
RESEARCH ARTICLE Open Access

Predicting gene function using hierarchical
multi-label decision tree ensembles
Leander Schietgat1*, Celine Vens1*, Jan Struyf1, Hendrik Blockeel1, Dragi Kocev2, Sašo Džeroski2

Abstract

Background: S. cerevisiae, A. thaliana and M. musculus are well-studied organisms in biology and the sequencing

of their genomes was completed many years ago. It is still a challenge, however, to develop methods that assign

biological functions to the ORFs in these genomes automatically. Different machine learning methods have been

proposed to this end, but it remains unclear which method is to be preferred in terms of predictive performance,

efficiency and usability.

Results: We study the use of decision tree based models for predicting the multiple functions of ORFs. First, we

describe an algorithm for learning hierarchical multi-label decision trees. These can simultaneously predict all the

functions of an ORF, while respecting a given hierarchy of gene functions (such as FunCat or GO). We present new

results obtained with this algorithm, showing that the trees found by it exhibit clearly better predictive

performance than the trees found by previously described methods. Nevertheless, the predictive performance of

individual trees is lower than that of some recently proposed statistical learning methods. We show that ensembles

of such trees are more accurate than single trees and are competitive with state-of-the-art statistical learning and

functional linkage methods. Moreover, the ensemble method is computationally efficient and easy to use.

Conclusions: Our results suggest that decision tree based methods are a state-of-the-art, efficient and easy-to-use

approach to ORF function prediction.

Background
The completion of several genome projects in the past

decade has generated the full genome sequence of many

organisms. Identifying open reading frames (ORFs) in

the sequences and assigning biological functions to

them has now become a key challenge in modern biol-

ogy. This last step, which is the focus of our paper, is

often guided by automatic discovery processes which

interact with the laboratory experiments.

More precisely, machine learning techniques are used

to predict gene functions from a predefined set of possi-

ble functions (e.g., the functions in the Gene Ontology).

Afterwards, the predictions with highest confidence can

be tested in the lab. There are two characteristics of the

function prediction task that distinguish it from com-

mon machine learning tasks: (1) a single gene may have

multiple functions; and (2) the functions are organized

in a hierarchy: a gene that is related to some function is

automatically related to all its ancestor functions (this is

called the hierarchy constraint). This particular problem

setting is known in machine learning as hierarchical

multi-label classification (HMC) and recently, many

approaches have been proposed to deal with it [1-19].

These approaches differ with respect to a number of

characteristics: which learning algorithm they are based

on, whether the hierarchy constraint is always met and

whether they can deal with hierarchies structured as a

directed acyclic graph (DAG), such as the Gene Ontol-

ogy, or are restricted to hierarchies structured as a

rooted tree, like MIPS’s FunCat.

Decision trees are a well-known type of classifiers that

can be learned efficiently from large datasets, produce

accurate predictions and can lead to knowledge that

provides insight in the biology behind the predictions,

as demonstrated by Clare et al. [3]. They have been

applied to several machine learning tasks [20]. In earlier

work [14], we have investigated how they can be

extended to the HMC setting: we presented an HMC

* Correspondence: leander.schietgat@cs.kuleuven.be;

celine.vens@cs.kuleuven.be
1Department of Computer Science, Katholieke Universiteit Leuven,

Celestijnenlaan 200A, 3001 Leuven, Belgium

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

© 2010 Schietgat et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:leander.schietgat@cs.kuleuven.be
mailto:celine.vens@cs.kuleuven.be
http://creativecommons.org/licenses/by/2.0

decision tree learner that takes into account the hierar-

chy constraint and that is able to process DAG struc-

tured hierarchies.

In this article, we show that our HMC decision tree

method outperforms previously published approaches

applied to S. cerevisiae and A. thaliana. Our compari-

sons primarily use precision-recall curves. This evalua-

tion method is well-suited for the HMC tasks

considered here, due to the large class skew present in

these tasks.

Moreover, we show that by upgrading our method to

an ensemble technique, classification performance

improves further. Ensemble techniques are learning

methods that construct a set of classifiers and classify

new data instances by taking a vote over their predic-

tions. Experiments show that ensembles of decision

trees outperform Bayesian corrected support vector

machines [10], a statistical learning method for gene

function prediction, on S. cerevisiae data, and methods

participating in the MouseFunc challenge [21,22] on

M. musculus data.

Related work

A number of machine learning approaches have been

proposed in the area of functional genomics. They have

been applied in the context of gene function prediction

in S. cerevisiae, A. thaliana or M. musculus. We have

grouped them according to the learning approach they

use.

Network based methods

Several approaches predict functions of unannotated

genes based on known functions of genes that are

nearby in a functional association network or protein-

protein interaction network [2,4,5,8,15-17]. GENEFAS

[4], for example, predicts functions of unannotated yeast

genes based on known functions of genes that are

nearby in a functional association network. GENEMA-

NIA [15] calculates per gene function a composite func-

tional association network from multiple networks

derived from different genomic and proteomic data

sources.

These approaches are based on label propagation and

do not return a global predictive model. However, a

number of approaches were proposed to combine pre-

dictions of functional networks with those of a predic-

tive model. Kim et al. [16] combine them with

predictions from a Naive Bayes classifier. The combina-

tion is based on a simple aggregation function. The

Funckenstein system [17] uses logistic regression to

combine predictions made by a functional association

network with predictions from a random forest.

Kernel based methods

Deng et al. [1] predict gene functions with Markov ran-

dom fields using protein interaction data. They learn a

model for each gene function separately and ignore the

hierarchical relationships between the functions. Lanck-

riet et al. [6] represent the data by means of a kernel

function and construct support vector machines for

each gene function separately. They only predict top-

level classes in the hierarchy. Lee et al. [13] have com-

bined the Markov random field approach of [1] with the

SVM approach of [6] by computing diffusion kernels

and using them in kernel logistic regression.

Obozinski et al. [19] present a two-step approach in

which SVMs are first learned independently for each

gene function separately (allowing violations of the hier-

archy constraint) and are then reconciliated to enforce

the hierarchy constraint. Barutcuoglu et al. [10] have

proposed a similar approach where unthresholded sup-

port vector machines are learned for each gene function

and then combined using a Bayesian network so that

the predictions are consistent with the hierarchical rela-

tionships. Guan et al. [18] extend this method to an

ensemble framework that is based on three classifiers: a

classifier that learns a single support vector machine for

each gene function, the Bayesian corrected combination

of support vector machines mentioned above, and a

classifier that constructs a single support vector machine

per gene function and per data source and forms a

Naive Bayes combination over the data sources.

Methods that learn a separate model for each function

have several disadvantages. Firstly, they are less efficient,

because n models have to be built (with n the number

of functions). Secondly, they often learn from strongly

skewed class distributions, which is difficult for many

learners.

Decision tree based methods

Clare [23] presents an HMC decision tree method that

learns a single tree for predicting gene functions of

S. cerevisiae. She adapts the well-known decision tree

algorithm C4.5 [20] to cope with the issues introduced

by the HMC task. First, where C4.5 normally uses class

entropy for choosing the best split, her version uses the

sum of entropies of the class variables. Second, she

extends the method to predict classes on several levels

of the hierarchy, assigning a larger cost to misclassifica-

tions higher up in the hierarchy. The resulting tree is

transformed into a set of rules, and the best rules are

selected, based on a significance test performed on a

separate validation set. Note that this last step violates

the hierarchy constraint, since rules predicting a class

can be dropped while rules predicting its subclasses are

kept. The non-hierarchical version of her method was

later used to predict GO terms for A. thaliana [9].

Here, the annotations are predicted for each level of the

hierarchy separately.

