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Abstract: Poland is one of the heaviest users of district heating systems in Europe, and those district heating systems are 

heated mainly by coal. Sustainable development of district heating systems in Poland including improving quality of 

environment, economic of heat production and security of heat supply is in close connection with increasing of energy 

efficiency. Heat production and heat distribution plays important role in national energy balance. Additional increasing of 

energy efficiency in district heating systems need detail forecasts for future heat consumption in  scale of individual district 

heating system  and for systems in whole country. Accurate forecast give possibility for increasing  efficiency of heat 

production, decreasing fuel consumption and connected with it emission decreasing from combustion products to the 

atmosphere. Heat production efficiency can be optimized through the use of appropriate procedures for running heat sources 

alongside short-term heat demand forecasting combined with preparation for adjusting heat source work parameters to the 

predicted heat load for a few hours hence. The artificial neural networks model delivers good forecasting results. The accuracy 

of the results depends on the kind of network, its architecture, the size and type of input data as well as the forecasting period. 

Forecasting accuracy within a 3-5% margin of error is sufficient to steer heat source operations. Described forecasting methods 

can be use as a good tool to regulate district heating networks and heat sources. 
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1. Introduction 

In urban areas with high density of demand for heat, the 

most rational and economical means of heat supply for the 

inhabitants are district heating systems. Large sources 

producing heat for heating systems are generally equipped 

with high-efficiency units, limiting emissions of combustion 

products into the atmosphere. The emission of pollutants 

from small, local and dispersed sources consuming inferior 

fuels is higher in relative terms than from centralized sources. 

District heating, a very important energy sub-sector for the 

Polish economy, supplies heat to centralized heating systems 

which, on average, satisfy 72% of the demand for heat in 

Polish cities[1]. In the 1990s, Poland embarked on the 

process of modernizing its heating systems. At that time 

there was also a reduction in heat demand of over 30% due 

to the thermomodernization of buildings. The reduction in 

heat demand was visible despite numerous new recipients 

joining the system.  

Sustainable development of heating systems in Poland is 

closely connected with further increases in energy efficiency 

both on the part of recipients and heat producers. The 

modernization of heat sources, especially in small and 

medium heating systems, is linked with changes of fuel. 

Hard coal will be replaced with natural gas, biofuel and heat 

obtained from other sources. Such diversification of heat 

sources is especially visible in Scandinavia and will continue 

to develop [2,3]. An important element of modernization will 

be the construction of small cogeneration systems equipped 

with heat acumulators, which enable the sources to operate 

more efficiently. The construction of small cogeneration 

sources has already started in Poland.  

International obligations oblige Poland to take action to 

reduce pollution emissions to the atmosphere [4,5,6,7,8]. In 

the document “Polish Energy Policy until 2030”[9] it is 

assumed that cogenerated electricity will double from 25 

TWh (16% of production in 2009) to 50 TWh in 2030. This 

will not be possible without building new CHP installations.  

An important element that will allow heat generation 

schemes for heating systems to run more efficiently is heat 

demand forecasting, both at the design and operational stages 

of the installation. The monograph [10] presents the results 

of forecasting water temperature supplies for three district 

heating substations. Even before that [11] there was a 
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comparison of dynamic forecasting models showing 

temperature changes in heating networks. In heating systems 

powered by CHP plants equipped with heat acumulators it is 

important to plan heat generation so that the maximum 

amount of electricity can be obtained at the time when its 

price is the highest. These issues were described in articles 

[12,13,14]. At present in Poland the sale price of electricity 

is at a stable level and it is practically independent of supply 

and demand, except for the small volume of electricity sold 

on the Warsaw Stock Exchange Energy Market [15]. In 

coming years we will note that the price of electricity will 

become variable on the market and there will be an impulse 

to build heat acumulators in heating systems. The paper [16] 

describes an artificial network prediction method for long 

term energy consumption in Greece. 

