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MicroRNAs (miRNAs) have been demonstrated to play significant biological roles in

many human biological processes. Inferring the functions of miRNAs is an important

strategy for understanding disease pathogenesis at the molecular level. In this paper,

we propose an integrated model, PmiRGO, to infer the gene ontology (GO) functions

of miRNAs by integrating multiple data sources, including the expression profiles of

miRNAs, miRNA-target interactions, and protein-protein interactions (PPI). PmiRGO

starts by building a global network consisting of three networks. Then, it employs

DeepWalk to learn latent representations as network features of the global heterogeneous

network. Finally, the SVM-based models are applied to label the GO terms of miRNAs.

The experimental results show that PmiRGO has a significantly better performance than

existing state-of-the-art methods in terms of Fmax. A case study further demonstrates

the feasibility of PmiRGO to annotate the potential functions of miRNAs.

Keywords: miRNA function annotation, miRNA co-expression, global heterogeneous network, latent

representations, multi-classification

INTRODUCTION

MicroRNAs (miRNAs) are endogenously small non-coding RNAs of about 21–25 nucleotides and
play important roles in gene regulation, via base-pairing mRNA molecules with complementary
sequences for cleavage or translational repression (Bartel, 2004; Huang et al., 2011; Yao et al.,
2018). Some of the biological processes within which miRNAs are involved include development,
differentiation, apoptosis, and viral infection (Miska, 2005). In addition to their importance
in biological processes, miRNAs are also valuable biomarker candidates for specific diseases,
including Alzheimer’s disease (AD) (Esteller, 2011). Currently, the identification of unknown
miRNA functions is an essential goal of miRNA research. Research on miRNA function focuses on
the experimental determination field. miRNA function is primarily identified by the up-regulation
or down-regulation of miRNA expression and its target genes (Zhu and Helliwell, 2010). However,
experimental methods for the identification of miRNA functions are considerably expensive and
time-consuming.

Recently, computational methods have been proposed to solve those difficulties. These methods
elucidate miRNA functions by analyzing the functions of target genes or promoters, which are
determined by miRNA-related expression (Pandey and Krishnamachari, 2006; Wei et al., 2012).
These methods include TargetScan (Agarwal et al., 2015), Miranda (Enright et al., 2003), PITA
(Kertesz et al., 2007), and DIANA-microT (Maragkakis et al., 2009). Many of the tools used are
based on the sequence alignment of the miRNA seed region, which allows for the determination of
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the putative binding sites (Maragkakis et al., 2009). However,
the prediction results of these tools are unsatisfactory for two
reasons: first, the majority of the prediction data of the miRNA
target are negative, and the predicted data are not sufficient
enough; second, these tools only concentrate on sequence
information (Ulitsky et al., 2010) and ignore other useful
information, such as miRNA expression data. Therefore, the
results are easily affected by negative samples leading to poor
results. In a time of increasing high-throughput sequencing, a
massive amount of miRNA-seq data is accumulating, however,
the analysis of this data remains a significant challenge.
miRNA expression determines function, which is also crucial for
discovering molecular mechanisms of human gene regulation
(Panwar et al., 2017). Backes et al. (2016) developed a novel
miRNA annotation tool which provides rich functionality in
terms of miRNA categories based on miRNA enrichment
analysis. However, miEAA does not take the importance of
miRNA co-expression into account. Generally, multiple miRNAs
might jointly regulate a target gene, and a miRNA may regulate
hundreds of different target genes (Krek et al., 2005; Friedman
et al., 2009). The potential associations between miRNAs are also
vital to understand the miRNA functional mechanism and to
annotate functions of miRNAs. Moreover, miEAA ignores the
interactions between miRNA and target gene production (e.g.,
protein), which provides useful information for predicting the
functionalities of miRNAs.

In this paper, we take full advantage of miRNA expression
profiles, miRNA-target gene interactions, which are
experimentally validated, and protein-protein interactions
data. Moreover, a global miRNA-protein network is constructed
by integrating these three data sources. Secondly, we employ
DeepWalk (Perozzi et al., 2014), an approach used for learning
potential representations of nodes in a network, to extract the
network features of the global heterogeneous network. Based
on these features of the global network, we build an SVM-based
classifier for each miRNA to annotate their GO functions. The
proteins with Gene Ontology annotations in the GOA database
(Huntley et al., 2009) are utilized to train SVM classifiers.
Finally, we evaluate our method by applying it to an independent
dataset. The results show that our method, PmiRGO, achieves
a maximum F-measure of 0.310 and outperforms the other
state-of-the-art method, miEAA (Backes et al., 2016).