Hayete and Bienkowska [7] build a decision tree for

each GO function separately using information about

protein assignments in the same functional domain. As

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 2 of 14

mentioned earlier, methods that learn separate models

for each function have several disadvantages. Moreover,

Vens et al. [14] show that in the context of decision

trees, separate models are less accurate than a single

HMC tree that predicts all functions at once.

Blockeel et al. [24] present to our knowledge the first

decision tree approach to HMC that exploits the given

class hierarchy and predicts all classes with a single

decision tree. Their method is based on the predictive

clustering tree framework [25]. This method was first

applied to gene function prediction by Struyf et al. [26].

Later, Blockeel et al. [27] propose an improved version

of the method and evaluate it on yeast functional geno-

mics data. Vens et al. [14] extend the algorithm towards

hierarchies structured as DAGs and show that learning

one decision tree for simultaneously predicting all func-

tions outperforms learning one tree per function (even

if those trees are built taking into account the

hierarchy).

Methods
We first discuss the approach to building HMC trees

presented in [14] and then extend it to build ensembles

of such trees.

Using predictive clustering trees for HMC tasks

The approach that we present is based on decision trees

and is set in the predictive clustering tree (PCT)

framework [25]. This framework views a decision tree as

a hierarchy of clusters: the top-node corresponds to one

cluster containing all training examples, which is recur-

sively partitioned into smaller clusters while moving

down the tree. PCTs can be applied to both clustering

and prediction tasks. The PCT framework is implemen-

ted in the CLUS system, which is available at http://

www.cs.kuleuven.be/~dtai/clus.

Before explaining the approach in detail, we show an

example of a (partial) predictive clustering tree predicting

the functions of S. cerevisiae genes from homology data

[23] (Figure 1). The homology features are based on a

sequence similarity search performed for each yeast gene

against all the genes in SwissProt. The functions are

taken from the FunCat classification scheme [28]. Each

internal node of the tree contains a test on one of the

attributes in the dataset. Here, the attributes are binary

and have been obtained after preprocessing the relational

homology data with a frequent pattern miner. The root

node, for instance, tests whether there exists a SwissProt

protein that has a high similarity (e-value < 1.0·10-8) with

the gene under consideration G, is classified into the rhi-

zobiaceae group and has references to the InterPro data-

base. In order to predict the functions of a new gene, the

gene is routed down the tree according to the outcome

of the tests. When a leaf node is reached, the gene is

assigned the functions that are stored in it. Only the

Figure 1 Example of a predictive clustering tree. This tree predicts the functions of a gene G, based on homology data. The functions are

taken from the FunCat classification scheme and are hierarchical: if for example function 4/3/1 (tRNA synthesis) is predicted, then function 4/3

(tRNA transcription) and function 4 (transcription) are predicted as well.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 3 of 14

http://www.cs.kuleuven.be/~dtai/clus
http://www.cs.kuleuven.be/~dtai/clus

most specific functions are shown in the figure. In the

rest of this section, we explain how PCTs are con-

structed. A detailed explanation is given in [14].

PCTs [25] can be constructed with a standard “top-

down induction of decision trees” (TDIDT) algorithm,

similar to CART[29] or C4.5 [20]. The algorithm takes

as input a set of training instances (i.e., the genes and

their annotations). It searches for the best acceptable

test that can be put in a node. If such a test can be

found then the algorithm creates a new internal node

and calls itself recursively to construct a subtree for

each subset (cluster) in the partition induced by the test

on the training instances. To select the best test, the

algorithm scores the tests by the reduction in variance

(which is defined below) they induce on the instances.

Maximizing variance reduction maximizes cluster

homogeneity and improves predictive performance. If

no acceptable test can be found, that is, if no test signif-

icantly reduces variance (as measured by a statistical

F-test), then the algorithm creates a leaf and labels it

with a representative case, or prototype, of the given

instances.

To apply PCTs to the task of hierarchical multi-label

classification, the variance and prototype are defined as

follows [14].

First, the set of labels of each example is represented

as a vector with binary components; the i’th component

of the vector is 1 if the example belongs to class ci and

0 otherwise. It is easily checked that the arithmetic

mean of a set of such vectors contains as i’th compo-

nent the proportion of examples of the set belonging to

class ci. We define the variance of a set of examples S as

the average squared distance between each example’s

class vector vk and the set’s mean class vector v , i.e.,

Var S
d vk vk

S
()

(,)
.  2

In the HMC context, it makes sense to consider simi-

larity at higher levels of the hierarchy more important

than similarity at lower levels. To that aim, we use a

weighted Euclidean distance

d v v w c v vi

i

i i(,) () () ,, ,1 2 1 2
2  

where vk, i is the i’th component of the class vector vk
of an instance xk, and the class weights w(c) decrease

with the depth of the class in the hierarchy. We choose

w(c) = w0·avgj {w(pj(c))}, where pj (c) denotes the j’th

parent of class c and 0 <w0 < 1). Consider, for example,

the class hierarchy shown in Figure 2, and two examples

(x1, S1) and (x2, S2) with S1 = {1, 2, 2/2} and S2 = {2}.

Using a vector representation with consecutive

components representing membership of class 1, 2, 2/1,

2/2 and 3, in that order, we have

d S S d w w(,) ([, , , ,],[, , , ,]) .1 2 0 0
21 1 0 1 0 0 1 0 0 0  

The heuristic for choosing the best test for a node of

the tree is to maximize the variance reduction as dis-

cussed before, with the above definition of variance.

Note that our definition of w(c) allows the classes to be

structured in a DAG, as is the case with the Gene

Ontology.

Second, a classification tree stores in a leaf the majority

class for that leaf; this class will be the tree’s prediction

for examples arriving in the leaf. But in our case, since an

example may have multiple classes, the notion of “major-

ity class” does not apply in a straightforward manner.

Instead, the mean v of the class vectors of the examples

in that leaf is stored. Recall that v i is the proportion of

examples in the leaf belonging to ci. An example arriving

in the leaf can therefore be predicted to belong to class ci
if v i is above some threshold ti, which can be chosen by

the user. To ensure that the predictions obey the hierar-

chy constraint (whenever a class is predicted its super-

classes are also predicted), it suffices to choose ti ≤ tj
whenever ci is a superclass of cj . The PCT in Figure 1

has a threshold of ti = 0.4 for all i.

CLUS-HMC is the instantiation (with the distances

and prototypes defined as above) of the PCT algorithm

implemented in the CLUS system.

Ensembles of PCTs

Ensemble methods are learning methods that construct

a set of classifiers for a given prediction task and classify

new examples by combining the predictions of each

classifier. In this paper we consider bagging, an ensem-

ble learning technique that has primarily been used in

the context of decision trees. In preliminary experi-

ments, we also considered two other ensemble learning

techniques: random forests [30] and an adapted version

of the boosting approach for regression trees by Drucker

[31]. However, neither method performed better than

simple bagging.

Figure 2 A toy hierarchy. (a) Class label names reflect the position

in the hierarchy, e.g., ‘2/1’ is a subclass of ‘2’. (b) The set of classes

{1,2,2/2}, indicated in bold in the hierarchy, and represented as the

vector vk.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 4 of 14

Bagging [32] is an ensemble method where the differ-

ent classifiers are constructed by making bootstrap repli-

cates of the training set and using each of these

replicates to construct one classifier. Each bootstrap

sample is obtained by randomly sampling training

instances, with replacement, from the original training

set, until the sample contains the same number of

instances as the original training set. The individual pre-

dictions given by each classifier can be combined by tak-

ing the average (for numeric targets) or the majority

vote (for nominal targets).

Breiman has shown that bagging can give substantial

gains in the predictive performance of decision tree lear-

ners [32]. Also in the case of learning PCTs for predict-

ing multiple targets at once (multi-task learning [33]),

decision tree methods benefit from the application of

bagging [34]. However, it is clear that, by using bagging

on top of the PCT algorithm, the learning time of the

model increases significantly, resulting in a clear trade-

off between predictive performance and efficiency to be

considered by the user.

