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Abstract

We introduce a novel strategy for learning to extract se-

mantically meaningful features from aerial imagery. In-

stead of manually labeling the aerial imagery, we propose

to predict (noisy) semantic features automatically extracted

from co-located ground imagery. Our network architecture

takes an aerial image as input, extracts features using a

convolutional neural network, and then applies an adaptive

transformation to map these features into the ground-level

perspective. We use an end-to-end learning approach to

minimize the difference between the semantic segmentation

extracted directly from the ground image and the semantic

segmentation predicted solely based on the aerial image.

We show that a model learned using this strategy, with no

additional training, is already capable of rough semantic

labeling of aerial imagery. Furthermore, we demonstrate

that by finetuning this model we can achieve more accu-

rate semantic segmentation than two baseline initialization

strategies. We use our network to address the task of esti-

mating the geolocation and geo-orientation of a ground im-

age. Finally, we show how features extracted from an aerial

image can be used to hallucinate a plausible ground-level

panorama.

1. Introduction

Learning-based methods for pixel-level labeling of aerial

imagery have long relied on manually annotated training

data. Unfortunately, such data is expensive to create. Fur-

thermore, its value is limited because a method trained on

one dataset will typically not perform well when applied

to another source of aerial imagery. The difficulty in ob-

taining datasets of sufficient scale for all modalities has

hampered progress in applying deep learning techniques

to aerial imagery. There have been a few notable excep-

tions [22, 24], but these have all used fairly coarse grained

semantic classes, covered a small spatial area, and are lim-

ited to modalities in which human annotators are able to

manually assign labels.

We propose a novel strategy for obtaining semantic la-
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Figure 1. We learn to predict the ground image segmentation di-

rectly from an aerial image of the same location, thereby transfer-

ring the semantics from the ground to the aerial image domain.

bels for aerial image segmentation. See Figure 1 for a

schematic overview of the approach. Our idea is to use

existing methods for semantic image segmentation, which

are tailored for ground images, and apply these to a large

dataset of geotagged ground images. We use these seman-

tically labeled images as a form of weak supervision and

attempt to predict these semantic labels from an aerial im-

age centered around the location of the ground image. We

do not use a parametric transformation between the aerial

and ground-level viewpoints. Instead, we use a dense rep-

resentation, similar in spirit to the general representation,

dubbed filter flow, described by Seitz and Baker [27].

There has been significant interest recently in predicting

ground image features from aerial imagery for the task of
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ground image geolocalization [34]. Our work is unique in

that it is the first to attempt to predict a dense pixel-level seg-

mentation of the ground image. We demonstrate the value

of this approach in several ways.

Main Contributions: The main contributions of this

work are: (1) a novel convolutional neural network (CNN)

architecture that relates the appearance of an aerial image to

the semantic layout of a ground image of the same location,

(2) demonstrating the value of our training strategy for pre-

training a CNN to understand aerial imagery, (3) extensions

of the proposed technique to the tasks of ground image lo-

calization, orientation estimation, and synthesis, and (4) an

extensive evaluation of each of these techniques on large,

real-wold datasets. Together these represent an important

step in enabling deep learning techniques to be extended to

the domain of aerial image understanding.

2. Related Work

Learning Viewpoint Transformations Many methods

have been proposed to represent the relationship between

the appearance of two viewpoints. Seitz and Baker [27]

model image transformations using a space-variant linear

filter, similar to a convolution but varying per-pixel. They

highlight that a linear transformation of a vectorized rep-

resentation of all the pixels in an image is very general;

it can represent all standard parametric transformations,

such as similarity, affine, perspective, and more. More re-

cently, Jaderberg et al. [13] describe an end-to-end learn-

able module for neural networks, the spatial transformer,

which allows explicit spatial transformations (e.g., scaling,

cropping, rotation, non-rigid deformation) of feature maps

within the network that are conditioned on individual data

samples. Practically, including a spatial transformer allows

a network to select regions of interest from an input and

transform them to a canonical pose. Similarly, Tinghui

et al. [35] address the problem of novel view synthesis.

They observe that the visual appearance of different views

is highly correlated and propose a CNN architecture for es-

timating appearance flows, a representation of which pixels

in the input image can be used for reconstruction.