MATERIALS AND METHODS

The flowchart of PmiRGO is illustrated in Figure 1. As shown in
step A, we first downloaded the miRNA co-expression profiles,
miRNA-target interactions, and protein-protein interactions
(PPIs) to construct the miRNA co-expression network, miRNA-
target interaction network, and PPI network, respectively.
Then, the three networks were integrated to build a global
heterogeneous network by mapping the target genes into PPI
network in step B. We employed DeepWalk to learn the potential
representations of the networks as the features of the global
heterogeneous network in step C. In step D, we mapped the
IDs of miRNAs and proteins to the corresponding nodes in the

features. After that, we trained SVMmodels for each miRNA and
used the miRNA2GO-337 dataset to evaluate the performance of
the multi-classification models in step E. In the final step F, the
GO annotations of miRNAs in the miRNA2GO-337 dataset were
predicted.

Materials
In this study, we downloaded the miRNA expression data, PPI
data, and miRNA-target interactions from different databases,
from which a total of 2,588 miRNAs and 18,143 proteins were
retrieved. The details are as follows.

miRNA Expression
The miRNA expression data were downloaded from the
miRmine database, containing expression profiles collected from
several publicly available miRNA-seq datasets, as well as detailed
information regarding different miRNAs (Panwar et al., 2017).
This database consists of expression profiles of 2,822 precursor
miRNAs, each containing a total of 135 columns of expression
values from different human tissues. Note that a mature miRNA
may have two or more precursor miRNAs, in our work; the
expression profiles of one mature miRNA derived from different
precursor miRNAs were averaged as the expression values of this
mature miRNA. As a result, 2,588 miRNA expression profiles
were obtained. We then calculated the Pearson’s Correlation
Coefficient (PCC) scores as the co-expression similarity of the
expression profiles between each pair of miRNAs (Zhang J.
et al., 2017). We constructed a miRNA co-expression network
according to the co-expression similarity values. As the PCC
scores were used as the weight of the edges in the network, the
negative PCC values were removed.

Protein-Protein Interactions
The PPIs were obtained from the STRING database V10.0
(Szklarczyk et al., 2014). These interactions were collected
from not only biological experiments but also text mining and
computational prediction approaches. The overall scores of these
interactions were obtained from single or multiple clues with
high probability. The number of PPI entries retrieved from
18,143 proteins was 7,866,428, which were then used to construct
a PPI network. Each entry of the PPI network consists of protein
A, protein B, and corresponding predicted score. The higher the
predicted score of an entry, the higher the probability that two
proteins in the entry are considered to interact. In our work,
we treat the predicted score as weight of the edge between two
protein nodes in the entry.

miRNA-Target Interactions
We retrieved miRNA-target interactions from the miRTarBase
database of release 7.0 (Hsu et al., 2010). The database provides
a gold standard resource of experimentally validated microRNA-
target interactions, which were manually collected. We extracted
355,684 different high quality experimentally validated miRNA-
target interactions among 2,588 miRNAs and 18,143 target genes
to build the miRNA-target interaction network after removing
the duplicate and out-of-range entries.
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FIGURE 1 | PmiRGO flowchart. It consists of six steps: (A) three networks (miRNA co-expression network, miRNA-target interaction network, and PPI network) were

constructed according to the co-expression profiles, miRNA-target gene interactions, and protein-protein interactions, respectively. (B) By mapping the target genes

into PPI network, the three networks were integrated to build a global heterogeneous network. (C) DeepWalk was employed to learn the latent representations of the

network as features of the global heterogeneous network. (D) For each miRNA or protein, a feature vector was obtained. (E) SVM models were trained and the

miRNA2GO-337 dataset were used to evaluate the performance. (F) The GO annotations of each miRNA in the miRNA2GO-337 dataset were predicted.
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Methods
Constructing the Global Network
Three heterogeneous networks, including the miRNAs co-
expression network, the miRNA-target interaction network, and
the PPI network, were built as described above. The construction
of the miRNA co-expression network is based on the hypothesis
that miRNAs with similar expression patterns also share similar
functions or biological pathways (He and Hannon, 2004; Zhang
Z. et al., 2017). The PCC scores were computed to represent
the similarity between two miRNAs and the values represent
the weights of the edges in the miRNA co-expression network.
Moreover, growing evidences have revealed that miRNAs have
identical or related functions to their interacting target genes
with a significant probability (Bartel, 2009). Hence, the three
component networks were integrated to infer the functions of
miRNAs. Assuming that M, P, and MP denote the adjacency
matrices of the miRNA co-expression network, PPI network,
and miRNA-target interaction network, respectively, the global
network can be formulated as:

G =

[

M MP

MPT P

]

(1)

Here, T inMPT represents the transpose.