The algorithm for bagging PCTs takes as input the

parameter k, denoting the number of trees in the

ensemble. In order to make predictions, the average of

all class vectors predicted by the k trees in the ensemble

is computed, and then the threshold is applied as before.

This ensures that the hierarchy constraint holds. We call

the resulting instantiation of the bagging algorithm

around the CLUS-HMC algorithm CLUS-HMC-ENS.

Results and discussion
In this section, we address the following questions:

1. How well does CLUS-HMC perform on functional

genomics data and what is the improvement, if any, that

can be obtained by using CLUS-HMC-ENS on such

tasks?

2. How does the predictive performance of the pro-

posed algorithms compare to results reported in the bio-

medical literature?

In order to answer these questions, we compare our

results to the results reported by Clare and King [3] and

Barutcuoglu et al. [10] on S. cerevisiae, to the results

reported by Clare et al. [9] on A. thaliana, and to the

results of the groups participating in the MouseFunc

challenge [21,22] on M. musculus. The methods used in

these studies were discussed in the “Related work”

section.

Datasets

For S. cerevisiae and A. thaliana, the datasets that we

use in our evaluation are exactly those datasets that are

used in the cited articles. They are available, together

with the parameter settings that can be used to repro-

duce the results, at the following webpage: http://www.

cs.kuleuven.be/~dtai/clus/hmc-ens. For M. musculus,

the (raw) data is available at http://hugheslab.med.utor-

onto.ca/supplementary-data/mouseFunc_I/, while the

dataset we assembled from it is available at the former

webpage.

Next to predicting gene functions of three organisms

(S. cerevisiae, A. thaliana, and M. musculus), we con-

sider two annotation schemes in our evaluation: FunCat

(developed by MIPS [28]), which is a tree-structured

class hierarchy and the Gene Ontology (GO) [35], which

forms a directed acyclic graph instead of a tree: each

term can have multiple parents.

Saccharomyces cerevisiae

The first dataset we use (D0) was described by Barut-

cuoglu et al. [10] and is a combination of different data

sources. The input feature vector for a gene consists of

pairwise interaction information, membership to coloca-

lization locale, possession of transcription factor binding

sites and results from microarray experiments, yielding a

dataset with in total 5930 features. The 3465 genes are

annotated with function terms from a subset of 105

nodes from the Gene Ontology’s biological process

hierarchy.

We also use the 12 yeast datasets (D1 - D12) from

[23]. The datasets describe different aspects of the genes

in the yeast genome. They include five types of bioinfor-

matics data: sequence statistics, phenotype, secondary

structure, homology and expression. The different

sources of data highlight different aspects of gene func-

tion. The genes are annotated with functions from the

FunCat classification schemes. Only annotations from

the first four levels are given.

D1 (seq) records sequence statistics that depend on

the amino acid sequence of the protein for which the

gene codes. These include amino acid frequency ratios,

sequence length, molecular weight and hydrophobicity.

D2 (pheno) contains phenotype data, which represents

the growth or lack of growth of knock-out mutants that

are missing the gene in question. The gene is removed

or disabled and the resulting organism is grown with a

variety of media to determine what the modified organ-

ism might be sensitive or resistant to.

D3 (struc) stores features computed from the second-

ary structure of the yeast proteins. The secondary struc-

ture is not known for all yeast genes; however, it can be

predicted from the protein sequence with reasonable

accuracy, using Prof [36]. Due to the relational nature of

secondary structure data, Clare performed a preproces-

sing step of relational frequent pattern mining; D3

includes the constructed patterns as binary attributes.

D4 (hom) includes for each yeast gene, information

from other, homologous genes. Homology is usually

determined by sequence similarity; here, PSI-BLAST

[37] was used to compare yeast genes both with other

yeast genes and with all genes indexed in SwissProt v39.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 5 of 14

http://www.cs.kuleuven.be/~dtai/clus/hmc-ens
http://www.cs.kuleuven.be/~dtai/clus/hmc-ens
http://hugheslab.med.utoronto.ca/supplementary-data/mouseFunc_I/
http://hugheslab.med.utoronto.ca/supplementary-data/mouseFunc_I/

This provided for each yeast gene a list of homologous

genes. For each of these, various properties were

extracted (keywords, sequence length, names of data-

bases they are listed in, ...). Clare preprocessed this data

in a similar way as the secondary structure data to pro-

duce binary attributes.

D5, ..., D12. Many microarray datasets exist for yeast

and several of these were used [23]. Attributes for these

datasets are real valued, representing fold changes in

expression levels.

Arabidopsis thaliana

We use six datasets from [9], originating from different

sources: sequence statistics, expression, predicted SCOP

class, predicted secondary structure, InterPro and

homology. Each dataset comes in two versions: with

annotations from the FunCat classification scheme and

from the Gene Ontology’s molecular function hierarchy.

Again, only annotations for the first four levels are

given. We use the manual annotations for both schemes.

D13 (seq) records sequence statistics in exactly the

same way as for S. cerevisiae. D14 (exprindiv) contains

43 experiments from NASC’s Affymetrix service “Affy-

watch” http://affymetrix.arabidopsis.info/AffyWatch.

html, taking the signal, detection call and detection p-

values. D15 (scop) consists of SCOP superfamily class

predictions made by the Superfamily server [38]. D16

(struc) was obtained in the same way as for S. cerevisiae.

D17 (interpro) includes features from several motif or

signature finding databases, like PROSITE, PRINTS,

Pfam, ProDom, SMART and TIGRFAMs, calculated

using the EBI’s stand-alone InterProScan package [39].

To obtain features, the relational data was mined in the

same manner as the structure data. D18 (hom) was

obtained in the same way as for S. cerevisiae, but now

using SwissProt v41.

Mus musculus

We use the data that was provided for the MouseFunc

challenge [21,22]. It consists of 21603 genes, of which

1718 are set aside as test genes. Each gene is annotated

with GO terms from a specified subset of the Gene

Ontology. The annotations are up-propagated using the

Gene Ontology’s “is-a” and “part-of” relation. The data

is composed of several sources: gene expression data,

protein sequence pattern annotations, protein-protein

interactions, phenotype annotations, phylogenetic profile

and disease associations. In order to construct a single

dataset (D19), we joined all data tables, removed attri-

butes with fewer than five non-zero values and com-

puted additional attributes that indicate for each gene

the classes of other genes to which it is linked through

a protein-protein interaction (only considering training

set genes). This yields 18746 attributes in total. The

resulting representation is similar to the one used by

Guan et al. [18].

Methodology

Evaluation measure

We report the performance of the different methods

with precision-recall (PR) and ROC [40] based evalua-

tion measures. This is motivated by the following two

observations: (1) both measures have been used before

to evaluate approaches to gene function prediction

[1,8,22], and (2) they both allow to simultaneously com-

pare classifiers for different classification thresholds. Of

both measures, PR based evaluation better suits the

characteristics of typical HMC datasets, in which many

classes are infrequent (i.e., typically only a few genes

have a particular function). Viewed as a binary classifica-

tion task for each class, this implies that for most classes

the number of negative instances by far exceeds the

number of positive instances. In some cases, it is pre-

ferred to recognize the positive instances (i.e., that a

gene has a given function), rather than correctly predict

the negative ones (i.e., that a gene does not have a parti-

cular function). ROC curves are then less suited for this

task, exactly because they also reward a learner if it cor-

rectly predicts negative instances (giving rise to a low

false positive rate). This can present an overly optimistic

view of the algorithm’s performance [41]. Therefore,

unless it is impossible to reconstruct the PR behaviour

of the methods we compare to, we report a PR based

evaluation.