Relating Aerial and Ground-Level Viewpoints Several

methods have been recently proposed to jointly reason

about co-located aerial and ground image pairs. Luo et

al. [20] demonstrate that aerial imagery can aid in rec-

ognizing the visual content of a geotagged ground image.

Máttyus et al. [21] perform joint inference over monocular

aerial imagery and stereo ground images for fine-grained

road segmentation. Wegner et al. [31] build a map of street

trees. Given the horizon line and the camera intrinsics,

Ghouaiel and Lefèvre [8] transform geotagged ground-level

panoramas to a top-down view to enable comparisons with

aerial imagery for the task of change detection. Recent work

on cross-view image geolocalization [18, 19, 33, 34] has

shown that convolutional neural networks are capable of ex-

tracting features from aerial imagery that can be matched

to features extracted from ground imagery. Vo et al. [30]

extend this line of work, demonstrating improved geolocal-

ization performance by applying an auxiliary loss function

to regress the ground-level camera orientation with respect

to the aerial image. To our knowledge, our work is the first

work to explore predicting the semantic layout of a ground

image from an aerial image.

Semantic Segmentation of Aerial/Satellite Imagery

There is a long tradition of using computer vision tech-

niques for aerial and satellite image understanding [11, 32,

4]. Historically these two domains were distinct. Satellite

imagery was typically lower-resolution, from a strictly top-

down view, and with a diversity of spectral bands. Aerial

imagery was typically higher-resolution, with a greater di-

versity of viewing angles, but with only RGB and NIR sen-

sors. Recently these two domains have converged; we will

use the term aerial imagery as we are primarily working

with high-resolution RGB imagery. However, our approach

could be applied to many types of aerial and satellite im-

agery. Kluckner et al. [17] address the task of semantic

segmentation using a random forest to combine color and

height information. More recent work has explored the use

of CNNs for aerial image understanding. Mnih and Hinton

propose a CNN for detecting roads in aerial imagery [22]

using GIS data as ground truth. They extend their approach

to handle omission noise and misregistration between the

imagery and the labels [23]. These approaches require ei-

ther extensive pixel-level manual annotation or existing GIS

data. Our work is the first to demonstrate the ability to trans-

fer a dense pixel-level labeling of ground imagery to aerial

imagery.

Visual Domain Adaptation Domain adaptation ad-

dresses the misalignment of source and target domains [7].

A significant amount of work has explored domain adap-

tation for visual recognition [25]. Jhuo et al. [14] propose

a low-rank reconstruction approach where the source fea-

tures are transformed to an intermediate representation in

which they can be linearly reconstructed by the target sam-

ples. Our work is most similar to that of Sun et al. [29], who

propose a method for transferring scene categorizations and

attributes from ground images to aerial imagery. Similar

to our approach, they learn a transformation matrix which

minimizes the distance between a source feature and the tar-

get feature. Our work differs in several ways: 1) we carry

out the linear transformation not only in the semantic di-

mensions but also in the spatial dimensions, 2) we constrain
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Figure 2. A visual overview of our network architecture. We extract features from an aerial image using the VGG16 architecture and

form a hypercolumn using the PixelNet approach. These features are processed by three networks that consist of 1 × 1 convolutions:

network A converts the hypercolumn into semantic features; network S extracts useful features from the aerial image for controlling the

transformation; and network F defines the transformation between viewpoints. The transformation, T , is applied to the aerial semantic

features to create a ground-level semantic labeling.

the transformation matrix such that the semantic meaning of

the source feature and the target feature remains the same,

3) our transformation matrix is input dependent, and 4) we

learn the transformation matrix as well as the source feature

at the same time, in an end-by-end manner, which simplifies

training.

3. Cross-view Supervised Training

We propose a novel training strategy for learning to ex-

tract useful features from aerial imagery. The idea is to pre-

dict the semantic scene layout, Lg , of a ground image, Ig ,

using only an aligned aerial image, Ia, from the same lo-

cation. This strategy leverages existing methods for ground

image understanding at training time, but does not require

any ground imagery at testing time.