Learning Latent Representations of Nodes
In order to obtain the low-dimensional topological information
of the vertices of the global heterogeneous network we
constructed above, DeepWalk was used to learn the potential
representations of miRNAs and proteins in networks (Perozzi
et al., 2014). This unsupervised method based on graph learns
features that define the graph structure independently of the
distribution of the labels (Bengio et al., 2013). DeepWalk uses
information extracted locally from truncated random walks for

FIGURE 2 | Effect of the number of different feature dimensions on function

prediction. The maximum F-measure reaches its highest value 0.31 when the

feature dimension is 512.

the learning of potential representations by regarding walks as
sentences.

We treated the global heterogeneous network as an undirected
graph G = (V , E) that V denotes the set of biological entities
(e.g., miRNA and protein) and E denotes the set of undirected
edges. DeepWalk employs a stream of short random walks to
extract potential associations between miRNAs and proteins
from the global network. The series that a random walk starts
with every node vi are marked asWvi . Moreover, it is a stochastic
process with random nodes W1

vi
, W2

vi
, . . . , Wk

vi
, where Wk+1

vi
is

a node chosen randomly from the neighbors of node vk. When
getting the random walk sequence for each node, it needs to
measure the probability of a specific sequence. More formally,
given a sequence of nodes Wn

1 = (w0, w1, w2, . . . , wn), where
wi ∈ V , DeepWalkmaximizes the Pr(wn|w0, w1, w2, . . . , wn−1)
over all nodes. The idea is to calculate the possibility of observing
node vi given all the previous nodes traversed heretofore in the
random walk:

Pr(vi|(v1, v2, . . . , vi−1)) (2)

We introduced a mapping function 8 : v ǫ V 7→ R|V|×d

to stand for the potential social representation associated with
each miRNA and protein in the graph. The next step involves
estimating the likelihood:

Pr(vi|(8(v1), 8(v2), . . . , 8(vi−1))) (3)

However, as the walk length increases, it becomes too expensive
to calculate this conditional probability. According to a recent
publication (Mikolov et al., 2013), DeepWalk uses one node to
predict the context, both the left and right neighbor nodes of
the given node, instead of using the context to predict next
node. In terms of node feature modeling, it yields the following
optimization problem:

minimize − log Pr ({vi−w, . . . , vi+w}\vi|8(vi)) (4)

To solve the optimization problem, we then employed SkipGram,
a computational language model based on neural network that
maximizes the co-occurrence likelihood over the nodes that
appear among the context of node vi in the random walk
sequence, to approximate the conditional probability in Equation
4 based on an independence assumption, as follows:

Pr ({vi−w, . . . , vi+w}\vi|8(vi)) =
∏i+w

j = i− w
j 6= i

Pr(vj|8(vi))

(5)
For each of all the possible associations between biological

entities in the random walk among the context of node vi, we

TABLE 1 | Performance evaluation of PPI network.

Network Precision Recall Fmax

Without PPIN 0.328 0.205 0.252

Global network 0.351 0.277 0.310
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mapped each node vj to its recent representation vector 8
(

vj
)

∈

Rd and maximized the posterior distribution probability of its
neighbors in the walk. To speed up the computing time, we
used the Hierarchical Softmax to approximate the probability
distribution (Morin and Bengio, 2005; Mnih and Hinton, 2009):

Pr
(

vj
∣

∣8(vi)
)

=
∏⌈log |V|⌉

l
Pr(bl|8(vi)) (6)

By assigning the nodes to the leaves of a binary tree, we turned
prediction of the potential association between miRNAs and
proteins into maximizing the probability of a given path in the
hierarchy. The path to node vj is represented as a sequence of
tree nodes (b0, b1, . . . , b⌈log |V|⌉). Moreover, Pr(bl|8(vi)) can be
simulated by a binary classifier as follows:

Pr
(

vj
∣

∣8(vi)
)

= 1/(1+ e−8(vi)×9(bl)) (7)

where 9
(

bl
)

∈ Rd denotes the representation traversed to tree
node bl’s parent.

