the pre-
cise selection criteria.) Then the set G of genes for ORG was
randomly partitioned into 10 sets of equal size (�1). For each
of the 10 sets of genes, we built modelsMDT andMBN using the
remaining nine sets (combined together) as training data.
Then for each gene i in the held-out set, we used these models
to compute

q(i,j) = Pr(Xj = 1 | nad(Xj) = nad(Xj)(i))

for each test attribute j in T. (The score q(i,j) may be inter-
preted as the probability that a gene is annotated with at-
tribute j, given that its other annotations, ignoring those for
attribute j and its ancestors and descendants in the GO DAG,
agree with those for gene i.)

The scores q(i,j) for each of the 10 folds of the cross-
validation were pooled together, and for each threshold
t ∈ [0, 1] we computed the true-positive rate

TPt =
#��i,j� ∈ G � T : q�i,j� � t & Z�i,j� = 1�

#��i,j� ∈ G � T : Z�i,j� = 1�

and the false-positive rate

FPt =
#��i,j� ∈ G � T : q�i,j� � t & Z�i,j� = 0�

#��i,j� ∈ G � T : Z�i,j� = 0�

Figure 1 shows Receiver Operating Characteristic (ROC)
curves, plotting TPt versus FPt, for models MDT and MBN. For
comparison, we have also included the ROC curve for a model
MIND in which attributes are treated as independent, so that
q(i,j) is just the fraction of the genes in the training set that are
annotated as having attribute j.

There were 6403 genes listed in the SGD association file,
and there were 634 attributes that were associated with at
least 10 of the genes; 170 of these attributes were in our test
set T. Thus there were a total of 6403 � 170 = 1,088,510 ex-
amples (i,j) in the set G � T. Of these, 4250 were positive (i.e.,
had Z(i,j) = 1), and the remaining 1,084,260 were negative. At
the point on the ROC curves where the true-positive rate is 0.5
(i.e., where 2125 of the 4250 positive examples are correctly
classified as such), 51 of the negative examples were misclas-
sified by MDT, 143 by MBN, and 261,003 by MIND.

There were 7039 genes listed in the FlyBase association
file, and there were 794 attributes that were associated with at
least 10 of the genes; 218 of these attributes were in our test
set T. We included in G another 6461 genes with no annota-
tions, to bring the total number of genes in G to 13,500, an
estimate for the total number of Drosophila genes (FlyBase
Consor t ium 2002) . Thus , there were a tota l o f
13,500 � 218 = 2,943,000 examples (i,j) in the set G � T. Of
these, 5360 were positive and the remaining 2,937,640 were
negative. At the point on the ROC curves where the true-
positive rate is 0.5 (i.e., where 2680 of the 5360 positive ex-
amples are correctly classified as such), 382 of the negative
examples were misclassified byMDT, 684 byMBN, and 602,178
by MIND.

Manual Assessment
Although the cross-validation performed above demonstrates
that GO annotations may often be predicted accurately on
the basis of other annotations, this would be of little use if the
organism-specific databases were already saturated, that is, if
every genuine gene–attribute association were already anno-
tated. But the databases as they stand now almost certainly
contain both errors of inclusion (instances where Z(i,j) = 1
although gene i does not in fact have attribute j), and errors of
omission (instances where Z(i,j) = 0 although gene i really
does have attribute j). The GO does in fact define a NOT flag
for “negative evidence”—evidence that a gene does not hold
an attribute—but in the association files from January 22,
2002, the NOT flag was not used at all in the SGD, and only
about 30 times in FlyBase.

Because of the large-scale uncertainty about the truth, we
have not attempted to explicitly model the truth of whether
a gene has an attribute, but have contented ourselves with
modeling the patterns among the annotations themselves.
Nonetheless, those gene–attribute pairs (i,j) for which
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Z(i,j) = 0 and q(i,j) is large should be good candidates for errors
of omission.