The weather forecast naturally plays a key element in heat 

demand. Heat load prediction will inevitably depend heavily 

in future on short term forecasting, particularly the 

assessment of chances of extreme weather conditions and 

their influence on supplying users with sufficient quantities 

of heat. One way to boost heat production efficiency is to 

implement appropriate procedures for operating heat sources 

alongside short-term forecasting of heat demand. Empirical 

research, covering many years of data underscoring the 

weather dependency of thermal power demand, provides a 

solid basis for forecasting future heat load demand for 

district heating systems under medium and extreme weather 

conditions. Short-term several-hour forecasts enable 

providers to adjust heat source parameters at an earlier stage 

so they can anticipate near-term user demand. To this end the 

model of artificial neural networks has been used. Research 

has been carried out with the use of various neural network 

models, relying on a set of actual data covering heat 

consumption by a complex of buildings matched against 

weather conditions over a 10 year period. 

2. Short-Term Forecasting of Thermal 

Power 

In a mid-term forecast one estimates heat demand and 

thermal power taking into consideration the volume of 

heated cubic capacity and user demands. Note is also taken 

of the weather conditions prevailing in the given heating 

season. With the above in mind, one plans the scope of 

current maintenance, the purchase of fuel and other materials 

and appliances required for appropriate operation of the 

system. Fluctuations in heat and thermal power demand in 

the heating system are determined by changes in the weather. 

Forecasts for thermal power broken down into day/hour/less-

than-hour slots enable greater rationality to be applied to 

operating the heat source and to determining the power and 

action time of the particular production units as well as the 

on- and off-times. Forecasts of a short time horizon make it 

possible to react promptly, adjusting the source to unforeseen 

random events. In cogeneration plants, where electricity 

generation is closely connected with heat production, 48 

hours notice must be given to contract the volume of energy 

sales at the energy exchange. Consequently, shortfalls or 

surpluses of contracted electricity may happen unless an 

efficient system of demand forecasting for thermal power is 

put in place. Setting aside possible energy supply disruptions, 

frequent mismatches of demand and contracted supply will 

cause a considerable drop in revenues from electricity sales.  

To deliver a meaningful upgrade in heating systems 

changes must be made to the processes of regulating heat 

sources so as to guarantee the smooth running of heating 

networks and heat substations, which are fully or partially 

equipped with automatic follow-up control systems. 

Quantitative-qualitative regulation has been introduced in 

many heat sources feeding heating systems, as it facilitates 

optimal control of the heating system with a concomitant 

increase in heat supply efficiency. One condition for 

achieving optimized regulation of the system is ensuring that 

the thermal power of the sources is adjusted to the recipients’ 

current demand for heat. This requires accurate near-term 

forecasting of heat demand. 

Forecast accuracy is affected by numerous factors: 

• change in weather conditions (general air temperature, 

wind speed and direction, sun exposure, precipitation, 

etc.). 

• periodic changes in conditions of heat offtakers due to 

changes: day-night, season, day of the week, etc.  

• random changes connected with heat offtakers 

(holidays, technical glitches). 

• behavioral changes in heat recipients. 

• heat islands and other such heat accumulation 

phenomena. 

The thermal inertia of the system as a whole is large and 

reaction to dynamic changes is slow. It is influenced by the 

thermal inertia of the individual elements of the heating 

system, such as heat sources, transmission network, 

distribution network, thermal centers, internal installations 

and the walls of buildings. The literature lists many different 

mathematical models that describe the structures of dynamic 

systems. These can be divided into two groups: analytic and 

experimental. Models based on theoretical methods require 

the analytic solution of a system of equations. In complex 

systems with many variables the right simplifying 

assumptions have to be determined in full knowledge that 

every decision influences the accuracy of the results obtained. 