We represent semantic scene layout, Lg , as a pixel-level

probability distribution over classes, such as road, vegeta-

tion, and building. We construct a training pair by collecting

a georegistered ground panorama and an aerial image of the

same location, orienting the panorama to the aerial image

(panoramas are originally aligned with the road direction),

and then extracting the semantic scene layout, Lg , of the

panorama using an off-the-shelf method [2] with four se-

mantic classes. We then use an end-to-end training strategy

to learn to extract pixel-level features from the aerial image

and transform them to the ground-level viewpoint.

3.1. Network Architecture

Our proposed network architecture is composed of four

modules. A convolutional neural network (CNN), La =

A(Ia; ΘA), is used to extract semantic labels from the aerial

imagery. Another CNN, S(Ia; ΘS), uses features extracted

from aerial imagery to help estimate the transformation

matrix, M = F (xr, yr, ic, jc, S(Ia; ΘS); ΘF ), based on

aerial image features and the pixel location in the respec-

tive images. Finally, we have a transformation module,

Lg′ = T (La,M), that converts from the aerial viewpoint

to the ground-level using the estimated transformation ma-

trix, M . There are many choices for these components, and

the remainder of this section describes the particular choices

we made for this study. See Figure 2 for a visual overview

of the architecture.

Aerial Image Feature Extraction For A(Ia; ΘA), we

use the VGG16 [28] base architecture and convert it

to a pixel-level labeling method using the PixelNet ap-

proach [3]. The core idea is to interpolate intermediate fea-

ture maps of the base network to a uniform size, then con-

catenate them along the channels dimension to form a hy-

percolumn. In our experiments, we form the hypercolumn

from conv-{12, 22, 33, 43} of the VGG16 network. The hy-

percolumn, which is now 256 × 256 × 960, is followed by

three 1 × 1 convolutional layers, with 512, 512, and 4 out-

put channels respectively. The first two 1 × 1 convolutions

have ReLU activations, the final is linear. We designate the

output of the final convolution as La = A(Ia; ΘA). The

output of this stage is transformed from a aerial viewpoint

to a ground viewpoint by the final stage of the network.

Cross-view Semantic Transformation We represent the

transformation between the aerial and ground-level view-
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points as a linear operation applied channel-wise to La.

To transform from the ha × wa× 4 aerial label, La, to

the hg × wg× 4 ground label, Lg′ , we need to estimate a

hgwg × hawa row-stochastic matrix, M . Given M , the

transformation process is as follows: reshape the aerial la-

bel, La, into a hawa× 4 matrix, la; multiply it by M to

get lg′ ; then reshape lg′ to the size of the ground label, Lg ,

to form our estimate of the ground label, Lg′ . To account

for the expected layout of the scene, and to handle the sky

class (which is not visible from the aerial image), we carry

out the transformation on the logits of la, fa, and add a bias

term, b to get the logits of lg′ , fg′ : fg′ = Mfa + b.
There are many ways of representing the transformation

matrix, M , in a neural network. The naı̈ve approach is to

treat M as a matrix of learnable variables. However, this

approach has two downsides: (1) the transformation does

not depend on the content of the aerial image and (2) the

number of parameters scales quadratically with the number

of pixels in La and Lg .

We represent each element, Mrc, in the transformation

matrix, M , as the output of a neural network, F , which is

conditioned on the aerial image, Ia, and the location in the

input and output feature maps. More precisely, each ele-

ment Mrc = F (xr, yr, ic, jc, S(Ia; ΘS)), where (ic, jc) ∈
[0, 1], is the aerial image pixel of the corresponding element,

(yr, xr) ∈ [0, 1] is the ground image pixel of the corre-

sponding element.

We now define the architecture of the transformation es-

timation neural network, F . The value of the transformation

matrix at location (r, c) is computed through a neural net-

work, F̃ , followed by a softmax function to normalize the

impact of all pixels sampled from the aerial image:

Mrc = F (r, c, S(Ia; ΘS)) =
eF̃r,c

∑
c′ e

F̃
r,c′

,

where:

F̃r,c = F̃ (i, j, y, x, S(Ia; ΘS)) , and

i = ⌊c/wa⌋/ha, j = mod(c, wa)/wa,

y = ⌊r/wg⌋/hg, x = mod(r, wg)/wg.