We use the following definitions of precision, recall,

average precision, and average recall:

Precision
TPi

TPi FPi

Recall
TPi

TPi FNi

Precision
TPii

i i







, ,and


 

 
 TPii FPii

Recall
TPii

TPii FNii

, ,and

where i ranges over all functions, T Pi is the number

of true positives (correctly predicted positive instances)

for function i, F Pi is the number of false positives (posi-

tive predictions that are incorrect) for function i, and F

Ni is the number of false negatives (positive instances

that are incorrectly predicted negative) for function i.

Note that these measures ignore the number of cor-

rectly predicted negative examples.

A precision-recall curve (PR curve) plots the precision

of a model as a function of its recall. We consider two

types of PR curves: (1) a function-wise PR curve for a

given function i, which plots Precisioni versus Recalli,

and (2) an average or pooled PR curve, which plots

Precision versus Recall and summarizes the perfor-

mance of the model across all functions.

We construct the PR curves as follows. Remember

that every leaf in the tree contains a vector v with for

each function the probability that the gene is predicted

to have this function. When decreasing the prediction

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 6 of 14

http://affymetrix.arabidopsis.info/AffyWatch.html
http://affymetrix.arabidopsis.info/AffyWatch.html

threshold ti from 1 to 0, an increasing number of

instances is predicted to belong to ci, causing the recall

to increase whereas precision may increase or decrease

(with normally a tendency to decrease). Thus, a single

tree (or an ensemble of trees) with a specific threshold

has a single precision and recall, and by varying the

threshold a PR curve is obtained. Such curves allow us

to evaluate the predictive performance of a model

regardless of t. In the end, a domain expert can choose

the threshold corresponding to the point on the curve

that looks most interesting to him.

Although a PR curve helps in understanding the pre-

dictive behaviour of the model, a single performance

score is more useful to compare models. A score often

used to this end is the area between the PR curve and

the recall axis, the so-called “area under the PR curve”

(AUPRC). The closer the AUPRC is to 1.0, the better

the model is. We consider two measures that are based

on this idea, that correspond to the two types of PR

curves and that are often reported in the literature: AU

(PRC), the area under the average PR curve, and

AUPRC , the average over all areas under the function-

wise PR curves. Note that AU(PRC) gives more weight

to more frequent functions, while AUPRC considers

the importance of every function to be equal.

Parameter settings for CLUS-HMC and CLUS-HMC-ENS

In the experiments, w0, which determines the weights of

the different functions in the decision tree heuristic, is

set to 0.75 and the number of examples in each decision

tree leaf is lower bounded to 5. The parameter k, which

denotes the number of trees used in the ensemble, is set

to 50. Preliminary experiments show that performance

does not strongly depend on the choice of w0 and that

it does not significantly increase after k = 50, so the lat-

ter value is a good trade-off between performance and

runtime. The significance parameter used in the F-test

stopping criterion of CLUS-HMC and CLUS-HMC-ENS

is tuned on a separate validation set (1/3 of the training

data) and optimized out of 6 possible values (0.001,

0.005, 0.01, 0.05, 0.1, 0.125), maximizing the AU(PRC).

The final model is constructed on the entire training set

using the selected value of the significance parameter.

Results

We will first investigate if ensembles improve the pre-

dictive performance of CLUS-HMC in gene function

prediction and if so, quantify this difference. We will

then compare CLUS-HMC and CLUS-HMC-ENS

against several state-of-the-art systems in gene function

prediction. On the one hand, we will compare CLUS-

HMC to C4.5H/M [3,9], because they both build a sin-

gle decision tree. On the other hand, we will compare

CLUS-HMC-ENS to Bayesian-corrected SVMs [10], a

statistical learning approach, on D0, and to the methods

that entered the MouseFunc challenge on D19.

The datasets originating from [3,9] (i.e., datasets D1 to

D18) are divided into a training set (2/3) and a test set

(1/3). We use exactly the same splits. For dataset D0, we

randomly construct a training and test set with the

same ratio. For dataset D19, we use the same training

and test sets that were used in the MouseFunc

challenge.

Comparison between CLUS-HMC and CLUS-HMC-ENS

For each of the datasets, the AU(PRC) of CLUS-HMC

and CLUS-HMC-ENS is shown in Figure 3. We see that

for every dataset, there is an increase in AU(PRC) when

using ensembles. The average gain is 0.071 (which is an

improvement of 18% on average); the maximal gain is

0.157. Representative PR curves can be found in Figures 4,

5 and 6. Figure 7 shows the AUPRC of CLUS-HMC and

CLUS-HMC-ENS. Again, there is an increase in AUPRC
when using ensembles, with an average gain of 0.093

(which is an improvement of 108% on average) and a max-

imal gain of 0.337. These results show that the increase in

performance obtained by CLUS-HMC-ENS is larger

according to AUPRC than according to AU(PRC),

which indicates that ensembles are performing particularly

better for the less frequent classes, typically occurring at

the lower levels of the hierarchy. To summarize, the

improvement in predictive performance that can be

obtained by using tree ensembles in more straightforward

machine learning settings carries over to the HMC setting

with functional genomics data.

Comparison between CLUS-HMC and C4.5H/M

We now concentrate on the comparison of the results

obtained by our algorithms to those obtained by other

decision tree based algorithms. For the datasets that are

annotated with FunCat classes (D1 - D18), we will com-

pare to the hierarchical extension of C4.5 [3], which we

will refer to as C4.5H. For the datasets with GO annota-

tions (D13 - D18), we will use the non-hierarchical multi-

label extension of C4.5 [9], as C4.5H cannot handle

hierarchies structured as a DAG. We refer to this sys-

tem as C4.5M.

Figure 3 Comparison of AU(PRC) between Clus-HMC and

Clus-HMC-Ens. The white surface represents the gain in AU(PRC)

obtained by CLUS-HMC-ENS.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 7 of 14

For their experiments on A. thaliana, Clare et al. [9]

only report results per level of the hierarchy. In order to

obtain these results, they learn a separate classifier per

level, removing from their training and test set those

genes that do not have annotated functions at that level.

This approach may give a biased result: when annotating

a new gene, it is not known in advance at which levels

of the hierarchy it will have functions. Therefore, we

reran C4.5M to learn one classifier that uses all training

data and tested it on the complete test set.

For evaluating their systems, Clare et al. [3,9] report

precision. Indeed, as the biological experiments required

to validate the learned rules are costly, it is important to

avoid false positives. However, precision is always traded

off by recall: a classifier that predicts one example posi-

tive, but misses 1000 other positive examples may have

a precision of 1, although it can hardly be called a good

classifier. Therefore, we also compute the recall of the

models obtained by C4.5H/M. These models were pre-

sented as rules for specific classes without any probabil-

ity scores, so each model corresponds to precisely one

point in PR space.

For each of the datasets D1 - D18, these PR points are

plotted against the average PR curves for CLUS-HMC.

As we are comparing curves with points, we speak of a

“win” for CLUS-HMC when its curve is above C4.5H/M’s

point, and of a “loss” when it is below the point. Under

the null hypothesis that both systems perform equally

well, we expect as many wins as losses. We observed that

only in one case out of 24, for dataset D16 with FunCat

annotations, C4.5H/M outperforms CLUS-HMC. For all

other cases there is a clear win for CLUS-HMC. Repre-

sentative PR curves can be found in Figures 4, 5 and 6.

For each of these datasets, we also compared the pre-

cision of C4.5H/M, CLUS-HMC and CLUS-HMC-ENS,

at the recall obtained by C4.5H/M. The results can be

found in Figure 8. The average gain in precision w.r.t.

C4.5H/M is 0.209 for CLUS-HMC and 0.276 for CLUS-

HMC-ENS.

Figure 4 Precision-recall curve for all classes for C4.5H,

Clus-HMC and Clus-HMC-Ens on D4 with FunCat annotations.

