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Purpose: Use of quantitative imaging features and encoding the intra-tumoral

heterogeneity from multi-parametric magnetic resonance imaging (mpMRI) for the

prediction of Gleason score is gaining attention as a non-invasive biomarker for prostate

cancer (PCa). This study tested the hypothesis that radiomic features, extracted from

mpMRI, could predict the Gleason score pattern of patients with PCa.

Methods: This analysis included T2-weighted (T2-WI) and apparent diffusion coefficient

(ADC, computed from diffusion-weighted imaging) scans of 99 PCa patients from

The Cancer Imaging Archive (TCIA). A total of 41 radiomic features were calculated

from a local tumor sub-volume (i.e., regions of interest) that is determined by a

centroid coordinate of PCa volume, grouped based on their Gleason score patterns.

Kruskal-Wallis and Spearman’s rank correlation tests were used to identify features

related to Gleason score groups. Random forest (RF) classifier model was used to predict

Gleason score groups and identify the most important signature among the 41 radiomic

features.

Results: Gleason score groups could be discriminated based on zone size percentage,

large zone size emphasis and zone size non-uniformity values (p < 0.05). These features

also showed a significant correlation between radiomic features and Gleason score

groups with a correlation value of −0.35, 0.32, 0.42 for the large zone size emphasis,

zone size non-uniformity and zone size percentage, respectively (corrected p < 0.05).

RF classifier model achieved an average of the area under the curves of the receiver

operating characteristic (ROC) of 83.40, 72.71, and 77.35% to predict Gleason score

groups (G1) = 6; 6 < (G2) < (3 + 4) and (G3) ≥ 4 + 3, respectively.

Conclusion: Our results suggest that the radiomic features can be used as a

non-invasive biomarker to predict the Gleason score of the PCa patients.

Keywords: biomarkers, classification, gleason score, radiomics, prostate cancer

INTRODUCTION

Prostate cancer (PCa) is one of the most prevalent male malignancies in the developed countries
and 1/6th of the men in the USA are expected to be diagnosed with this disease in their lifetime
(1). Patients with localized PCa are classified into three risk groups (low, intermediate, and
high risk) based on their prostate-specific Antigen (PSA) level, Gleason score and clinical stage
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(i.e., TNM) (2). For men with low-risk prostate cancer, active
surveillance as opposed to immediate treatment has become a
widely accepted treatment approach (3, 4). However, PCa has
the capacity to progress over time. A study of 17,943 patients
with low-risk PCa who were treated with radical prostatectomy
(RP) revealed that upgrading and upstaging occurred in 45% of
these men (5). Furthermore, the deferral of RP for more than
12 months has been associated with a 1.7-fold increased risk of
non-organ confined disease after surgery (5).

Numerous studies have shown that PSA alone is not an
accurate indicator of PCa and over-diagnosis is occurring in up
to 50% of men (6, 7). The inaccuracy of PSA screening often
leads to subsequent unnecessary biopsies that are not only costly
but invasive with serious side effects, such as infection, erectile
dysfunction and bleeding. Therefore, there is a pressing need for
a non-invasive test to distinguish between PCa grades to improve
delivery of high precision care for these patients.

MR imagery, especially multi-parametric sequences (i.e., T1-
WI, T2-WI, FLAIR . . . etc.), have been widely used for diagnosis,
staging and treatment monitoring of different tumor types (8–
15). A newly structured Prostate Imaging Reporting and Data
System (PI-RADS v2) showed that this scoring method could
predict the risk of prostate cancer presence based on the MR
images (16). However, PI-RADS v2 involves interpretation of the
images based on the experience of the radiologists that carries
inter-reader variability. Moreover, PI-RADS has been used to
investigate the relation between imaging features and Gleason
score (GS) (9, 10, 17, 18). The volume of PCa has been shown to
be significantly different between GS = 6 and GS ≥ 7 PCa (17).
In addition, two recent studies demonstrated the usefulness of
the texture features based on gray level co-occurrence matrices
(GLCMs) of MR images (i.e., T2WI) as an indicator for the
pathological differences in PCa (19, 20). To date, there has been
limited work investigating the link between the texture features
of the PCa imaging and the GS.