This approach is formally quite similar to approaches
used for preference prediction in collaborative filtering (see,
e.g., Breese et al. 1998). In a typical application, a model built
from a database of customer purchases is used to predict
whether customer i would like product j (which he has not
purchased), based on the probability that a customer with the
same pattern of purchases as customer i (aside from product j)
has purchased product j. If this probability is high, a targeted
advertisement for product j could be shown to customer i.

We are doing something analogous, with genes playing
the role of customers, GO attributes playing the role of prod-
ucts, and annotations playing the role of purchases. Annota-
tions are used as an imperfect proxy for true gene–attribute
associations, just as purchases are used as an imperfect proxy
for true customer preferences.

Consumer products do not generally have an analog of
the GO DAG, however. Our motivation for not considering
ancestors or descendants of an attribute j in the GO DAG
when predicting attribute j is this: If there is an error of omis-
sion for gene i having attribute j, then because of the way
annotations are logically propagated up the GO DAG, there
are likely to also be errors of omission for gene i having other
attributes that are ancestors or descendants of j. Because these
attributes can be misleading when we are trying to predict

whether Z(i,j) = 0 represents an error of omission, we ignore
them.

To test this approach, in the process of doing the cross-
validation we also compiled for each organism a list of the 50
gene–attribute pairs (i,j) ∈ G � T that had the highest scores
q(i,j), among just those pairs with Z(i,j) = 0. (We used the q
scores from MDT, because judging from the ROC curves it
outperformedMBN at low false-positive rates.) Each list may be
thought of as containing 50 hypotheses of the form “gene i is
associated with attribute j.”

A FlyBase curator (R.E.F.) assessed the 50 hypotheses for
fly, and an SGD curator (S.S.D.) assessed the 50 hypotheses for
yeast. The curators gave each hypothesis a rating of 1, 2, or 3,
with a rating of 1 meaning that the hypothesis is “known to
be true” (despite not being listed in the organism-specific da-
tabase), 2 meaning “known to be false,” and 3 meaning “nei-
ther of the above.” The lists of hypotheses, along with the
curators’ ratings, are given in Tables 1 and 2. In these tables,
and elsewhere in this paper, we prefix the names of GO at-
tributes from the biological process branch with “P,” from the
cellular component branch with “C,” and from the molecu-
lar function branch with “F.” More detailed lists, which in-
clude the curators’ comments on each hypothesis, are avail −
able at http://llama.med.harvard.edu/∼king/predictions.
html. Below we summarize the number of hypotheses that
received each rating.

Figure 1 ROC curves for SGD (above) and FlyBase (below), using models MDT, MBN, and MIND. On the left are the entire ROC curves, and on the
right are details of the ROC curves at low false-positive rates, with the axes rescaled. (Note that in the graphs on the right, the curves for MIND are
not missing; they are just very close to the horizontal axis.)
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FlyBase SGD

(1) known to be true 22 19
(2) known to be false 5 12
(3) neither of the above 23 19

These results indicate that our success rate was between
44% and 90% for the 50 FlyBase hypotheses, and between
38% and 76% for the 50 SGD hypotheses.

DISCUSSION

ROC Analysis
For a perfect classifier, there would be a threshold t for which
TPt = 1 and FPt = 0. The ROC curve for such a classifier would
climb up the line FP = 0 until it reached this point, and would
then follow the line TP = 1 until it reached the point with
TP = 1 and FP = 1.

For a method that assigns scores q(i,j) completely at ran-
dom, the expected ROC curve would be a diagonal line from
the point with FP = 0 and TP = 0 to the point with FP = 1 and
TP = 1. (The model MIND performs better than this because it
assigns higher q scores for more commonly occurring at-
tributes.)

It is not possible to perfectly predict whether a gene i is
annotated as having attribute j solely on the basis of the other
annotations held by gene i, because there are often many
genes that have exactly the same combination of annotations
aside from j, some of which are also annotated as having
attribute j and some of which are not. For example, nearly
half the genes in the SGD have no annotations whatsoever,
once those for “biological process unknown,” “molecular
function unknown,” and “cellular component unknown” are
removed; another one-sixth of the genes have exactly one
explicit annotation (together with the annotations implied by
this via the GO DAG). These annotations are difficult to pre-
dict: suppose a gene’s only explicit annotation is for attribute
j. Then when trying to predict whether gene i has attribute j
without looking at j or its ancestors or descendants in the GO
DAG, the gene looks exactly like the 3000 or so genes that
have no annotations whatsoever, so the score q(i,j) is low.