Figure 5 Precision-recall curve for all classes for C4.5H,

Clus-HMC and Clus-HMC-Ens on D16 with FunCat annotations.

Figure 6 Precision-recall curve for all classes for C4.5M,

Clus-HMC and Clus-HMC-Ens on D13 with GO annotations.

Figure 7 Comparison of AUPRC between Clus-HMC and

Clus-HMC-Ens. The white surface represents the gain in AUPRC
obtained by CLUS-HMC-ENS.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 8 of 14

We can conclude that CLUS-HMC is the tree-building

system that yields the best predictive performance.

Compared with other existing methods, we are able to

obtain the same precision with higher recall, or the

same recall with higher precision. Moreover, the hierar-

chy constraint is always fulfilled, which is not the case

for C4.5H/M.

Comparing individual rules

Every leaf of a decision tree corresponds to an if ... then ...

rule. When comparing the complexity and precision/recall

of these individual rules, CLUS-HMC also performs well.

For instance, take FunCat class 29, which has a prior fre-

quency of 3%. Figure 9 shows the PR evaluation for the

algorithms for this class using homology dataset D4. The

PR point for C4.5H corresponds to one rule, shown in

Figure 10. This rule has a precision/recall of 0.55/0.17.

CLUS-HMC’s most precise rule for class 29 is shown in

Figure 11. This rule has a precision/recall of 0.90/0.26.

Note from Figure 9 that an even higher precision can

be obtained with CLUS-HMC-ENS, although the rules

which lead to this prediction are more complex.

Comparison between CLUS-HMC-ENS and

Bayesian-corrected SVMs

In this section, we compare CLUS-HMC-ENS to the

statistical learning method of Barutcuoglu et al. [10],

which consists of Bayesian-corrected SVMs (see “Related

work”). We will further refer to this method as BSVM.

The authors have used dataset D0 to evaluate their

method and report class-wise area under the ROC con-

vex hull (AUROC) for a small subset of 105 nodes of

the Gene Ontology. As only AUROC scores are

reported by Barutcuoglu et al. [10], we adopt the same

evaluation metric for this comparison.

Barutcuoglu et al. [10] build a bagging procedure

around their system and report out-of-bag error esti-

mates [42] as evaluation, which removes the need for a

set-aside test set. Out-of-bag error estimation proceeds

as follows: for each example in the original training set,

the predictions are made by aggregating only over those

classifiers for which the example was not used for train-

ing. This is the out-of-bag classifier. The out-of-bag

error estimate is then the error rate of the out-of-bag

classifier on the training set. The number of bags used

in this procedure was 10. To compare our results, we

use exactly the same method.

On dataset D0, the average of the AUROC over the

105 functions is 0.871 for CLUS-HMC-ENS and 0.854

for BSVM. Figure 12 compares the class-wise out-of-bag

AUROC estimates for CLUS-HMC-ENS and BSVM out-

puts. CLUS-HMC-ENS scores better on 73 of the 105

functions, while BSVM scores better on the remaining

32 cases. According to the (two-sided) Wilcoxon signed

rank test [43], the performance of CLUS-HMC-ENS is

significantly better (p = 4.37·10-5).

Moreover, CLUS-HMC-ENS is faster than BSVM.

Runtimes are compared for one of the datasets having

annotations from Gene Ontology’s complete biological

process hierarchy (in particular, we used D16, which is

annotated with 629 classes). Run on a cluster of AMD

Opteron processors (1.8 - 2.4 GHz, ≥ 2 GB RAM),

CLUS-HMC-ENS required 15.9 hours, while SVM-light

[44], which is the first step of BSVM, required 190.5

hours for learning the models (i.e., CLUS-HMC-ENS is

faster by a factor 12 in this case).

Comparison between CLUS-HMC-ENS and the methods

in the MouseFunc challenge

In this section we compare CLUS-HMC-ENS to the

seven systems that submitted predictions to the Mouse-

Func challenge. These systems are the ensemble exten-

sion of BSVM [18] (which we will call BSVM+), Kernel

Figure 8 Comparison of precision between C4.5H/M, Clus-HMC

and Clus-HMC-Ens, at the recall obtained by C4.5H/M. The gray

surface represents the gain in precision obtained by CLUS-HMC, the

white surface represents the gain for CLUS-HMC-ENS. D14(FC) was

not included, since C4.5H did not find significant rules. For D16(FC),

C4.5H scored a slightly better precision (see Figure 5), hence the

lack of gray surface.

Figure 9 Precision-recall curve for class 29 on D4 with FunCat

annotations.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 9 of 14

Logistic Regression [13] (which we will call KLR), cali-

brated SVMs [19] (which we will call CSVM), GENEFAS

[4], GENEMANIA [15], the combined functional net-

work and classifier strategy of Kim et al. [16] (which we

will call KIM) and the Funckenstein system [17]. These

methods were described in the “Related work” section.

Note that, when comparing the results, one should keep

in mind that each team independently constructed a

dataset, possibly using different features. As a result, the

differences in performance can be due not only to the

learning methods compared, but also the different fea-

ture sets used by the methods. As mentioned in the

“Datasets” section, the representation that we use is the

one of the BSVM+ team.

The organizers have made available a program that

computes several evaluation measures and was used to

compare the results by the different participating teams

in the challenge. This software is available at the same

URL where the data can be found, and computes

AUROC scores and precision values at several levels of

recall for a list of GO terms.

Figure 10 Rule found by C4.5H on the D4 (FC) homology dataset, with a precision of 0.55 and a recall of 0.17.

Figure 11 Rule found by Clus-HMC on the D4 (FC) homology dataset, with a precision of 0.90 and a recall of 0.26.

Figure 12 Class-wise out-of-bag AUROC comparison between

Clus-HMC-Ens and Bayesian-corrected SVMs.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 10 of 14

A close inspection of this program reveals that it exhi-

bits some undesirable behaviour. This can easily be veri-

fied by observing the result for a classifier that always

predicts the same value. The correct function-wise PR

curve for any GO term would be a straight line parallel

to the recall axis, with precision equal to the frequency of

the term. However, the PR curve returned by the soft-

ware differs from this. If the ordering in which the genes

are processed happens to start with a positive gene, then

the precision at zero recall equals one. Moreover, if the

ordering ends with a negative gene, the precision at recall

one is still higher than the class frequency. The ordering

in which the examples are processed should be indepen-

dent from the resulting PR curve.

For this reason, we included the computation of preci-

sion and recall in the Clus software. Because the Mouse-

Func website lists a prediction matrix (containing for

each gene-term pair the corresponding probability that

the gene is annotated with the GO term) for each of the

methods we compare to, we can run our own evaluation

program on these predictions, producing corrected

results for these methods.

Each method gives predictions for 2815 selected GO

terms. These terms are divided into 12 disjunct subsets

corresponding to all combinations of the three GO

branches (Biological Process, Molecular Function and

Cellular Component) with four ranges of specificity,

which is defined as the number of genes in the training

set to which each term is annotated (3-10, 11-30, 31-

100 and 101-300). We have adopted the same subsets

and trained and evaluated our models on each of them.

Since 1846 of the selected 2815 GO terms were used as

annotation in the test set, our evaluation of all the sys-

tems is based only on those.

Table 1 shows the AU(PRC) results of all the meth-

ods on the 12 subsets. Looking at the wins/losses for

each of the 12 subsets, according to the (two-sided) Wil-

coxon signed rank test, the performance of CLUS-

HMC-ENS is significantly better at the 1% level than

BSVM+(p = 4.88·10-4), CSVM (p = 1.47·10-3), GENEFAS

(p = 4.88·10-4), and KIM (p = 4.88·10-4). CLUS-HMC-

ENS has more wins than KLR (p = 1.61·10-2) and GEN-

EMANIA (p = 1.61·10-2), but is not significantly better

at 1%. CLUS-HMC-ENS is performing significantly

worse than Funckenstein (p = 9.28·10-3).