The base network, F̃ , is a multilayer perceptron, with ReLU

activation functions, that takes as input a 293-element vec-

tor. The network has three layers, with 128, 64, and 1 output

channels respectively (refer to the lower part of Figure 2).

The naı̈ve approach can be considered a special case of this

representation where we ignore the aerial image and use a

one-hot encoding representation of rows and columns.

As described above, there are two main advantages of

our approach of representing the transformation matrix: a

reduction in the number of parameters when M is large

and the ability to adapt to different aerial image layouts.

An additional benefit is that if we change the resolution of

re
sh

ap
e

(i, j)

(y, x)
Transformation matrix 
elements of locations: 
{ (i, j, y, x) | ∀i, j }

Figure 3. Visualization of the transformation matrix. (left) trans-

formation matrix, M ; (right-top) An alternative visualization, M ′,

of the transformation matrix. M ′ contains hg × wg cells (square

heat maps). Each cell, m′

yx, is reshaped to size ha × wa, from

one row of M that corresponds to locations, {(i, j, y, x) | ∀i, j}.

We also present the aerial image (overlapped with m′

yx) and the

ground image to illustrate how the hot spot of m′

yx corresponds to

the location, (y, x), on the ground image.

Figure 4. Examples of aligned aerial/ground image pairs from our

dataset. (row 1) In the aerial images, north is the up direction.

In the ground images, north is the central column. (row 2-4) Im-

age dependent receptive fields estimated by our algorithm as fol-

lows: 1) fix ground locations (y, x) (locations in squares); 2) select

all (i, j) (locations in contours) with high F̃ (i, j, y, x, S(Ia; ΘS))
values. Corresponding fields between the aerial image and the

ground image are shown in the same color.

our input and output feature maps it is easy to create a new

transformation matrix, M , without needing to resort to in-

terpolation. The transformation matrix learned by our al-

gorithm encodes pixel correspondences between the aerial

image and ground image (see Figure 3). We present more

examples of pixel correspondences in Figure 4.

3.2. Dataset

We collect our training and testing dataset from the

CVUSA dataset [34]. CVUSA contains approximately 1.5
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million geotagged pairs of ground and aerial images from

across the United States. We use the Google Street View

panoramas of CVUSA as our ground images. For each

panorama, we also download an aerial image at zoom level

19 from Microsoft Bing Maps in the same location. We

filter out panoramas with no available corresponding aerial

imagery. Using the camera’s extrinsic information, we then

warp the panoramas to align with the aerial images. We

also crop the panoramas vertically to reduce the portion of

the sky and ground pixels. In total, we collected 35,532

image pairs for training and 8,884 image pairs for testing.

Some examples of aerial/ground image pairs in our dataset

are shown Figure 4.

3.3. Implementation Details

We implemented the proposed architecture using

Google’s TensorFlow framework [1]. We train our net-

works for 10 epochs with the Adam optimizer [16]. We

enable batch normalization [12] with decay 0.9 in all con-

volutional and fully-connected layers (except for the output

layers) to accelerate the training process. Our implementa-

tion is available at [6].

The training procedure is as follows: for a given cross-

view image pair, (Ia, Ig), we first compute the ground

semantic pixel label: Ig → Lg , using SegNet [2].

We then minimize the cross entropy between Lg and

T (A(Ia; ΘA); ΘT ) with respect to the model parameters,

ΘA and ΘT . The resulting architecture requires a signifi-

cant amount of memory to output the full final feature map,

which would normally result in very small batch sizes for

GPU training. Due to the PixelNet approach of using inter-

polation to scale the feature maps, we are able to perform

sparse training. Instead of outputting the full-size feature

map, we only extract a dense grid of points, the resulting

feature map is 17 × 17 × 4. Despite this, at testing time, we

can provide an aerial image and generate a full-resolution,

semantically meaningful feature map.

4. Evaluation and Applications

In this section, we will show that our network architec-

ture can be used in four different tasks: 1) weakly super-

vised semantic learning, 2) aerial imagery labeling, 3) ori-

entation regression and geocalibration, and 4) cross-view

image synthesis. Additional qualitative results and the com-

plete network structure used for cross-view image synthesis

can be found in our supplemental materials.