Of the 4250 SGD gene–attribute pairs (i,j) ∈ G � T for
which Z(i,j) = 1, 315 were such that gene i had no annotations
among the attributes in nad(Xj). This explains why the slope
of the ROC curves for SGD (using models MDT and MBN) de-
crease sharply before a true-positive rate of 93% is reached.
Similar reasoning explains why the slopes of the ROC curves
for FlyBase decrease sharply before a true-positive rate of 78%
is reached. (The ROC curves obtained by computing q(i,j) only
when gene i has at least one annotation for an attribute in
nad(Xj) are available at http://llama.med.harvard.edu/∼king/
predictions.html.)

Note that for both FlyBase and SGD, MDT outperforms
MBN at low false-positive rates, but eventually MBN gains the
advantage. The crossover point for SGD is at a false-positive
rate of ∼0.02 (corresponding to ∼20,000 false positives), and
the crossover point for FlyBase is at a false-positive rate of
∼0.05 (corresponding to ∼150,000 false positives).

Discussion of Manual Assessment
In assessing our hypotheses, the GO curators availed them-
selves of all information at their disposal, including the other
GO annotations for the genes, annotations for homologous

genes in other organisms, FlyBase and SGD internal notes,
data from InterPro (Apweiler et al. 2000), and relevant papers.

Below we give examples of FlyBase hypotheses that were
rated 1, 2, and 3, along with the curator’s rationale for assign-
ing these ratings.

Table 1. Top 50 Hypotheses for FlyBase Using Model MDT,
Sorted Alphabetically by GO Attribute

Rating Gene name GO attribute

1 Pros28.2 C-20S core proteasome
1 CG1268 C-hydrogen-transporting ATPase V0

domain
2 CG1268 C-hydrogen-transporting ATPase V1

domain
3 CG5235 C-microsome
3 CG7495 C-microsome
3 Cyp12a2 C-microsome
3 Cyp450_U5csm C-microsome
3 Tbh C-microsome
1 CG1909 C-nicotinic acetylcholine-gated

receptor-channel
3 Thor F-antibacterial peptide
1 Dhc1 F-dynein ATPase
3 syd F-dynein ATPase
3 Unc-76 F-dynein ATPase
1 bip2 F-general RNA polymerase II

transcription factor
2 Hsf F-heat shock protein
3 Ubi-p63E F-heat shock protein
1 cnn F-myosin ATPase
3 CG4536 F-olfactory receptor
3 lush F-olfactory receptor
3 TyrR F-olfactory receptor
1 CG6905 F-pre-mRNA splicing factor
3 REG F-proteasome endopeptidase
3 Tl F-scavenger receptor
3 CG4980 F-small nuclear ribonucleoprotein

(now obsolete)
3 CG6905 F-small nuclear ribonucleoprotein

(now obsolete)
2 CG4980 F-small nuclear RNA (now obsolete)
2 CG6905 F-small nuclear RNA (now obsolete)
1 bnk F-structural protein of cytoskeleton
1 Cortactin F-structural protein of cytoskeleton
1 CG12740 F-structural protein of ribosome
1 CG12775 F-structural protein of ribosome
3 PK11 F-taste receptor
3 PK19 F-taste receptor
3 Voila F-taste receptor
2 CG4415 F-transfer RNA (now obsolete)
1 trp&ggr P-calcium ion transport
1 Ulp1 P-deubiquitylation
1 Cdic P-microtubule-based movement
3 CG10845 P-microtubule-based movement
3 CG1193 P-microtubule-based movement
1 kl-2 P-microtubule-based movement
3 shi P-microtubule-based movement
3 unc-104 P-microtubule-based movement
1 CG14060 P-mRNA splicing
1 CG4980 P-mRNA splicing
1 CG5931 P-mRNA splicing
1 CG7972 P-mRNA splicing
1 AGO1 P-protein synthesis initiation
1 CG12413 P-protein synthesis initiation
1 1(2)01424 P-protein synthesis initiation

The first column gives the curator’s rating of each hypothesis, with
1 meaning “known to be true,” 2 meaning “known to be false,”
and 3 meaning “neither of the above.”