Analytic methods are of little use when faced with buildings 

with various heating characteristics cooperating with an 

elaborate heating system and heat source. Here, it is more 

appropriate to use experimental methods where the 

parameters of the model have been assigned on the basis of 

the experimental identification of the building. These can be 

either classic graphic methods or new ones based on calculus 

of probability. These methods can be used for forecasting in 

the control and steering processes as well as in optimization 

and fault finding systems. Many methods can be used in the 

forecasting of time series. Satisfactory forecasting results 

have been obtained through the use of: 

• regressive models (linear, recurrent) 
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• statistical models based on time series (the ARMAX, 

ARIMA models) 

• likelihood RML methods (Recursive Maximum 

Likelihood). 

3. Characteristics of the Buildings 

Researched 

The main campus of the Warsaw University of 

Technology (WUT) is comprised of a sectioned-off complex 

of buildings. Heat for all the buildings is supplied by the 

municipal heating system via a central substation. From there 

it is directed to the local network feeding the individual 

buildings housing classrooms and apartments. The basis for 

predicting heat consumption in the future in random weather 

conditions will be provided by a large set of actual data 

recording heat supply conditions and information about heat 

consumption at various temperatures over many heating 

seasons. Annual demand on WUT’s main campus for power 

ordered in 2010 was 10 MW (including 0.57 MW for hot 

water) and the average multi-year actual value of 3491 

degree days for Warsaw is 76.4 TJ annually. This value 

includes demand for hot water which, on average, is 7.3 TJ 

annually and constitutes almost 10% of the entire heat 

demand. Taking into consideration the actual minimum of 

2959 and maximum of 3987 degree days over the last 40 

years, the estimated heat demand for WUT’s main campus 

should be between 65.8 and 86.2 TJ. 

4. Forecasting with the Use of Neural 

Networks 

Artificial neural networks (ANN) may provide a means of 

forecasting values in time series. Thanks to properties such 

as ease of input data selection and good convergence when 

seeking solutions, ANNs have been used in steering and 

control processes. This method can be applied in object 

identification as well as in forecasting. Frequently, a long 

training period and the relation between obtaining good 

results and the parameters of the training method may pose 

problems for networks utilizing the back-propagation 

algorithm. 

The first neural network models used in the power sector 

concerned forecasting values in time series (power demand) 

in power systems. Proposing a reliable and confirmed 

forecast brings significant savings, resulting in better-

planned electricity production. Research into electricity 

forecasting focuses either on individual buildings [17] or 

entire power systems. [18] shows the problem of electricity 

production in cogeneration systems including short-term 

forecasts for electricity production. The paper presents a 

method for modelling and predicting the efficiency of boilers 

based on measured operating performance, using the neural 

network method [19]. The paper [20] investigates the use of 

ANN modelling to predict fuel consumption and exhaust 

emissions of a spark ignition engine. Author [21] presents 

forecasting for wind power potential in electricity production. 

Publications [22,23,24] compare forecasting using neural 

networks with conventional statistical methods of linear 

modelling, forecasting using autoregressive methods and 

other methods.  

Model research of neural networks used in forecasting 

electricity demand has shown high compatibility between 

reality and the models examined. It is more difficult to 

predict demand for heat in district heating systems, as 

demand depends largely on the weather, which is very 

changeable in many parts of the world. In district heating, in 

particular as regards heat sources, timely and accurate 

forecasting of heat power demand may deliver significant 

commercial advantages. An essential aspect of neural 

networks is their application in respect of questions of 

predicting energy consumption for the purposes of running 

buildings. The first papers on the topics of heating and 

district heating, ventilation and air-conditioning started 

appearing in scientific journals in the early 1990s. More than 

100 different types of artificial neural network have been 

tested [25-29] as part of dedicated systems for HVAC 

diagnostics in commercial buildings. A similar article is 

devoted to the application of ANN to condition monitoring 

and diagnosis of CHP [30]. 

A large number of papers deal with steering and 

forecasting heat supplies for buildings [31-34]. Papers only 

rarely concern themselves with issues involved with steering 

and forecasting heat supplies and production in district 

heating systems. There are many publications with analyses 

presenting predictions of heat and electricity production. 

Polish papers on district heating devote little time and space 

to research into artificial neural networks used in steering 

processes [35], even less so when it comes to forecasting 

demand for power and heat.  