Offering a non-invasive and low-cost automated technique
for analysis of tumor properties based on MR images, radiomics
has recently been used to interrogate the tumor heterogeneity of
several types of cancer, such as GBM (21), lung (22, 23), colorectal
(24, 25), and PCa (17, 26–28) among others. Radiomic features
with machine learning models can analyze large numbers of
PCa images that will overcome the limitations (i.e., inter-reader
variability for interpretation of the ROIs within an image) for
assessing and classifying PCa lesions. Specifically, many previous
studies have used such machine learning models to assess for
the PCa aggressiveness (13, 29–32). Combined structural features
and metabolic imaging data of PCa in mpMRI [i.e., T2-WI
and magnetic resonance spectroscopy (MRS)] using the RF
classifier, have shown the capacity of these models to detect
the areas of cancer in a PCa tissue (18, 33). Extracted multi-
texture features derived from T1-WI, T2-WI, and Diffusion-
Weighted Imaging (DWI) to characterize the PCa tissue have
been demonstrated to improve the classification rate of prostate
tumor recognition (34–36). Differences between the cancer
grades of a tumor (i.e., PCa) vs. non-tumor regions have been
related to differences in heterogeneity (i.e., texture). For example,
PCa can be discriminated from benign tissues and be detected

based on a different histogram analysis, as shown by Vos et
al (37). However, the dominant features that could assist in
measuring the heterogeneity within PCa have not yet been fully
studied.

We hypothesize that the comprehensive integration of
radiomic features from mpMR images will identify new
characteristics that are capable of distinguishing PCa with
different GS groups whether in the transition or peripheral zones.

MATERIALS AND METHODS

The proposed pipeline of radiomic analysis to predict GS involves
data acquisition from T2-WI and ADC images, automatic
matching of PCa regions, radiomic features computation from
determined subvolume of PCa tumor, and feature analysis. The
proposed flowchart for radiomic analysis of PCa is shown in
Figure 1. Kruskal-Wallis significance test and Spearman rank
correlation were performed to identify radiomic features which
were associated with GS groups.We then applied the RF classifier,
using the radiomic features, to differentiate between the GS
groups and rank the importance value of each radiomic features
for prediction. The detailed methodology for each step of the
proposed flowchart is described below.

Patients and Data Acquisition
We reviewed the 99 PCa patients of the SPIE-AAPM-
NCI Prostate MR Gleason Grade Group Challenge (http://
spiechallenges.cloudapp.net/competitions/7) and the Cancer
Imaging Archive (TCIA), a publicly available medical image
repository. Note that the challenge consists of 162 PCa (99
training and 63 testing) patients. We considered only the 99
training cases where the Gleason score was available, previously
de-identified by SPIE-AAPM-NCI, and the dataset is available for
public download (i.e., Supplementary Table 1). The remaining
63 cases (i.e., testing) did not have Gleason score available.
As such, no institutional review board or Health Insurance
Portability and Accountability Act approval were required for
our study. The dataset included T2-WI and ADC which were
computed from DWI. The MR images were acquired on two
different types of Siemens 3T MR scanners, the MAGNETOM
Trio and Skyra. T2-weighted images were acquired using a
turbo spin echo sequence and had a resolution of around
0.5mm in the plane and a slice thickness of 3.6mm. The
DWI series were acquired with a single-shot echo planar
imaging sequence with a resolution of 2mm in-plane and
3.6mm slice thickness with diffusion-encoding gradients in
three directions. Three b-values were acquired (50, 400, and
800), and the ADC map was subsequently calculated by
the scanner software (https://wiki.cancerimagingarchive.net/).
Gray-scale images were then intensity normalized to reduce
the intensity variation between MRIs obtained from different
acquisitions. Moreover, images were acquired at a resolution
of 320 × 320 × 19 voxels. Patient characteristics information
is reported in Supplementary Table 2. The histograms of voxel
intensity distribution across the T2-WI and ADC are not
reliable for differentiating between the three Gleason Groups,
(i.e., Supplementary Figure 1). The five groups of Gleason
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FIGURE 1 | Schema of a radiomic model for patients with PCa. Acquisition of pre-treatment PCa patient’s MR images; Regions of interest (i.e., subvolume 21 × 21 ×

3 voxels); Extraction of 41 radiomic features from ROIs; Feature significance analysis based on Spearman rank correlation and Kruskal-Wallis, and multivariate

prediction of Gleason score groups using the random forest model.

scores were divided into three groups—G1 when GS ≤ 6; G2
when GS = 3 + 4; and G3 when GS ≥ 4 + 3. Therefore,
we used several texture features derived from gray-level co-
occurrence matrix (GLCM), neighborhood gray-tone difference
matrix (NGTDM) and gray-level size zone matrix (GLSZM)
that able to capture the subtle differences between the GS
groups.