Predicting Gene Function

Genome Research 899
www.genome.org



1. Known to be true: The hypothesis that the gene with FlyBase
accession ID CG1909 has the GO attribute “C-nicotinic
acetylcholine-gated receptor-channel.” The gene CG1909
is annotated as having the function “F-nicotinic acetylcho-
line receptor-associated protein,” from which the hypoth-
esized cellular component association follows.

2. Known to be false: The hypothesis that the gene hsf has the
GO attribute “F-heat shock protein.” The gene hsf is a tran-

scriptional activator of heat-shock genes.
Heat-shock factors are transcription factors
that act on the genes that encode heat-shock
proteins, but are not chaperones and thus are
not themselves heat-shock proteins.

3. Neither of the above: The hypothesis that the
gene CG1193 has the GO attribute “P-
microtubule-based movement.” CG1193 en-
codes katanin, a microtubule-severing pro-
tein. Although it is possible that it is involved
in microtubule transport, there is no definite
evidence for this.

In many cases, evaluating these hypotheses led
the curators to literature or data sufficient to jus-
tify adding the annotation to FlyBase or SGD.
This is sometimes attributable to the decision of
the GO Consortium to model the three branches
of the ontology independently. A consequence
of this is that the GO DAG has no edges that
connect attributes in different branches. None-
theless, there are cases in which an attribute in
one branch (e.g., molecular function) implies an
attribute in another branch (e.g., biological pro-
cess; Gene Ontology Consortium 2001). Because
these interbranch logical relations are not codi-
fied in the GO DAG, it is incumbent on the cu-
rators to maintain consistency between the
branches. If the curators are for the most part
successful in this, then these relations (and other
probabilistic relations within and between the
branches) can be learned by our models, and our
models can then flag the isolated instances in
which annotations were overlooked. Thus, one
immediate application of our methods is the im-
provement of the gene annotation databases.
Aside from a few unusual cases, such as predic-
tions that were for GO attributes that are now
obsolete, those predictions rated “known to be
true” will be added to FlyBase or SGD.

Another application we envision is that a
researcher querying a database for genes with
some attribute or combination of attributes may
like to supplement the list of perfect matches (of
which there may be few or none) with genes that
are predicted to hold the attributes. This may be
helpful in allocating experimental resources. For
each hypothesis we evaluated, <2% of the genes
were annotated as having the hypothesized at-
tribute (usually <0.5%), so blindly fishing
around for genes that hold these attributes is
likely to be unproductive; but >40% of our pre-
dictions were judged to be true. The success rate
is perhaps much higher, because we do not know
whether the hypotheses rated 3 are true or not.
The hypotheses rated 3 are perhaps even more

interesting than those rated 1, because they may reflect asso-
ciations that are true but presently unknown, rather than as-
sociations that are known but absent from the databases.

In principle, the techniques we used for predicting errors
of omission in the databases may also be used to predict pos-
sible errors of inclusion, by flagging those existing annota-
tions that have abnormally low q scores. This may be more
difficult than predicting errors of omission, however, because

Table 2. Top 50 Hypotheses for SGD Using Model MDT, Sorted
Alphabetically by GO Attribute