Table 2 shows the same comparison, but now for

AUPRC . According to the Wilcoxon signed rank test,

CLUS-HMC-ENS is performing significantly better at

the 1% level than KIM (p = 4.88·10-4), while it is not sig-

nificantly different from BSVM+ (p = 4.70·10-1), KLR

(p = 1.61·10-2), CSVM (p = 1.51·10-1) and GENEFAS

(p = 2.59·10-2). CLUS-HMC-ENS is performing signifi-

cantly worse than GENEMANIA (p = 9.28·10-3) and

Funckenstein (p = 9.77·10-4).

Because AUROC , the average over all areas under the

function-wise ROC curves, was used as evaluation mea-

sure in the MouseFunc challenge [22], we report it in

Table 3. According to the Wilcoxon signed rank test,

CLUS-HMC-ENS is not performing significantly differ-

ent at the 1% level than KLR (p = 9.10·10-1), CSVM

(p = 2.20·10-2), GENEFAS (p = 5.69·10-1) and KIM

(p = 3.22·10-2). CLUS-HMC-ENS is performing signifi-

cantly worse than BSVM+ (p = 4.88·10-4), GENEMANIA

(p = 9.77·10-4) and Funckenstein (p = 9.77 10-4).

The fact that CLUS-HMC-ENS performs better

according to AU(PRC) than to AUPRC and AUROC
can be explained as follows. The variance function used

to select the best tests gives a higher weight to functions

at higher levels of the hierarchy (see “Methods” section),

causing CLUS-HMC-ENS to perform well especially on

those functions. In contrast to AUPRC and AUROC ,

which consider each function as equal, the AU(PRC)

Table 1 Comparison of AU(PRC) between Clus-HMC-Ens and the MouseFunc systems

Subset CLUS-HMC-ENS BSVM+ KLR CSVM GENEFAS GeneMANIA KIM Funckenstein

BP_3-10 0.045 0.040⊖ 0.028⊖ 0.029⊖ 0.028⊖ 0.071⊕ 0.029⊖ 0.085⊕

BP_11-30 0.055 0.042⊖ 0.053 0.017⊖ 0.012⊖ 0.038⊖ 0.031⊖ 0.083⊕

BP_31-100 0.109 0.100⊖ 0.135⊕ 0.077⊖ 0.033⊖ 0.035⊖ 0.044⊖ 0.190⊕

BP_101-300 0.173 0.161⊖ 0.174⊕ 0.146⊖ 0.078⊖ 0.055⊖ 0.051⊖ 0.225⊕

CC_3-10 0.182 0.076⊖ 0.060⊖ 0.046⊖ 0.050⊖ 0.131⊖ 0.128⊖ 0.202⊕

CC_11-30 0.207 0.085⊖ 0.128⊖ 0.094⊖ 0.038⊖ 0.068⊖ 0.112⊖ 0.167⊖

CC_31-100 0.233 0.163⊖ 0.161⊖ 0.074⊖ 0.107⊖ 0.046⊖ 0.127⊖ 0.226⊖

CC_101-300 0.220 0.166⊖ 0.225⊕ 0.157⊖ 0.110⊖ 0.101⊖ 0.094⊖ 0.248⊕

MF_3-10 0.266 0.243⊖ 0.191⊖ 0.205⊖ 0.174⊖ 0.359⊕ 0.189⊖ 0.368⊕

MF_11-30 0.356 0.258⊖ 0.285⊖ 0.275⊖ 0.136⊖ 0.270⊖ 0.215⊖ 0.384⊕

MF_31-100 0.360 0.245⊖ 0.294⊖ 0.231⊖ 0.120⊖ 0.284⊖ 0.191⊖ 0.482⊕

MF_101-300 0.368 0.283⊖ 0.331⊖ 0.386⊕ 0.184⊖ 0.202⊖ 0.140⊖ 0.485⊕

For each of the 12 subsets, the AU(PRC) of CLUS-HMC-ENS is compared with the MouseFunc systems. A win (⊕) means that the MouseFunc system

outperforms CLUS-HMC-ENS, a loss (⊖) means that it is outperformed by CLUS-HMC-ENS.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 11 of 14

evaluation measure shares the idea of giving a higher

penalty to mistakes made for functions at higher levels

of the hierarchy.

We can conclude that, in general, the performance of

CLUS-HMC-ENS is not significantly different from that

of BSVM+, which has been evaluated on the same data-

set. Moreover, also compared to the other systems,

which have used other preprocessing methods, CLUS-

HMC-ENS is competitive: only the Funckenstein

method and GENEMANIA produce significantly better

results on 3 and 2 evaluation measures, respectively. In

a function-wise comparison over all 12 subsets (1846

functions in total), CLUS-HMC-ENS still performed

better than Funckenstein on 607 (according to AUPRC)

and 625 (according to AUROC) functions, while it had

an equal score for 98 (AUPRC) and 97 (AUROC) func-

tions. Similarly, it performed better than GENEMANIA

on 645/563 functions and had an equal score for 84/88

functions, respectively. This shows that none of the

methods is guaranteed to be the best choice for any

given function.

This comparison to the methods in the MouseFunc

competition suggests that incorporating functional link-

age information in the predictions made by an ensemble

method can substantially improve its performance. How

this could be achieved for CLUS-HMC-ENS will be

investigated in further work.

Conclusions
In this article, we have presented the use of a decision

tree learner, called CLUS-HMC, in functional genomics.

The learner produces a single tree that predicts, for a

given gene, its biological functions from a function clas-

sification scheme, such as the Gene Ontology. The main

contributions of this work are the introduction of the

tree-based ensemble learner CLUS-HMC-ENS and

Table 2 Comparison of AUPRC between CLUS-HMC-ENS and the MouseFunc systems

Subset CLUS-HMC-ENS BSVM+ KLR CSVM GENEFAS GENEMANIA KIM Funckenstein

BP_3-10 0.120 0.156⊕ 0.075⊖ 0.075⊖ 0.108⊖ 0.170⊕ 0.108⊖ 0.198⊕

BP_11-30 0.110 0.141⊕ 0.087⊖ 0.085⊖ 0.074⊖ 0.151⊕ 0.107⊖ 0.162⊕

BP_31-100 0.139 0.172⊕ 0.158⊕ 0.140⊕ 0.094⊖ 0.177⊕ 0.116⊖ 0.244⊕

BP_101-300 0.171 0.172⊕ 0.169⊖ 0.173⊕ 0.104⊖ 0.160⊖ 0.056⊖ 0.214⊕

CC_3-10 0.319 0.249⊖ 0.119⊖ 0.083⊖ 0.233⊖ 0.324⊕ 0.271⊖ 0.316⊖

CC_11-30 0.260 0.194⊖ 0.212⊖ 0.151⊖ 0.131⊖ 0.235⊖ 0.178⊖ 0.267⊕

CC_31-100 0.217 0.232⊕ 0.197⊖ 0.161⊖ 0.191⊖ 0.261⊕ 0.144⊖ 0.287⊕

CC_101-300 0.244 0.217⊖ 0.259⊕ 0.221⊖ 0.177⊖ 0.258⊕ 0.118⊖ 0.279⊕

MF_3-10 0.320 0.441⊕ 0.258⊖ 0.228⊖ 0.427⊕ 0.465⊕ 0.304⊖ 0.472⊕

MF_11-30 0.356 0.373⊕ 0.347⊖ 0.393⊕ 0.350⊖ 0.401⊕ 0.302⊖ 0.455⊕

MF_31-100 0.269 0.289⊕ 0.230⊖ 0.278⊕ 0.242⊖ 0.291⊕ 0.255⊖ 0.416⊕

MF_101-300 0.322 0.317⊖ 0.321⊖ 0.374⊕ 0.295⊖ 0.391⊕ 0.172⊖ 0.441⊕

For each of the 12 subsets, the PRC of CLUS-HMC-ENS is compared with the MouseFunc systems. A win (⊕) means that the MouseFunc system outperforms

CLUS-HMC-ENS, a loss (⊖) means that it is outperformed by CLUS-HMC-ENS.