Feature Extraction
Regions of interest (ROI) of PCa were automatically selected
based on the centroid coordinates of all the lesions in T2-
WI and ADC images that were provided by the SPIE-
AAPM-NCI Prostate MR Gleason Grade Group Challenge.
For each patient, a sub-volume (i.e., ROI) of 21 × 21 ×

3 voxels was collected separately, from the axial image in
T2-WI and ADC to ensure accuracy and precision. Each
sub-volume is encoded into a set of features by applying
the 41 radiomic features as following: six intensity features
derived from histogram and 35 texture features derived from
GLCMs (38, 39), NGTDM, (40), GLSZM (41) as shown in
Supplementary Table 3.

These features measure various textural properties and
quantify the hidden patterns in the ROI. To capture more
meaningful patterns of texture, image intensities of ROIs were
uniformly quantized to 32 gray levels prior to computing the
features. These features are described in several previous studies
(22, 38–41) and detailed description of each feature is listed in
their Supplementary Materials (22, 42). Features were extracted
separately from T2-WI and ADC images and the average of
each feature across the two images (i.e., T2-WI and ADC) was
considered.

Statistical Analysis
To identify the significant radiomic features in comparing
between the three groups of GS (i.e., G1, G2, G3), we first applied
the Kruskal-Wallis test on each radiomic feature before multiple
corrections using the Holm-Bonferroni method (43) to identify
significant features (P < 0.05). We then used Spearman’s rank
correlation (44) to compute the correlation value (ρ) between

each of radiomic features and the GS group for the corresponding
PCa patients. The rank correlation value was obtained between
the GS group and each radiomic feature, with values between
±0.3 and±0.5 indicating moderate (i.e., middle) correlation. We
measured the significance of these correlation values based on the
null hypothesis that there is no correlation. As in the previous
test, we corrected p-values using the Holm-Bonferroni procedure
and considered correlation significant if they reached a p < 0.05
after correction.

We considered all 41 radiomic features as the input for the
RF classifier model (45) and performed multivariate analysis for
classifying the patients into three groups of GS [G1 vs. all (G2-
G3); G2 vs. all (G1-G3); G3 vs. all (G1-G2)]. We utilized RF
for our analysis since it is one of the most effective classification
models and leads to a low bias/variance classification result. In
addition, the RF model in training algorithm possesses a feature
selection process that allows assessment of each input feature
(46). We acknowledge however that various other classifier
models could be used for this task.

To report unbiased metrics, we used a 5-fold cross-validation
strategy, where training features are divided into 5 equal sized
subsets and, in each validation run, one subset is put aside for
testing and the remaining 4 subsets are used to train the RF
classifier. Each of these subsets was used in turn to compute the
performance metrics of the trained RF model of the remaining
samples using the 500 decision trees [i.e., number of trees within
the RF model (47)]. Performance metrics [i.e., area under the
curve (AUC), classifier accuracy, negative predictive value (NPV)
and positive predictive value (PPV)], are then reported as the
average obtained across 5-folds.

To compute the importance of each of the 41 features
in individual classification group [G1 vs. all (G2-G3); G2
vs. all (G1-G3); G3 vs. all (G1-G2)], we measured the
increase in prediction error resulting from the permutation of
feature values across out-of-bag observations. The importance
values were computed for every RF tree and averaged over
the entire ensemble. These values were then normalized by
dividing them by the ensemble’s standard deviation. Finally,
the importance of each of the 41 features was obtained by
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averaging these normalized values across all 5-folds. Positive
importance value indicates that the feature is predictive, whereas
negative importance value identifies features with no predictive
value.