Rating
Gene
name GO attribute

3 CUP5 C-actin cortical patch (sensu Saccharomyces)
3 UBC9 C-anaphase-promoting complex
1 SNR18 C-box C + D snoRNP protein (now obsolete)
1 SNR24 C-box C + D snoRNP protein (now obsolete)
3 SNR18 C-box H + ACA snoRNP protein (now obsolete)
2 RRP6 C-cytoplasmic exosome (RNase complex)
2 NHX1 C-hydrogen-translocating V-type ATPase
2 SRB8 C-mediator complex
3 IMG1 C-mitochondrial large ribosomal subunit
3 MRP8 C-mitochondrial large ribosomal subunit
3 YPL183W-A C-mitochondrial large ribosomal subunit
1 RPM2 C-ribonuclease P
2 CDC9 F-DNA-directed DNA polymerase
1 HXT1 F-fructose transporter
1 ANC1 F-general RNA polymerase II transcription factor
2 VPH2 F-hydrogen-transporting two-sector ATPase
1 DOA4 F-proteasome endopeptidase
2 NSA3 F-proteasome endopeptidase
1 RPN12 F-proteasome endopeptidase
1 RPN13 F-proteasome endopeptidase
1 RPN2 F-proteasome endopeptidase
3 MSP1 F-protein transporter
1 SSC1 F-protein transporter
1 SIN4 F-RNA polymerase II transcription mediator
3 DIM1 F-small nuclear ribonucleoprotein (now obsolete)
2 FMT1 F-translation initiation factor
2 UBI4 F-ubiquitin-specific protease
3 HRB1 P-35S primary transcript processing
1 RAT1 P-35S primary transcript processing
1 SEN1 P-35S primary transcript processing
3 UBP11 P-deubiquitylation
3 CPR4 P-ergosterol biosynthesis
3 CPR5 P-ergosterol biosynthesis
3 HSM3 P-leading strand elongation
3 KAR1 P-microtubule nucleation
2 MPS2 P-microtubule nucleation
2 DPB4 P-mismatch repair
2 TOM71 P-mitochondrial translocation
1 SPC72 P-mitotic chromosome segregation
3 UBC9 P-mitotic metaphase/anaphase transition
1 UBC9 P-mitotic spindle elongation
1 CLF1 P-mRNA splicing
3 NDC1 P-mRNA-nucleus export
3 SEC1 P-polar budding
1 BUB1 P-protein amino acid phosphorylation
1 IRE1 P-protein amino acid phosphorylation
1 VPS15 P-protein amino acid phosphorylation
3 SNR30 P-rRNA modification
2 IDP1 P-tricarboxylic acid cycle
3 ASM4 P-tRNA-nucleus export

The first column gives the curator’s rating of each hypothesis, with 1 meaning
“known to be true,” 2 meaning “known to be false,” and 3 meaning “neither of the
above.”
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the general sparsity of the databases causes many legitimate
annotations to have q scores <0.01. We examined 12 of the
existing FlyBase annotations that had the lowest q scores, but
none appeared to be erroneous. (Here we were looking for
errors such as annotations using GO terms not supported by
assertations in the literature, rather than errors in the litera-
ture itself, which would be harder to assess.)

METHODS

Selection of the Test Attributes
We wanted to assess our predictions on test attributes that
were reasonably specific, because a prediction that a gene is
associated with a general attribute such as “biological process”
is rather uninteresting. We also wanted the test attributes to
have no GO edges between them, because using logically de-
pendent test attributes could have the effect of rewarding a
single good prediction, or penalizing a single bad prediction,
multiple times. With these criteria in mind, we chose the set
of test attributes T to consist of all the attributes in A10 that
had no descendants in A10, with the additional technical re-
quirement that no attributes j ∈ T and k ∈ A10 may have any
common descendant l ∈ A1, unless k is an ancestor of j. The
idea is that, if gene i has attribute j, we should not be allowed
to use any direct evidence for this when predicting whether
gene i has attribute j during cross-validation. Because we make
predictions just on the basis of the random variables in
nad(Xj), this is usually not a problem, but sometimes more
care is needed because of multiple parentage in the GO DAG.
By removing from T any attribute j that violated the technical
requirement above, we ensured that no residue of an annota-
tion for an attribute l ever appeared as an annotation for
k ∈ nad(Xj) when making a prediction for attribute j.