4.1. Weakly Supervised Learning

We trained our full network architecture (with randomly

initialized weights) to predict ground-level semantic label-

ing using the dataset described in Section 3.2. Figure 5

shows example output, La, from the aerial image under-

standing CNN. This demonstrates that the resulting network

Figure 5. Example outputs from our weakly supervised learning

method on test images. For each aerial image (top), we show the

pixel-level labeling inferred by our model, which uses only noisy

ground image segmentation as labels. We visualize three classes:

road (red), vegetation (green), and man-made (blue).

has learned to extract semantic features from an aerial im-

age, all without any manual annotated aerial imagery.

While these results are compelling, they could be better

with a higher quality ground image segmentation method.

The method we use, SegNet [2], was trained on mostly ur-

ban scenes, but many of our images are from rural and sub-

urban areas. The end result is that certain classes are often

mislabeled in the ground imagery, including dirt and build-

ing. In addition, because the panoramas and aerial images

were not captured at the same time, we are unable to accu-

rately model transient objects, such as vehicles and pedes-

trians. All these factors make the dataset very challenging

for training. Given these limitations, it is surprising that the

resulting aerial image segmentation method works so well.

In the following section, we show using this network as a

starting point for strongly supervised aerial image segmen-

tation outperforms two standard initialization methods.

4.2. Cross­view for Pre­training

We evaluate our proposed technique as a pre-training

strategy for the task of semantic pixel labeling of aerial

imagery. Starting from the optimal weights from the pre-

vious section, we finetune and evaluate using the ISPRS

dataset [26]. This dataset contains 33 true orthophotos cap-

tured over Vaihingen, Germany. The ground sampling dis-

tance is 9 cm/px and there are over 168 million pixels in

total. Ground truth is provided for 16 photos; each pixel is

assigned one of six categories: Impervious surfaces, Build-

ing, Low vegetation, Tree, Car, and Clutter/background.

Image Processing Compared to the Bing Maps imagery

we used for pre-training, images in the ISPRS dataset are

at a different spatial scale and the color channels represent

different frequency bands (the R channel is actually a near

infrared channel). To ensure that the pre-trained network

weights are appropriate for the new dataset, we adjusted the

scale and color channels as follows. We first resize the IS-

PRS images to the equivalent of Bing Maps zoom level 19.

We then label a pixel as vegetation if R
R+G+B

is greater
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Figure 6. An example from the ISPRS dataset [26]. (left) Near

infrared image; (middle) The same image after pre-processing;

(right) Ground-truth annotation of the image.

than 0.4. For each pixel labeled as vegetation, we halve the

R channel intensity and swap the R and G channels. The

resulting images, shown in Figure 6, are much closer in ap-

pearance to the Bing Maps imagery than the raw imagery.

Evaluation Protocol We split the 16 annotated images

into training (images 5, 7, 11, 13, 15, 17, and 21), vali-

dation sets (images 1 and 3) and testing (images 23, 26, 28,

30, 32, 37, and 40). From each set we extracted a set of

224 × 224 subwindows (respectively 82, 12, and 34 from

training, validation, and testing respectively). We then com-

pared performance with different numbers of training im-

ages: 1, 2, 7, 20, 54, and 82. We evaluated the performance

in terms of the average precision for all pixels. We ignore

the Clutter/background pixels because of the low number of

assigned pixels.

Training and Testing We used the same architecture with

the aerial feature extractor, A(Ia; ΘA), defined in Sec-

tion 3.1, to do semantic labeling on ISPRS. During train-

ing, we use the Adam optimizer to minimize the cross en-

tropy between the network outputs and the labels. We use a

batch size of 8, randomly sample 1,000 pixels per image for

sparse training, and train the network. We run the valida-

tion set every 1,000 training iterations and save the optimal

network weights for testing. During testing, we sample all

pixels on the image to generate the dense labeling.

We experiment using three different initializations of the

VGG16 convolutional layers and finetune the remaining

layers of the network: 1) Ours: initialize with model pre-

trained using our framework; 2) Random: initialize using

Xavier initialization [9]; 3) VGG16: initialize with model

pre-trained on ImageNet.