RESULTS

Patients Characteristics and Data
Acquisition
In this study we used a retrospective dataset comprising of
99 PCa patients collected from the SPIE-AAPM-NCI and the
Cancer Imaging Archive (TCIA). Each patient’s tumor lesion
has a pathology Gleason Grade Group (GGG) number, which
consists of five groups defined previously by Esptein JI et al.
(48). However, we reclassified the patients based on their GGG
into three groups to better represent clinical management:
Group 1 (G1), 30 patients, Gleason score 6; Group 2 (G2),
39 patients, Gleason score 3 + 4; and Group 3 (G3), 30
patients, Gleason primary pattern of 4 or higher (4 + 3, 8,
9 or 10). The relevant patient characteristics are reported in
Supplementary Table 2.

Radiomic Features and Association With
Gleason Score
After extracting 41 radiomic features from MR images of
each PCa patient, we applied univariate analysis using the
Kruskal-Wallis significance test to determine if any individual
radiomic feature was statistically significant to compare between
the GS groups. We also computed the Spearman’s rank
correlation coefficient between the radiomic features and GS
groups.

In Kruskal-Wallis significance test, we found only three
features, namely, large zone size emphasis, zone size non-
uniformity and zone size percentage, that were statistically

significant difference between the three GS groups (G1,
G2 and G3): p < 0.05. None of the remaining features
were statistically significant to compare between GS groups
following Holm-Bonferroni correction (Figure 2A; Table 1).
Spearman’s rank correlation, applied between radiomic
features and GS groups showed the significant moderate
correlation values (ρ) of −0.35, 0.32, and 0.42 for the large
zone size emphasis, zone size non-uniformity and zone
size percentage, respectively with a corrected p < 0.05. The
correlation values of remaining radiomic features were not
statistically significant following Holm-Bonferroni correction
(Figure 2B; Table 2). The significantly correlated features
were similar to those which could distinguish between GS
groups.

In order to show the changes in the original five Gleason
score groups, we repeated the Kruskal-Wallis significance
test and the Spearman correlation. Results can be found in
Supplementary Figure 2,which shows the p-values in log10 scale
and the correlation value. In general, two radiomic features were
statistically significant to be associated with five GS groups [large
zone size emphasis (ρ = −0.35) and zone size percentage (ρ =

0.43)] which are similar to those obtained using the three GS
groups.

Classification of GS Groups
Using all the radiomic features (i.e., 41 features) as input for
the RF classifier model to predict the GS groups of the 99 PCa
patients, the classifier accuracy was 81.82% (75.00–84.00%) for
G1 patients, 66.67% (57.89–72.13%) for G2 patients and 74.75%
(80.56–59.26%) for G3 patients (Supplementary Table 4). There
was a higher value of the AUC of 83.40% to predict G1
compared to 72.71% and 77.35% when using radiomic features
of G2 and G3, respectively (Figure 3A). The confusion matrix
which reveals the RF classifier misclassification rate is shown
in Supplementary Table 5. Correct classification of GS groups

FIGURE 2 | (A) Heatmap of Kruskal-Wallis significance test p-values (–log10 scale) using radiomic features to identify patients of different Gleason scores. Significant

features to compare between Gleason score groups are indicated with a black-green circle (corrected p < 0.05). (B) Spearman rank correlation between feature value

and groups of Gleason score (i.e., 1, 2, 3), color-coded from minimum (dark blue) to maximum (dark red). Features with statistically significant correlation (i.e.,

corrected p < 0.05) are indicated with a black-green circle.
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TABLE 1 | Comparisons of radiomic features related to the Gleason score groups of prostate cancer.