Decision Trees
See Breiman et al. (1984) or Quinlan (1993) for an overview of
decision trees and their applications. For our purposes, the
decision tree for attribute j prescribes a sequence of tests to
apply to a gene to aid in predicting whether the gene is an-
notated as having attribute j. The tests are all of the form, “Is
the gene annotated as having attribute k?” for some k � j,
with k ∈ A10 being neither an ancestor nor a descendant of j
in the GO DAG. Which test is applied depends on the result of
previous tests—hence the tree structure. (Note that we are
using our decision tree to model the conditional probability
distribution of Xj given nad(Xj), not just to classify genes as
having attribute j or not; some authors use the name “proba-
bilistic decision trees” for trees such as ours.)

We constructed the decision tree for attribute j greedily,
by starting with all genes g in the training set in a single root
node, and then recursively splitting each node N by testing
on the attribute k for which the information gain for attribute
j is maximal.

If we test on attribute k, splitting N into N0 and N1,
where Nt = {g ∈ N : Xk(g) = t}, then the information gain is
defined to be

HN(Xj) � Pr(g ∈ N0 | g ∈ N)HN0
(Xj) � Pr(g ∈ N1 | g ∈ N)HN1

(Xj)

Here HN(Xj) is the entropy of Xj at node N, which is defined to
be �pN log(pN) � (1 � pN) log(1 � pN), where pN is the prob-
ability that a gene g ∈ G at a node N is annotated as having
attribute j (see, e.g., Cover and Thomas 1991). As in Niblett
and Bratko (1986), we used the estimate

pN =
#�g ∈ N : Xj�g� = 1� + mp�j�

#�g ∈ N� + m
,

where p(j) is the fraction of the genes in the entire training set
that are annotated as having attribute j andm is an adjustable
parameter. The term mp(j) is used as a pseudocount—a small
sample-size regularization term, with an interpretation as a
prior probability in a Bayesian framework (see, e.g., Ewans
and Grant 2001); as our prior convictions about pN were fairly
weak, we set m = 1. We used #{g ∈ Nt}/#{g ∈ N} as an estimate
for Pr(g ∈ Nt | g ∈ N) for t = 0 and t = 1, again following Nib-
lett and Bratko (1986).

When no test at a node N provides a positive informa-
tion gain, the node is not split, but becomes a leaf. It is labeled
with the estimate pN of the probability that a gene at node N
has attribute j, as defined above.

A tree grown in this manner will usually overfit the train-
ing data, and consequently perform poorly on the held-out
test data. A standard way of combating this is to prune away
some of the branches after the tree is grown. We used the
Bayesian Information Criterion

BIC = �2 ln Pr(data | model) + (ln M)K,

which is asymptotically equivalent to the Minimum Descrip-
tion Length (MDL; Schwartz 1978) for model selection during
pruning (see e.g. Friedman and Goldszmidt 1996). Here K is
the number of free parameters in the model (which in our
case coincides with the number of leaves in the decision tree),
and M is the number of samples in the data set (which in our
case is the number of genes in the training set). The first term
measures the goodness of fit of the model to the data, and the
second term penalizes model complexity. We pruned the tree
in a bottom-up fashion, starting at the leaves and working
toward the root, pruning away any branch whose removal
caused the tree’s BIC score to decrease. In computing the BIC
score we treated the genes as independent, so that the likeli-
hood Pr(data | model) factored as the product of the likeli-
hood for each gene. (This may not be strictly true, because of
homology between genes, for example.)

The score q(i,j) = Pr(Xj = 1 | nad(Xj) = nad(Xj)(i)) was
then just pN, where N is the leaf at which gene i ends up in the
decision tree for attribute j.

Figure 2 shows the decision tree for the attribute “C-
chromatin,” constructed using the SGD data.