Table 3 Comparison of AUROC between Clus-HMC-Ens and the MouseFunc systems

Subset CLUS-HMC-ENS BSVM+ KLR CSVM GENEFAS GENEMANIA KIM Funckenstein

BP_3-10 0.695 0.808⊕ 0.581⊖ 0.588⊖ 0.715⊕ 0.873⊕ 0.813⊕ 0.790⊕

BP_11-30 0.748 0.808⊕ 0.741⊖ 0.659⊖ 0.767⊕ 0.849⊕ 0.822⊕ 0.796⊕

BP_31-100 0.831 0.874⊕ 0.846⊕ 0.778⊖ 0.780⊖ 0.872⊕ 0.851⊕ 0.880⊕

BP_101-300 0.823 0.853⊕ 0.845⊕ 0.813⊖ 0.733⊖ 0.840⊕ 0.795⊖ 0.838⊕

CC_3-10 0.748 0.845⊕ 0.571⊖ 0.618⊖ 0.782⊕ 0.899⊕ 0.865⊕ 0.837⊕

CC_11-30 0.791 0.873⊕ 0.790⊖ 0.785⊖ 0.834⊕ 0.907⊕ 0.846⊕ 0.850⊕

CC_31-100 0.863 0.896⊕ 0.850⊖ 0.851⊖ 0.783⊖ 0.887⊕ 0.863 0.849⊖

CC_101-300 0.845 0.873⊕ 0.851⊕ 0.821⊖ 0.750⊖ 0.842⊖ 0.808⊖ 0.867⊕

MF_3-10 0.818 0.887⊕ 0.630⊖ 0.681⊖ 0.850⊕ 0.951⊕ 0.880⊕ 0.879⊕

MF_11-30 0.842 0.903⊕ 0.861⊕ 0.836⊖ 0.865⊕ 0.936⊕ 0.884⊕ 0.909⊕

MF_31-100 0.838 0.888⊕ 0.892⊕ 0.881⊕ 0.843⊕ 0.887⊕ 0.884⊕ 0.903⊕

MF_101-300 0.874 0.904⊕ 0.894⊕ 0.884⊕ 0.843⊖ 0.909⊕ 0.844⊖ 0.918⊕

For each of the 12 subsets, the PRC of CLUS-HMC-ENS is compared with the MouseFunc systems. A win (⊕) means that the MouseFunc system outperforms

CLUS-HMC-ENS, a loss (⊖) means that it is outperformed by CLUS-HMC-ENS.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 12 of 14

empirical evidence showing that this learner outper-

forms several state-of-the-art methods on S. cerevisiae,

A. thaliana and M. musculus datasets.

First, we have shown that CLUS-HMC outperforms an

existing decision tree learner (C4.5H/M) w.r.t. predictive

performance. Second, we have shown that the predictive

performance boost in regular classification tasks

obtained by using ensembles, carries over to the hier-

archical multi-label classification context, in which the

gene function prediction task is set. Third, by construct-

ing an ensemble of CLUS-HMC-trees, our method out-

performs a statistical learner based on SVMs for

S. cerevisiae, both in predictive performance and in effi-

ciency. Fourth, this ensemble learner is competitive to

statistical and network based methods for M. musculus

data.

To summarize, CLUS-HMC can give additional biolo-

gical insight in the predictions. Moreover, CLUS-HMC-

ENS yields state-of-the-art quality for gene function pre-

diction. The software implementing these methods is

easy to use and available online as open-source software.

As such, CLUS-HMC(-ENS) is competitive to the cur-

rent state-of-the-art systems and therefore, we believe it

should be considered for making automated predictions

in functional genomics.

Acknowledgements

Institute for the Promotion of Innovation through Science and Technology

in Flanders (IWT-Vlaanderen) to LS. Research Fund K.U.Leuven to CV and JS.

Research Foundation - Flanders (FWO-Vlaanderen) to CV and HB. The GOA

Probabilistic Logic Learning to CV. The EU funded project IQ (Inductive

Queries for Mining Patterns and Models). The authors thank Amanda Clare

and Zafer Barutcuoglu for their cooperation. This research was conducted

utilizing high performance computational resources provided by the K.U.

Leuven http://ludit.kuleuven.be/hpc.

Author details
1Department of Computer Science, Katholieke Universiteit Leuven,

Celestijnenlaan 200A, 3001 Leuven, Belgium. 2Department of Knowledge

Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana,

Slovenia.

Authors’ contributions

LS and CV performed the experimental analysis and drafted the manuscript.

JS provided expertise about CLUS-HMC and helped revising the manuscript.

HB supervised the study and helped drafting the manuscript. DK developed

CLUS-HMC-ENS under the supervision of SD. SD also helped in acquiring the

datasets used in the study and provided input to various parts of the

manuscript. All authors read and approved the final manuscript.

Received: 8 January 2009

Accepted: 2 January 2010 Published: 2 January 2010

References

1. Deng M, Zhang K, Mehta S, Chen T, Sun F: Prediction of protein function

using protein-protein interaction data. Proceedings of the IEEE Computer

Society Bioinformatics Conference, IEEE Computer Society 2002, 197-206.

2. Troyanskaya O, Dolinski K, Owen A, Altman R, D B: A Bayesian framework

for combining heterogeneous data sources for gene function prediction

(in Saccharomyces Cerevisiae). Proceedings of the National Academy of

Sciences 2003, 100(14):8348-8353.

3. Clare A, King RD: Predicting gene function in Saccharomyces cerevisiae.

Bioinformatics 2003, 19(Suppl 2):ii42-49.

4. Chen Y, Xu D: Global protein function annotation through mining

genome-scale data in yeast Saccharomyces cerevisiae. Nucleic Acids

Research 2004, 32(21):6414-6424.

5. Karaoz U, Murali T, Letovsky S, Zheng Y, Ding C, Cantor C, Kasif S: Whole-

genome annotation by using evidence integration in functional-linkage

networks. Proceedings of the National Academy of Sciences 2004,

101(9):2888-2893.

6. Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS: Kernel-based

data fusion and its application to protein function prediction in yeast.

Proceedings of the Pacific Symposium on Biocomputing 2004, 300-311.

7. Hayete B, Bienkowska J: GOTrees: Predicting GO associations from protein

domain composition using decision trees. Pacific Symposium on

Biocomputing World ScientificAltman RB, Jung TA, Klein TE, Dunker AK,

Hunter L 2005, 127-138.

8. Chua H, Sung W, Wong L: Exploiting indirect neighbours and topological

weight to predict protein function from protein-protein interactions.

Bioinformatics 2006, 22(13):1623-1630.

9. Clare A, Karwath A, Ougham H, King RD: Functional bioinformatics for

Arabidopsis thaliana. Bioinformatics 2006, 22(9):1130-1136.

10. Barutcuoglu Z, Schapire R, Troyanskaya O: Hierarchical multi-label

prediction of gene function. Bioinformatics 2006, 22(7):830-836.

11. Cesa-Bianchi N, Gentile C, Zaniboni L: Incremental algorithms for

hierarchical classification. Journal of Machine Learning Research 2006,

7:31-54.

12. Rousu J, Saunders C, Szedmak S, Shawe-Taylor J: Kernel-based learning of

hierarchical multilabel classification models. Journal of Machine Learning

Research 2006, 7:1601-1626.

13. Lee H, Tu Z, Deng M, Sun F, Chen T: Diffusion kernel-based logistic

regression models for protein function prediction. OMICS 2006, 10:40-55.

14. Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H: Decision trees

for hierarchical multi-label classification. Machine Learning 2008,

73(2):185-214.

15. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q: GeneMANIA:

a real-time multiple association network integration algorithm for

predicting gene function. Genome Biology 2008, 9(Suppl 1):S4.

16. Kim W, Krumpelman C, Marcotte E: Inferring mouse gene functions from

genomic-scale data using a combined functional network/classification

strategy. Genome Biology 2008, 9(Suppl 1):S5.

17. Tian W, Zhang L, Tasan M, Gibbons F, King O, Park J, Wunderlich Z, Cherry

J, Roth F: Combining guilt-by-association and guilt-by-profiling to predict

Saccharomyces cerevisiae gene function. Genome Biology 2008, 9(Suppl

1):S7.

18. Guan Y, Myers C, Hess D, Barutcuoglu Z, Caudy A, Troyanskaya O:

Predicting gene function in a hierarchical context with an ensemble of

classifiers. Genome Biology 2008, 9(Suppl 1):S3.

19. Obozinski G, Lanckriet G, Grant C, Jordan M, Noble W: Consistent

probabilistic outputs for protein function prediction. Genome Biology

2008, 9(Suppl 1):S6.

20. Quinlan J: C4.5: Programs for Machine Learning Morgan Kaufmann series in

Machine Learning, Morgan Kaufmann, Springer Netherlands 1993.

21. Hughes T, Roth F: A race through the maze of genomic evidence.

Genome Biology 2008, 9(Suppl 1):S1.

22. Pena-Castillo L, Tasan M, Myers C, Lee H, Joshi T, Zhang C, Guan Y, Leone

M, A P, Kim W, Krumpelman C, Tian W, Obozinski G, Qi Y, Mostafavi S, Lin

G, Berriz G, Gibbons F, Lanckriet G, Qiu J, Grant C, Barutcuoglu Z, Hill D,

Warde-Farley D, Grouios C, Ray D, Blake J, Deng M, Jordan M, Noble W,

Morris Q, Klein-Seetharaman J, Bar-Joseph Z, Chen T, Sun F, Troyanskaya O,

Marcotte E, Xu D, Hughes T, Roth F: A critical assessment of Mus

musculus gene function prediction using integrated genomic evidence.

Genome Biology 2008, 9(Suppl 1):S2.

23. Clare A: Machine learning and data mining for yeast functional

genomics. PhD thesis University of Wales, Aberystwyth, Computer Science

Department 2003.

24. Blockeel H, Bruynooghe M, Džeroski S, Ramon J, Struyf J: Hierarchical

multi-classification. Proceedings of the ACM SIGKDD 2002 Workshop on

Multi-Relational Data Mining 2002, 21-35.

25. Blockeel H, De Raedt L, Ramon J: Top-down induction of clustering trees.

Proceedings of the 15th International Conference on Machine Learning 1998,

55-63.

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 13 of 14

http://ludit.kuleuven.be/hpc
http://www.ncbi.nlm.nih.gov/pubmed/14534170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15585665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15585665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15759620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15759620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16632496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16632496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16410319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16410319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16584317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16584317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613946?dopt=Abstract

26. Struyf J, Džeroski S, Blockeel H, Clare A: Hierarchical multi-classification

with predictive clustering trees in functional genomics. Progress in

Artificial Intelligence: 12th Portugese Conference on Artificial Intelligence

Lecture Notes in Computer Science, Springer 2005, 3808:272-283.

27. Blockeel H, Schietgat L, Struyf J, Džeroski S, Clare A: Decision trees for

hierarchical multilabel classification: A case study in functional

genomics. Proceedings of the 10th European Conference on Principles and

Practice of Knowledge Discovery in Databases Lecture Notes in Artificial

Intelligence 2006, 4213:18-29.

28. Mewes H, Heumann K, Kaps A, Mayer K, Pfeiffer F, Stocker S, Frishman D:

MIPS: A database for protein sequences and complete genomes. Nucleic

Acids Research 1999, 27:44-48.

29. Breiman L, Friedman J, Olshen R, Stone C: Classification and Regression Trees

Belmont: Wadsworth 1984.

30. Breiman L: Random forests. Machine Learning 2001, 45:5-32.

31. Drucker H: Improving regressors using boosting techniques. Proceedings

of the 14th International Conference on Machine Learning 1997, 107-115.

32. Breiman L: Bagging predictors. Machine Learning 1996, 24(2):123-140.

33. Caruana R: Multitask Learning. Machine Learning 1997, 28:41-75.

34. Kocev D, Vens C, Struyf J, Džeroski S: Ensembles of multi-objective

decision trees. Proceedings of the 18th European Conference on Machine

Learning 2007, 624-631.

35. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski

K, Dwight S, Eppig J, Harris M, Hill D, Issel-Tarver L, Kasarskis A, Lewis S,

Matese J, Richardson J, Ringwald M, Rubin G, Sherlock G: Gene Ontology:

Tool for the unification of biology. The Gene Ontology Consortium.

Nature Genetics 2000, 25:25-29.

36. Ouali M, King R: Cascaded multiple classifiers for secondary structure

prediction. Protein Science 2000, 9(6):1162-76.

37. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D:

Gapped BLAST and PSI-BLAST: A new generation of protein database

search programs. Nucl Acids Res 1997, 25:3389-3402.

38. Gough J, Karplus K, Hughey R, Chothia C: Assignment of homology to

genome sequences using a library of hidden markov models that

represent all proteins of known structure. Molecular Biology 2001,

313(4):903-919.

39. Zdobnov E, Apweiler R: InterProScan - an integration platform for

the signature-recognition methods in InterPro. Bioinformatics 2001,

17(9):847-848.

40. Provost F, Fawcett T: Analysis and visualization of classifier performance:

comparison under imprecise class and cost distributions. Proceedings of

the Third International Conference on Knowledge Discovery and Data Mining

AAAI Press 1998, 43-48.

41. Davis J, Goadrich M: The relationship between precision-recall and ROC

curves. Proceedings of the 23rd International Conference on Machine Learning

2006, 233-240.

42. Breiman L: Out-of-bag estimation. Technical Report, Statistics Department,

University of California 1996http://ftp.stat.berkeley.edu/pub/users/breiman/

OOBestimation.ps.Z.

43. Wilcoxon F: Individual comparisons by ranking methods. Biometrics 1945,

1:80-83.

44. Joachims T: Making large-scale SVM learning practical. Advances in Kernel

Methods - Support Vector Learning MIT-Press, Cambridge, MA, USAScholkopf

B, Burges C, Smola A 1999.

doi:10.1186/1471-2105-11-2
Cite this article as: Schietgat et al.: Predicting gene function using
hierarchical multi-label decision tree ensembles. BMC Bioinformatics 2010
11:2.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Schietgat et al. BMC Bioinformatics 2010, 11:2

http://www.biomedcentral.com/1471-2105/11/2

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/9847138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10892809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10892809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11590104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11590104?dopt=Abstract
http://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z
http://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Network based methods
	Kernel based methods
	Decision tree based methods

	Methods
	Using predictive clustering trees for HMC tasks
	Ensembles of PCTs

	Results and discussion
	Datasets
	Saccharomyces cerevisiae
	Arabidopsis thaliana
	Mus musculus

	Methodology
	Evaluation measure
	Parameter settings for CLUS-HMC and CLUS-HMC-ENS

	Results
	Comparison between CLUS-HMC and CLUS-HMC-ENS
	Comparison between CLUS-HMC and C4.5H/M
	Comparing individual rules
	Comparison between CLUS-HMC-ENS and Bayesian-corrected SVMs
	Comparison between CLUS-HMC-ENS and the methods in the MouseFunc challenge

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