Radiomic features Median (IQR: interquartile range) P

G1 G2 G3

N = 30 N = 39 N = 30

HISTOGRAM

Mean 0.410 (0.303) 0.494 (0.344) 0.448 (0.180) 0.88

Variance 0.481 (0.217) 0.434 (0.280) 0.357 (0.200) 0.53

Skewness 0.376 (0.285) 0.368 (0.218) 0.369 (0.208) 0.36

Kurtosis 0.068 (0.064) 0.064 (0.058) 0.065 (0.076) 0.17

Energy 0.365 (0.327) 0.313 (0.289) 0.291 (0.317) 0.38

Entropy 0.552 (0.258) 0.658 (0.252) 0.602 (0.298) 0.47

GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM)

Angular second moment 0.314 (0.268) 0.264 (0.225) 0.224 (0.236) 0.13

Contrast 0.285 (0.254) 0.388 (0.307) 0.390 (0.330) 0.04

Correlation 0.573 (0.255) 0.490 (0.376) 0.438 (0.407) 0.63

Sum of squares variance 0.408 (0.356) 0.410 (0.353) 0.399 (0.197) 0.79

Homogeneity 0.517 (0.139) 0.434 (0.289) 0.392 (0.160) 0.03

Sum average 0.402 (0.342) 0.440 (0.325) 0.438 (0.212) 0.87

Sum variance 0.477 (0.255) 0.426 (0.312) 0.342 (0.233) 0.68

Sum Entropy 0.585 (0.261) 0.706 (0.253) 0.649 (0.295) 0.39

Entropy 0.575 (0.283) 0.702 (0.298) 0.698 (0.295) 0.01

Difference variance 0.299 (0.303) 0.425 (0.357) 0.402 (0.471) 0.03

Difference entropy 0.469 (0.191) 0.576 (0.344) 0.596 (0.260) 0.01

Information correlation 1 0.567 (0.147) 0.623 (0.313) 0.625 (0.254) 0.03

Information correlation 2 0.619 (0.264) 0.577 (0.377) 0.496 (0.375) 0.22

Autocorrelation 0.414 (0.353) 0.413 (0.337) 0.414 (0.192) 0.82

Dissimilarity 0.404 (0.177) 0.502 (0.294) 0.526 (0.241) 0.03

Cluster shade 0.539 (0.180) 0.501 (0.163) 0.494 (0.220) 0.87

Cluster prominence 0.489 (0.440) 0.417 (0.334) 0.332 (0.346) 0.95

Maximum probability 0.360 (0.283) 0.312 (0.198) 0.306 (0.323) 0.27

Inverse difference 0.492 (0.152) 0.395 (0.283) 0.372 (0.153) 0.03

NEIGHBORHOOD GRAY-TONE DIFFERENCE MATRIX (NGTDM)

Coarseness 0.012 (0.011) 0.009 (0.009) 0.010 (0.010) 0.37

Contrast 0.272 (0.159) 0.321 (0.258) 0.254 (0.123) 0.20

Busyness 0.359 (0.287) 0.374 (0.148) 0.384 (0.172) 0.65

Complexity 0.330 (0.232) 0.412 (0.199) 0.356 (0.258) 0.04

Texture Strength 0.124 (0.115) 0.088 (0.068) 0.097 (0.092) 0.46

GRAY-LEVEL ZONE SIZE MATRIX (GLZSM)

Small zone size emphasis 0.515 (0.249) 0.585 (0.313) 0.615 (0.275) 0.02

Large zone size emphasis 0.339 (0.182) 0.194 (0.166) 0.226 (0.152) *6.1×10−5

Low gray-level zone emphasis 0.231 (0.234) 0.273 (0.219) 0.306 (0.305) 0.41

High gray-level zone emphasis 0.583 (0.305) 0.539 (0.150) 0.499 (0.223) 0.36

Small zone/low gray emphasis 0.222 (0.190) 0.292 (0.246) 0.298 (0.191) 0.03

Small zone/high gray emphasis 0.361 (0.424) 0.403 (0.365) 0.400 (0.214) 0.41

Large zone/low gray emphasis 0.234 (0.181) 0.164 (0.143) 0.154 (0.163) 0.08

Large zone/high gray emphasis 0.114 (0.153) 0.076 (0.061) 0.084 (0.098) 0.01

Gray-level non-uniformity 0.381 (0.178) 0.396 (0.246) 0.487 (0.250) 4 × 10−3

Zone size non-uniformity 0.311 (0.158) 0.292 (0.179) 0.361 (0.200) *3.8 × 10−4

Zone size percentage 0.361 (0.107) 0.369 (0.155) 0.404 (0.257) *1.3 × 10−5

*Significant features following Holm-Bonferroni correction; G1, G2, and G3 is the Gleason score of the group 1, 2, and 3, respectively.

was achieved for 81/99 (18 G1 and 63 G2-G3), 66/99 (22
G2 and 44 G1-G3) and 74/99 (16 G3 and 58 G1-G2) of
patients.