Figure 2 A decision tree for the attribute “C-chromatin” learned
from the SGD data. Starting from the top node, if a gene is annotated
with the attribute listed in the node, then it travels down the edge
labeled “+”; otherwise it travels down the edge labeled “�.” Leaf
nodes are labeled with the number of genes in the training set that
end up at the node, split into those that are annotated with “C-
chromatin” in the SGD database (prefixed by “+”) and those that are
not (prefixed by “�”). Ancestors and descendants of “C-chromatin”
in the GO DAG were not allowed for making splits in this tree.
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Bayesian Networks
In the approach described above, we constructed a decision
tree modeling Pr(Xj | nad(Xj)) independently for each at-
tribute j. An alternative approach is to model the joint prob-
ability distribution Pr(X1, X2, …, XN) of all the attributes.
From the joint probability distribution, one can compute con-
ditional probabilities such as Pr(Xj | nad(Xj)).

Decision trees assembled independently as in the subsec-
tion above are not in general compatible with any single joint
distribution (see, e.g., Heckerman et al. 2000), so this alterna-
tive approach has the advantage of internal consistency. An-
other advantage is that from the joint distribution one can
also compute predictions for combinations of attributes,
rather than just for a single attribute, without relearning the
model. One drawback is the increased computational com-
plexity in computing q(i,j).

A Bayesian network (Pearl 1988; Jensen 2001) is a for-
malism for representing a joint probability distribution as a
directed graph, where vertices correspond to random vari-
ables and the absence of an edge between vertices indicates a
conditional independence between the random variables.
Among their many applications, Bayesian networks have
been used for medical diagnosis (e.g., Kahn Jr. et al. 1997;
Jaakkola and Jordan 1999) and for inferring gene regulatory
networks (e.g., Friedman et al. 2000).

By the chain rule of probability, for any ordering X1, …,
XN of the random variables corresponding to the GO at-
tributes, the joint probability Pr(X1, …, XN) factors as

Pr�X1�Pr�X2|X1� … Pr�XN|X1, …, XN− 1� = �
j= 1

N

Pr�Xj|X1, …, Xj− 1�.

For a Bayesian network, the idea is to exploit conditional in-
dependencies between the attributes to find a subset pa(Xj) of
{X1, …, Xj�1} for which Pr(Xj | pa(Xj)) is a good approxima-

tion to Pr(Xj | X1, …, Xj�1). This can greatly reduce the num-
ber of parameters that must be estimated.

The extent to which these conditional independencies
may be exploited depends on the ordering of the variables.
Because the logical relations encoded by the GO DAG induce
conditional independencies that we would like to exploit, we
chose an ordering of the random variables that is compatible
with the GO DAG, that is, an ordering X1, …, XN in which
j < kwhenever Xj is a parent of Xk in the GO DAG. Because the
GO DAG is acyclic, such an ordering exists, and is called a
linear ordering or a topological sorting of the DAG. (There are,
in fact, many topological sortings of the GO DAG; we did not
attempt to find an optimal one.)

As in Friedman and Goldszmidt (1996) and Heckerman
et al. (2000), we represented the local conditional probability
distributions Pr(Xj | pa(Xj)) by probabilistic decision trees
rather than by conditional probability tables. This is a more
parsimonious representation when there are conditional in-
dependencies that hold only for particular values of the ran-
dom variables in pa(Xj). The decision trees were constructed
using the algorithm described in the subsection above, with
the following differences.

In the subsection above, when constructing the decision
tree for attribute j we allowed splits to be made using any
attribute k � j for which k was neither a descendent nor an
ancestor of j in the GO DAG; here we allowed splits to be
made using any attribute k with k < j in the topological sort-
ing of the GO DAG. This means that none of the descendants
of j in the GO DAG could be used for splits, but that all of the
ancestors of j in the GO DAG could be used, and usually some
other attributes as well. We also modified the decision-tree-
growing algorithm slightly so that the first test was: “Is
Xk(i) = 1 for all of the parents k of j in the GO DAG?” If the
answer was “no,” then it logically follows that Xj(i) = 0, so
gene i was sent to a leaf node N with Np = 0. (Unlike the other

Figure 3 A fragment of the Bayesian network for SGD attributes. The full network contains 634 nodes. There is an edge from Xj to Xk if and only
if Xj ∈ pa(Xk). Most of the displayed vertices have additional outgoing edges, not shown, to vertices that are not shown. Edges in the Bayesian
network that are also edges in the GO DAG are shown in black; the remaining edges are shown in gray.
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nodes, no pseudocounts were used here because Xj(i) = 0 is a
logical necessity; this node was also designated unpruneable.)
If the answer was “yes,” then the gene was sent to another
node, which was then recursively split using the ordinary in-
formation gain criterion to complete the tree. This tree was
pruned as in the subsection above. The elements of pa(Xj)
were just those Xk for which attribute k was used as a split in
the pruned decision tree for attribute j.