After each node completes the random walk process γ times,
a matrix 8 ǫ R|V|×d, which denotes the latent representations of
the global network, is obtained. The result is that, in the matrix,
each row represents a low-dimensional representation vector of a
miRNA or a protein in the network. The source code and data of
PmiRGO are freely available at http://denglab.org/PmiRGO/.

Training the SVM-Based Classifier
Due to the lack of manually curated GO annotations for
miRNAs, it is dissatisfactory to build miRNA function predictors
based on the miRNAs directly. Therefore, we built the training
data sets with GO annotations of proteins downloaded from
GOA database (version 201010) (Huntley et al., 2009). Proteins
with lengths 50–100 aa were selected and clustered with a
sequence similarity of 90 percent (Deng et al., 2018). Moreover,
only one protein was chosen as a representation from each

FIGURE 3 | Performance comparison when different methods (DeepWalk, hin2vec, and metapath2vec) are employed to extract topological features. The

performance of three methods were performed in the miRNA2GO independent dataset.

FIGURE 4 | Performance comparison between PmiRGO and miEAA in terms of recall, precision, and Fmax.
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cluster. The representations without at least a non-IEA (not
inferred from electronic annotation) GO term were filtered. As
a result, 243,561 proteins with Gene Ontology annotations were
collected.

For each GO term, we trained a classifier with samples of
proteins. More specifically, we constructed a true annotation
set for a GO term consisting of proteins, which had the GO
annotation, and a false annotation set of proteins where these
proteins did not have this GO function. As GO ontology is
considered as a directed acyclic graph where each term is related
to one or more other terms in the same domain or other domain
(Deng and Chen, 2015; Zeng et al., 2018), the protein related to a
GO term was also related to the ancestors of the term. Therefore,
the false annotation data set was composed of proteins associated
with other GO terms (excluding annotated terms and their child
nodes). Due to the false annotation set containing more protein-
GO pairs than the true annotation set, we randomly selected an
equal number of negative and positive samples.

Here we employed support vector machines (SVMs) to build
the binary classifier (Yong-Xin et al., 2011). SVM is widely used in
bioinformatics research in the fields of miRNA target prediction,
miRNA identification (Wei et al., 2014), RNA methylation
prediction (Chen et al., 2017), and protein folding (Li et al., 2016),
and others (Xiao et al., 2017; Dao et al., 2018; Feng et al., 2018;
Pan et al., 2018; Yang et al., 2018; Zhu et al., 2019). We used
the radial basis function kernel (RBF) as the kernel function,
which achieved a better performance. C is the penalty coefficient
of SVM, which can be considered as the weight to adjust the
preference of two indexes (interval size, classification accuracy)
in the optimization direction. The higher the value ofC, the easier
the classifier was to overfit. On the contrary, the lower the value
of C, the easier the classifier was to underfit. To obtain an optimal
C of the SVM and γ of the kernel, the performance for eachC and
γ was evaluated by carrying out a 10-fold cross-validation.

RESULTS

Benchmarks
To accurately evaluate the performance of PmiRGO, we created
an independent test based on the GOA database (Ashburner
et al., 2000; The Gene Ontology Consortium, 2017). It consisted
of a total of 337 mature miRNAs (named as miRNA2GO-337),
each of which had at least one curated GO annotation (not
inferred from electronic annotation, non-IEA). The independent
test dataset appears in the Supplementary Table 1.

Evaluation Measures
In PmiRGO, the classifier predicted several probable GO terms
with corresponding scores ranging from 0 to 1 for a specific
miRNA. The scores denoted the degree of confidence for those
GO terms. The final predictions depended on the selected
threshold t. All GO terms predicted for each miRNA with scores
equal to or greater than t and their ancestors in GO linked by
“is a” and “has a” relationships were collected to build the set of
predicted GO terms denoted as P(t) for each threshold t. We used
T to denote the set of experimentally validated GO terms. We
evaluated the performance of the prediction according to three

widely used statistic indexes: recall, precision, and F-measure.
The definitions of recall and precision are as follows:

Prei (t) =

∑

g∈G I(g ∈ Pi (t) ∧ g ∈ Ti)
∑

g∈G I(g ∈ Pi(t))
(8)

Reci (t) =

∑

g∈G I(g ∈ Pi (t) ∧ g ∈ Ti)
∑

g∈G I(g ∈ Ti)
(9)

where g denotes a specific GO term, and G denotes the set of all
GO terms used in our work. The indicator function I(x) is stated
as follows:

I (x) = {1 x= true
0 x=false (10)

After all the miRNAs had been predicted, the average
precision for each threshold t could be calculated on m(t)
miRNAs, each of which had at least one predicted GO term with
a score greater than the threshold t. In the same way, the average
recall could be calculated from the whole benchmark set of N
miRNAs. The average precision and recall are defined as follows:

Pre (t) =
1

m(t)
×

∑m(t)

i=1
Prei(t) (11)

Rec (t) =
1

N
×

∑N

i=1
Reci(t) (12)

Generally speaking, precision and recall are inversely related.
It is not feasible to evaluate the performance of models according
to a single precision or recall. To deal with this problem, the

FIGURE 5 | Precision-recall curves of PmiRGO and miEAA. The figure shows

the performance comparison of PmiRGO with miEAA on the miRNA2GO-337

dataset for BP terms.
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maximum F-measure over all thresholds was introduced for the
overall evaluation of different models (Zhang J. et al., 2018). It
combined the two metrics (precision and recall) to provide a
single-score. The maximum F-measure is defined as follows:

Fmax = max

(

2× Pre(t)× Rec(t)

Pre (t) + Rec(t)

)

(13)

The Effects of Feature Dimensions
As described above, the latent representations of each node in
the network act as its low-dimensional topological features. The
number of dimensions might have a significant effect on the
functional annotations of miRNAs. To assess the influence of the
hyper-parameter on the prediction performance, we performed
an independent test on themiRNA2GO-337 dataset across a wide
range of values for the dimensions. For simplicity, we preset the
other parameters, including the number of walks started from
one node (n), the walk length (t), and the window size (w), in
DeepWalk. The three parameters were selected by conducting
experiments of different parameter values and choosing the
combination with the best performance (n = 100, t = 80, w =

16).
Figure 2 shows the Fmax values when the number of

dimensions ranges from 128 to 1024. The results demonstrated
that the Fmax reached the max value when the dimension
increased to 512. However, as the dimension increased beyond
this value, the performance decreased accordingly. Hence, 512
was chosen as the dimensions of the feature vector. It is important
to note that the SkipGram model based on Hierarchical Softmax
of DeepWalk algorithm is a neural network model and its output
layer corresponds to a binary tree. Therefore, the dimensions of
the latent representations of the model should be a power of two.

The Effects of PPI Data
In our method, protein interaction data was incorporated to
help improve the effectiveness of the functional annotations of
the miRNAs. To confirm this, PmiRGO was carried out on two

different network collocations: the global network (consisting
of a miRNA co-expression network, miRNA-target interaction
network, and PPI network), and the network without PPIs. The
comparison was performed in terms of Fmax when the parameters
(n, t, w, d) were set to 100, 80, 16, and 512, respectively. The
results are shown in Table 1. The Fmax value was 0.31 for the
global network and 0.252 for the network without PPIs. The
performance increased ∼23% with the addition of PPI data.
This experiment demonstrated that integrating multiple types of
information about other relevant biological entities (e.g., protein)
resulted in a great improvement in the performance of predicting
miRNA function.

Comparison of Different Network
Representation Algorithms
Recent studies have demonstrated that network representation
learning is effective in machine learning, such as in tag
recommendation (Tu et al., 2014), vertex classification (Sen
et al., 2008), and link prediction (Lü and Zhou, 2011; Yang
et al., 2015). Many methods have been proposed to address
these issues, most of which investigate network structure for
learning, such as DeepWalk (Perozzi et al., 2014), node2vec
(Grover and Leskovec, 2016), hin2vec (Fu et al., 2017), and
metapath2vec (Dong et al., 2017). DeepWalk used information
extracted locally from the truncated random walks in order
to learn potential representations. On the basis of DeepWalk,
node2vec defined a strategy generating a sequence of bias
random walk that used both BFS and DFS to retain different
network structure information. Different from DeepWalk and
node2vec, hin2vec, and metapath2vec have been proposed
for heterogeneous information networks. They were designed
to capture rich semantics by exploiting different types of
relationships among nodes in forms of meta-paths.