To validate our predictive model, we randomly assigned the
99 PCa patients to two datasets groups of balanced classes that

were used as training (n = 40) and test (n = 20) datasets. Using
the trained RF model to test the new datasets (n = 20), a higher
value of the AUC of 89.73% to predict G1 compared to 66.64 and
63.94% when using radiomic features of G2 and G3, respectively
(Figure 3B).
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Importance Features for Each of GS
Groups
Features based on the RF classifier model for classifying patients
into GS groups are depicted in Figure 4. We found that 40/41
radiomic features have an importance value >0, green bars, to
classify G1 from G2 and G3 patients (Figure 4A). The most
important features contributing to G1 identification were zone
size percentage, large zone size emphasis, and zone size non-
uniformity.

To distinguish G2 from G1 and G3, Figure 4B, 21 radiomic
features had an importance value >0. We noticed that the
entropy was the most dominant feature for predicting the
G2 group. While 20 features had a negative importance
value <0, red bars. To distinguish G3 from G2 and G1, 27
features had an importance value >0 and the sum-entropy
with energy-histogram were the most important features, while
14 features had a negative importance value, Figure 4C. The
entropy and sum entropy features were the most important
features to predict the G2 and G3, respectively. These features

TABLE 2 | Correlated features with Gleason score groups.

Features ρ (p)

Large zone size emphasis-GLSZM −0.35 (3.1 ×10−4*)

Zone size non-uniformity 0.32 (9.01 ×10−4*)

Zone size percentage-GLSZM 0.42 (1.1 ×10−5* )

*Significant features following Holm-Bonferroni correction; ρ is the correlation coefficient.

(i.e., entropy and sum entropy) describe tissue heterogeneity
and measure the randomness of texture within the PCa
region.

Features Analysis for Predicting GS
To analyse the impact of the features in predicting the GS of
patients, we repeated the classification (training/testing= 40/20)
between GS groups using the features derived from ADC and
T2-WI images. We found that the AUC values of GS < 6 and
GS ≥ 7 using the features derived from T2-WI images are
higher with 84.12 and 63.91% to those derived from ADC with
69.95 and 58.41%, respectively. While the AUC value of GS
= 7 (or 3 + 4) using the features derived from ADC images
is higher with 62.09% comparing to 54.92% that derived from
T2-WI images (Figures 5A,B). In general, the most important
features for predicting the GS are derived from T2-WI images
(Figure 5C).

DISCUSSION

Clinicians are trained for the ability to diagnose malignant
disease through the visual study of MRI scans. However, visual
methods are subjective, prone to errors and low throughput, a
challenge which is becoming more of a limitation as the burden
on healthcare resources expand with the aging population.
Radiomic analysis, involving feature extraction from many
images with classifier techniques, can automatically predict
the grade of cancer with a precision and speed beyond the
scope of human visual analysis. Several studies have used

FIGURE 3 | ROC curves and AUC obtained by the random forest (RF) models for predicting Gleason score of PCa patients using the radiomic features. Gleason

score groups: G1 (group 1), G2 (group 2), G3 (group 3). (A) 5-fold cross validation, (B) Validation of the trained (n = 40; balanced classes) RF model by testing new

datasets (n = 20).
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FIGURE 4 | Importance of features for predicting the Gleason score of PCa patients, G1 vs. G2-G3 (A), G2 vs. G1-G3 (B), G3 vs. G1-G2 (C). Reported values

correspond to the average increase in prediction error obtained by permuting the values of individual features across out-of-bag observations (46). Green and red bars

represent the positive and negative impact for predicting the Gleason score groups.

radiomic features, derived from MR images, for computer-
assisted diagnosis (29, 31, 32, 49, 50). In addition to providing
basic diagnostic information, such analysis may also reveal
insights into the underlying heterogeneity of cancers, making
further investigation into the radiomic assessment of PCa a
priority. Radiomics has the additional benefit of automation,
which can reduce human effort and cost whilst preventing
patientmorbidity andmortality associated withmisdiagnosis and
under/over treatment. However, radiomic features most helpful
in predicting GS of PCa to estimate the aggressivity of a tumor
remain largely unexplored.