The graphical representation of the Bayesian network is
constructed by including a directed edge from vertex Xk to
vertex Xj if and only if Xk ∈ pa(Xj). The elements of pa(Xj) are
usually called the parents of Xj; we have not referred to them
as such until now, to avoid confusion with the parents of
attribute j in the GO DAG. But note that by our choice of an
ordering of the attributes, and our modifications to the deci-
sion-tree-growing algorithm, we have arranged things so that
the GO DAG is a subgraph of the Bayesian network, that is, so
that if k is a parent of j in the GO DAG, then Xk ∈ pa(Xj). (The
converse need not be true, however.) We have also ensured
that the joint probability distribution defined by the Bayesian
network is consistent with the logical constraints imposed by
the GO DAG.

Figure 3 shows a fragment of the Bayesian network for
the SGD attributes.

Computing the joint probability of a specific sequence of
annotations X = (X1, …, XN) is straightforward with the
Bayesian network: Pr(X) factors as ∏ N

j=1Pr(Xj | pa(Xj)), and if a
gene with annotation vector X ends up at leaf N in the deci-
sion tree for attribute j, then the term Pr(Xj | pa(Xj)) is equal to
pN if Xj = 1, and to 1 � pN if Xj = 0.

Now Pr(nad(Xj) = nad(Xj)(i)) may be computed by sum-
ming the joint probability of X over all possible assignments
of values to the random variables not in nad(Xj), keeping the
known values of the random variables in nad(Xj) fixed as
nad(Xj)(i). The score q(i,j) = Pr(Xj = 1 | nad(Xj) = nad(Xj)(i))
is just the ratio of the sum of those joint probabilities for
assignments in which Xj = 1 to the total sum.

Computing this sum using brute force has running time
exponential in the number of ancestors and descendants of
attribute j in the GO DAG. In our computations, each test
attribute j ∈ T had <25 ancestors in A10 and no descendants in
A10 (because we were predicting only the most detailed at-
tributes), so the brute force method was feasible. But given
that any assignment of values to the random variables not in
nad(Xj) that is not logically consistent with the GO DAG has
joint probability zero, we were able to speed up the compu-
tation by summing over just those assignments that were logi-
cally consistent with the GO DAG. An alternative would be to
use the variable elimination algorithm or the junction tree
algorithm (see Jensen 2001) to speed up the computation.
These algorithms are not always practical for large networks
with many undirected cycles, such as ours, but because all but
20 or so of the random variables in our network are instanti-
ated with known values when computing q(i,j), this is not a
problem.

The Bayesian network approach also has a natural exten-
sion in which the reliability of different evidence types is
explicitly modeled, and the distinction between negative evi-
dence and the absence of evidence is made explicit. Such a
model would have two vertices for each GO attribute: an “evi-
dence” vertex that gives the types of evidence (if any), and a
“hidden” vertex corresponding to the truth (which is not di-
rectly observable). Learning the topology and parameters of
such a model would require a technique that deals with miss-
ing data, such as the structural EM algorithm (Friedman
1998). The goal would then be to infer the values of all the
hidden variables for a gene on the basis of all the evidence for
the gene. But the model would have hundreds of hidden vari-
ables to sum over, making exact inference infeasible. (Note
that even approximate inference in a general Bayesian net-
work is NP-hard [Cooper 1990; Dagum and Luby 1993].)

Nonetheless, there might be some prospect of reasonably es-
timating the values of the hidden variables using Monte Carlo
methods (Gilks et al. 1996) or “loopy” belief propagation
(Murphy et al. 1999).
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