In this paper, we compared DeepWalk, hin2vec, and
metapath2vec in terms of predicting GO annotations of miRNAs.
For the sake of fairness, we used the same global network

FIGURE 6 | Performance comparison of coverage, on the independent dataset miRNA2GO-337. Among these 337 human miRNAs, 205 miRNAs were annotated by

PmiRGO, while only 174 miRNAs were annotated by miEAA.
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constructed above, multi-classification models, and benchmarks.
Figure 3 demonstrates that DeepWalk significantly outperforms
hin2vec andmetapath2vec in terms of precision and Fmax. Hence,
DeepWalk was employed to extract the topological features of
our work.

Performances
To evaluate the performance of PmiRGO further, we compared
it with the state-of-the-art method miEAA (Backes et al., 2016).
MiEAA is a tool that uses enrichment analysis to perform the
functional analysis of sets of miRNAs based onGeneTrail (Backes
et al., 2007). Compared to GeneTrail, miEAA was designed
for human miRNA precursors and mature miRNAs. The
miRNA2GO-337 dataset was utilized to assess the performance
of different methods. Since 53.5% of the functional annotations
of miRNAs are biological process (BP) terms, according to the
statistics of Gene Ontology Consortium database (Ashburner
et al., 2000), and since miRNAs are involved in the biological
process when they have interactions with other entities, we only
evaluated the performance in terms of BPs.

The prediction performance of the two methods is presented
in Figure 4. It is quite apparent that PmiRGO outperforms
miEAA. For the metric Fmax, PmiRGO achieved 0.310 Fmax

on BP terms and had an increase of 0.03 Fmax, while miEAA
reached 0.282 Fmax. Also, the recall of PmiRGO reached 0.277
when the Fmax achieved the highest value, and the recall of
miEAA was 0.235. Figure 5 shows that the precision-recall
curve of PmiRGO is entirely above the curve of miEAA, which
means that our method significantly outperforms miEAA. We
calculated the P-value with two-tailed, paired t-test to compare
the performances of our PmiRGOmethod and MiEAA. For each
time, we randomly selected 50 miRNAs from the miRNA2GO-
337 dataset and calculated the Fmax scores for both PmiRGO and
MiEAA.We repeated the procedure for 30 times and obtained 30
paired Fmax scores. We calculated the P-value using MATLAB. A
P-value score of 0.05 was used to denote statistical significance.
The Fmax of our PmiRGO method was higher than that of
MiEAA, a difference that was statistically significant (P = 1.86e-
05).

Moreover, the coverage of the two prediction methods on
the miRNA2GO-337 dataset was compared. The coverage is
defined as the number of miRNAs predicted correctly, a measure
that reflects robustness. As presented in Figure 6, PmiRGO
correctly annotated 205 miRNAs out of 337 miRNA samples,
while miEAA successfully predicted 174 miRNAs, demonstrating
that our method is more robust than miEAA.

Case Study
To illustrate the performance of this prediction method in a
real case study, we applied PmiRGO to predict the functions
of miRNA has-miR-124-3p. miRNA has-miR-124-3p plays an
essential role in mediating tumor growth and the occurrence and
development of cancer with high genetic conservation. Recent
studies have used high-throughput sequencing to demonstrate
that hsa-miR-124-3p has differential expression in normal
brain tissue and glioblastoma multiforme (GBM). Moreover,
has-miR-124-3p overexpression expressively inhibits GBM cell

proliferation, migration, and tumor angiogenesis, which results
in cell cycle arrest and GBM apoptosis putatively via the
activation of the NRP-1-mediated PI3K/Akt/NFκB pathway in
GBM cells, as well as suppressing tumor growth and reducing
tumor angiogenesis (Zhang G. et al., 2018). Moreover, hsa-
miR-124-3p regulates the expression of the CD151 protein by
inosculation with the 5′UTR to take part in the development of
gastric cancer (Sheng et al., 2009).

As a result, has-miR-124-3p annotated 250 GO terms in total,
the top 31 of which had a probability score >0.9, as shown
in Table 2. Of the four most probable GO Terms, GO:0006915
(apoptotic process), responsible for the process of programmed
cell death when a cell receives an internal or external
signal, and GO:0006725 (cellular aromatic compound metabolic
process), the chemical reactions and pathways involving aromatic
compounds, were indirectly related with the occurrence and
development of diseases, particularly cancer and tumors. In
addition, the predicted GO Terms GO:0008219 (cell death)
(ranked 5th), GO:0048468 (cell development) (ranked 7th), and

TABLE 2 | The top 31 GO terms predicted for miRNA has-miR-124-3p.