In this study, we used three different methods: (i) Kruskal-
Wallis significance test, (ii) Spearman rank correlation
coefficient, and (iii) RF classifier model to test whether radiomics
can successfully identify GS of PCa patients. Comparison of
radiomic features between the three groups of GS revealed
three radiomic features (i.e., large zone size emphasis, zone size
non-uniformity and zone size percentage) with the capacity
to discriminate between GS groups with a corrected p <

0.05. The similar three features were moderately correlated
with GS groups with a corrected p < 0.05. Our findings
confirm that the three features were associated with GS groups
of PCa.

Binary classification using RF model demonstrated that
similar features which were previously shown to be significantly
correlated with GS groups are the most important (i.e.,
dominant) features for the prediction of patients with a GS
= 6. These three features describe the homogeneity of the

images through the size of uniform voxel regions in different
PCa lesions. However, entropy and sum entropy features were
demonstrated to have the greatest importance for predicting
G2 (GS = [3 + 4]) and G3 (GS = [4 + 3, 8, 9, 10])
of PCa patients, respectively. Specifically, entropy and sum
entropy features describe the randomness of the texture or
the abnormalities of the PCa regions. The highest values of
entropy features in G2 and G3 are linked to the abnormality in
texture (i.e., heterogeneity) that is related to tumor (i.e., PCa)
aggressiveness.

Our findings are consistent with several previous studies
that utilized texture analysis. Haralick’s texture features were
demonstrated to be useful for PCa detection and GS assessment.
Specifically, GS was associated with higher entropy features
(27). Combined analysis of T2-WI images and MRS images
demonstrated the feasibility for radiomics to discriminate
between benign vs. cancerous and high vs. low GS using 29
preoperative mpMRI (i.e., T2-WI and MRS) (18). We observed
that several previous studies have focused on the classification
between the structure of benign and cancerous regions (51). This
is consistent with our study in considering the Gleason score
as the baseline indicator for classifying non-cancerous prostate
from malignant cancers.

Our study has several limitations. Our analysis was performed
on a retrospective analysis of a small group of patients
(n = 99), including ADC and T2-WI MRI images only.
More image modalities, such as proton density-weighted (PD-
W) and dynamic contrast enhanced (DCE) could potentially
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FIGURE 5 | ROC curves and AUC obtained by RF models for predicting Gleason Score of PCa patients using the features derived from ADC (A) and T2-WI (B)

images. (C) Heatmap of importance value for features predicting the three Gleason score groups of PCa patients. Color-coded from minimum (dark blue) to maximum

(dark red). Features with statistically significant correlation (i.e., corrected p < 0.05) are indicated with a black-green circle. Features with predictive value (importance

>0) are indicated with a black-green circle.

improve the performance metrics for predicting the GS.
Then, the results require external validation on a larger
scale prior to broader clinical application. We considered
only 41 different image-based features including first- and
second-order textures that derived from sub-volume ROI
without considering the manual segmentation to eliminate
any bias resulting from inter-reader variability. PIRADS is an
extensively studied and validated system, and any potential
replacement needs to be compared to it as the current imaging
standard.

Future work could explore the shape features (e.g., volume)
of the full PCa area. Machine learning techniques, such as deep
radiomics (52) based on convolutional neural networks could
be also employed to learn discriminative features in a more
data-driven manner.

CONCLUSIONS

In this study, we presented the radiomic features that were
computed from both ADC and T2-WI images for the
discrimination between three groups of GS and classifying these
groups using the RF classifiermodel. Our results suggest that only
three features (i.e., zone size percentage, large zone size emphasis,
and zone size non-uniformity) are able to identify groups of
GS and significantly correlate each group. These three features
appeared to be the most important to predict GS ≤ 6, while the
sum entropy was the most important feature to predict a GS ≥ 7
(4 + 3). Radiomic analysis has the potential to be used as a non-
invasive test to predict GS for patients with PCa and therefore,
further prospective studies are warranted to validate and confirm
our findings.
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