Since the VGG16 model we used in this experiment is

trained without batch normalization, it may be less com-

petitive. To achieve a fair comparison, we turned off batch

normalization in this experiment and re-trained the network

for 15 epochs to get the pre-trained model.

Our results (Figure 7) show that finetuning from the

VGG16 model performs poorly on the aerial image label-

ing task. We think that the patterns it learned mostly from

the ground image may hinder pattern learning for aerial im-
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Figure 7. Performance comparison of different initialization meth-

ods on the ISPRS segmentation task. The x-axis is the number of

training images and the y-axis is average precision.

Table 1. Per-Class Precision on the ISPRS Segmentation Task

Class Init.
Number of training samples

1 2 7 20 54 82

Imp.

Ours 0.67 0.74 0.63 0.64 0.66 0.64

Random 0.70 0.70 0.54 0.62 0.61 0.73

VGG16 0.60 0.55 0.55 0.61 0.70 0.59

Bldg

Ours 0.72 0.76 0.76 0.80 0.75 0.78

Random 0.56 0.62 0.63 0.64 0.82 0.71

VGG16 0.78 0.72 0.71 0.69 0.70 0.75

Low.

Ours 0.37 0.43 0.51 0.65 0.67 0.67

Random 0.29 0.29 0.29 0.37 0.67 0.64

VGG16 0.25 0.25 0.29 0.44 0.53 0.57

Tree

Ours 0.68 0.54 0.71 0.71 0.74 0.74

Random 0.42 0.46 0.49 0.56 0.71 0.69

VGG16 0.36 0.44 0.50 0.55 0.65 0.74

Car

Ours 0.13 0.46 0.67 0.48 0.48 0.49

Random 0.05 0.08 0.10 0.25 0.45 0.57

VGG16 0.05 0.11 0.20 0.20 0.25 0.23

agery. Our method outperforms both of the other initial-

ization strategies. We also present the prediction precision

per class in Table 1. We highlight that our method does

better especially on the Building, Low vegetation, and Tree

classes, which can also be found in pre-training annotations.

4.3. Cross­view for Geocalibration

We show how the ground-level feature maps we estimate

from aerial imagery can be used to estimate the orientation

and location of a ground image. We show quantitative re-

sults for the orientation estimation task and qualitative re-

sults for simultaneous orientation and location estimation.

We use the following datasets for all experiments:

• CVUSA: We use the test set introduced in Section 3.2 to

create this dataset; it has two parts for orientation estima-
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Figure 8. Qualitative results of orientation predictions on Cityscapes dataset (top) and CVUSA (bottom). The Ig , Lg and Lg′ are stacked

vertically on the left side of the aerial image. We visualize three classes on the labels: road (red), vegetation (green), and man-made (blue).

The discrete PDFs of the ground camera orientation are visualized with red arrows, whose lengths indicate the magnitudes. In the CVUSA

results, the ground truth (green) and the optimal prediction (blue) are also shown with the orientation PDF. The last prediction result is a

typical failure case of our method, where the scene is symmetric from the top-down view.
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Figure 9. A histogram of orientation errors on the CVUSA dataset.

tion and geocalibration, respectively. For the orientation

regression task, we rotate the aerial image to a random

angle. For the fine-grained geocalibration experiment,

we center-crop the aerial image around a random x, y
offset, then rotate the image to a random angle. In both

experiments, the heading direction of the ground images

are the same. We center crop a 224 × 448 cutout from

each ground image as the query image.

• Cityscapes: The Cityscapes dataset [5] is a recently re-

leased benchmark dataset designed to support the task of

urban scene understanding through semantic pixel label-

ing. It consists of stereo video from 50 different cities and

fine pixel-level annotations for 5,000 frames and coarse

pixel-level annotations for 20,000 frames.

Orientation Estimation For this task, we assume the lo-

cation and focal length of the ground image, Ig , is known

but the orientation is not. The intuition behind our method is

that the semantic labeling of the ground image will be most

similar to the feature map of the aerial image at the actual

orientation. For a query ground image, Ig , the first step is

to download the corresponding aerial image, Ia. We then

infer the semantic labeling of the query image, Ig → Lg ,

and predict the ground image label from the aerial image

using our learned network, Ia → Lg′ . We assign an energy

to each possible orientation by computing the cross entropy

between Lg and Lg′ in a sliding window fashion across all

possible orientations. We select the orientation with the

lowest energy. We present sample results in Figure 8 and

a histogram of the orientation errors on the CVUSA dataset

in Figure 9.