Rank GO term GO name

1 GO:0006915 Apoptotic process

2 GO:0006725 Cellular aromatic compound metabolic process

3 GO:0003677 DNA binding

4 GO:0051234 Establishment of localization

5 GO:0008219 Cell death

6 GO:0048856 Anatomical structure development

7 GO:0048468 Cell development

8 GO:0043169 Cation binding

9 GO:0006259 DNA metabolic process

10 GO:0007165 Signal transduction

11 GO:0045664 Regulation of neuron differentiation

12 GO:0019216 Regulation of lipid metabolic process

13 GO:0006810 Transport

14 GO:0008104 Protein localization

15 GO:0031323 Regulation of cellular metabolic process

16 GO:0009892 Negative regulation of metabolic process

17 GO:0005102 Signaling receptor binding

18 GO:0042176 Regulation of protein catabolic process

19 GO:0050769 Positive regulation of neurogenesis

20 GO:0006508 Proteolysis

21 GO:0016477 Cell migration

22 GO:0008202 Steroid metabolic process

23 GO:0008168 Methyltransferase activity

24 GO:0051252 Regulation of RNA metabolic process

25 GO:0009411 Response to UV

26 GO:0014902 Myotube differentiation

27 GO:0045596 Negative regulation of cell differentiation

28 GO:0005515 Protein binding

29 GO:0055085 Transmembrane transport

30 GO:0009987 Cellular process

31 GO:0007224 Smoothened signaling pathway
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GO:0009987 (cellular process) (ranked 30th) were associated
with adenocarcinoma of the lung, breast neoplasms, and colonic
neoplasms. Moreover, those GO terms related to metabolic
processes, such as GO:0006259 (DNAmetabolic process) (ranked
9th), GO:0019216 (regulation of lipid metabolic process) (ranked
12th), and GO:0031323 (regulation of cellular metabolic process)
(ranked 15th), were associated with the production of the gene
products TCEAL7 and TNFRSF1A, which may promote the
occurrence of prostatic neoplasms, lung diseases, and gastric
cancer.

DISCUSSION

Computational function prediction of miRNAs by integrating
varieties of miRNA-related biological information is emerging
as a tool to elucidate the role of miRNAs in development
and for inferring the biological functions of miRNAs.
In our work, we proposed a novel approach, PmiRGO,
to predict their function. Specifically, we constructed a
global heterogeneous network by integrating expression
profiles, miRNA-target interactions, and PPI data. Then,
DeepWalk, an approach used for learning online social
representations, was employed to learn the latent network
features of the global network. Finally, we employed SVM
to build multi-classification models for predicting the GO
annotations.

In terms of the performance, PmiRGO was used to
evaluate the independent dataset miRNA2GO-337. In terms of
Fmax and coverage, PmiRGO outperformed miEAA. Moreover,
the results demonstrate that the protein interaction data
contributes to the improvement of prediction performance
for miRNAs. The great performance of our method can
be attributed to several factors. At first, the experimentally
validated miRNA-target gene interactions, manually curated
from reporter assay, blot, and microarray experiments were
utilized. More reliable and positive information significantly
improves the performance of PmiRGO. Then, we used the
miRNA expression profiles to construct a miRNA co-expression
network, which is useful for predicting the miRNAs involved
in co-regulating one target gene. Finally, the PPI network was
introduced to the global network, allowing the performance

of function prediction to benefit from the variety of biological
entities.

However, there are still further improvements to be made
to our method. Firstly, the experimentally validated miRNA-
target gene interactions were sparse. A greater number of
validated interactions could enhance the effect of PmiRGO
further. Secondly, the expression profiles we used covered only
a part of human miRNAs, and the coverage of the expression
information was not enough. As such, more reliable miRNA
expression profiles need to be collected. Thirdly, more types
of biological entities could also be introduced to the global
network. Others works, including miRNA family information
(Zou et al., 2014) and miRNA-disease networks (Zou et al.,
2016; Liao et al., 2018; Zeng X. et al., 2018), would also
be useful in this study. This should be the focus of future
works.
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