Fine-grained Geocalibration For this task, we assume

that we know the focal length of the camera and have a

rough estimate of the camera location (i.e., within 100 me-

ters). We extract 256 × 256 aerial images from the area

around our rough estimate and extract the corresponding

ground-level feature maps. We apply our orientation esti-

mation procedure to each feature map. The result is a distri-

bution over orientations for each location. Figure 10 shows

several example results, including the most likely direction

for each location, as well as the most likely location and

orientation pair.

4.4. Aerial to Ground Image Synthesis

We propose a novel application to infer a ground image

by using features extracted from our network. Our network

architecture is based on the deep, directed generative model

proposed by Kim et al. [15]. Their model consists of two

parts: a deep generator, G, which generates images that try

to minimize a deep energy model, E. A low energy im-

plies the image is real and high energy implies the image is

fake. The architecture and training methods are inspired by

generative adversarial networks [10], however it provides

an energy-based formulation of the discriminator to address

common instabilities of adversarial training.
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Figure 10. Fine-grained geocalibration results on CVUSA. (left) From top to bottom are the Ig , Lg , and Lg′ respectively. We visualize

three classes on the labels: road (red), vegetation (green), and man-made (blue). (right) Orientation flow map (red), where the arrow

direction indicates the optimal direction at that location and length indicates the magnitude. We also show the optimal prediction and the

ground-truth frustums in blue and green respectively.

Figure 11. Synthesized ground-level views. Each row shows an

aerial image (left), its corresponding ground-level panorama (top-

right), and predicted ground-level panorama (bottom-right).

We begin by extracting an 8 × 40 × 512 cross-view fea-

ture map, f , that has been learned to relate an aerial and

ground image pair. The generator is given f along with

random noise, z, as input. The generator outputs a 64 ×
320 panorama, Iĝ , that represents the predicted ground im-

age. The cross-view feature, predicted panorama, and the

ground truth panorama, Ig , are input to the energy model.

Batch normalization [12] is applied in every layer of both

models, except for the final layers. ReLU activations are

used throughout the generator and Leaky ReLU, with leak

parameter α = 0.2, are used in the energy model. The mod-

els are updated in an alternating fashion, where the genera-

tor is updated twice for every update of the energy model.

Both the generator and energy model are optimized using

the Adam optimizer, with moment parameters β1 = 0.5
and β2 = 0.999. We train using batch sizes of 32 for 30

epochs. A complete description of the architecture used in

this section is provided in our supplemental materials.

Example outputs generated by our network are shown in

Figure 11. Each row contains an aerial image (left), its re-

spective ground panorama (top-right), and our prediction of

the ground scene layout (bottom-right), which would ide-

ally be the same. The network has learned the most com-

mon features, such as roads and their orientations, as well

as trees and grass. However, it has difficulty hallucinating

buildings and the sky, which is likely caused by highly vari-

able appearance factors.

We note that the resolution of the synthesized ground-

level panoramas is much lower than the original panorama,

however adversarial generation of high-resolution images is

an active area of research. We expect that in the near future

we will be able to use our learned features in a similar man-

ner to generate full-resolution panoramas. Additionally, al-

gorithmic improvements to our ground image segmentation

method would provide more photo-realistic predictions.

5. Conclusion

We introduced a novel strategy for using labeled ground

images as a form of weak supervision for learning to un-

derstand aerial images. The key is to simultaneously learn

to extract features from the aerial image and learn to map

from the aerial to the ground image. We demonstrated that

by using this process we are able to automatically extract se-

mantically meaningful features from aerial imagery, refine

these to obtain more accurate pixel-level labeling of aerial

imagery, estimate the location and orientation of a ground

image, and synthesize novel ground-level views. The pro-

posed technique is equally applicable to other forms of im-

agery, including NIR, multispectral, and hyperspectral. For

future work, we plan to explore richer ground image anno-

tation methods to explore the limits of what is predictable

about a ground-level view from an aerial view.
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