Neural networks owe much of the interest surrounding 

them to intriguing properties such as: forecasting 

possibilities, the capability of classification, adaptation and 

self-organization of possible interference reduction. One of 

the more important features of neural networks is their 

ability to learn. In the training process, the most important 

factor is a sufficient quantity of input and output data to 

describe a given process.  

During the training process the neural network acquires 

features characteristic of this or that system or process, so 

after a sufficiently long learning cycle the network becomes 

a model of the phenomenon under analysis. A neural 

network taught in this way is capable of predicting an output 

signal or a sequence of output signals for the input data, 

which is extraneous to the data set for training. There is no 

need here for a mathematical description of the relations 

between input and output signals. Training conditions 

depend on many factors, in particular the manner of 

presenting input-output data and the network architecture.  

The model of a neuron has been planned on the basis of, 

and making use of neuropsychological features of a brain 

cell. The branching networks of nerve fibres (dendrites) are 

connected to the body of a cell containing a nucleus. Signals 
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are passed through electrochemical processes. Input signals 

are delivered to the cell by means of synapses. Receiver ends 

may be found on dendrites as well as on the body of other 

cells. An output signal from a neuron is carried by means of 

an axon and its numerous branches. The number of neurons 

in the input and output layers depends on the external 

conditions of the problem under consideration.  

The number of neurons in the layers and the number of 

hidden layers is generally estimated experimentally in such a 

way as to minimize the generalization error. 

 

Figure 1. Model of a neuron. 
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In the above model of a neuron (Figure 1) there is a 

summation element with input signals x x xN1 2, ,..., , 

constituting an input vector [ ]T

Nxxx …21=x . The 

components of vector x are multiplied by the weights 

matched W W Wi i iN1 2, ,..., . Bi is the bias associated with the 

node. Out of the summation comes signal ui. During tests, as 

an activation function, a sigmoid function is accepted, 

constituting the approximation of a step function. Gradient 

algorithms are used in the training process, as they are 

considered the most effective for learning purposes [36]. 

In preparing data sets to train neural networks, we 

considered the type of signals used at the input and output of 

the networks, constituting an input and output vector and 

determined by the size of the data set for training. In the 

research under consideration, for the majority of the neural 

networks the input signal was formed by the external air 

temperature, while the output signal was its corresponding 

heat power. In the case of classification: at the input of the 

network the elements of the object were described, whereas 

at the output, the result of the classification was stated. In the 

case of the identification of dynamic objects, at the input of 

the network the value of an input signal (of the object) was 

given at the time tn - u(tn ) and at directly preceding times 

u(tn-1), u(tn-2), ..., while at the output, the value of an output 

signal (of the object) at a given time was y(tn). In the case of 

predicting values of time series at the input of the network, 

signals at the time tn-s(tn) and at preceding times s(tn-1), 

s(tn-2), ..., s(tn-m), s(tn-m-1), s(tn-m-2) ..., where m stands 

for a certain period of time (e.g. 24 hours) at the output 

foreseen signal values s(tn+1), s(tn+2), ... etc. During 

research one can continuously make adjustments to input and 

output signals.  

When choosing the size of the set, we considered on the 

one hand the network’s training speed and, on the other, the 

precision of training. In general, data for training will consist 

of many subgroups, each focusing around the determined 

pattern. Statistical variability must be represented 

appropriately within each class.  

The optimization of the objective function method is used 

in the network learning procedure. ‘Supervised learning’ – 

with a teacher – is the most effective method of teaching 

one-directional sigmoid networks [37]. For the training pair 

(x, d), the definition of the objective function takes the form 

of the mean square error:  

E y d
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M

i i= −
=
∑
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where yi=f(ui), f is a sigmoid function. For many training 

pairs (x(j), d(j)) for j = 1,2, ..., p the definition of the 

objective function assumes the form: 
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During this research the method used was based on the 

choice of direction conforming to the direction of a negative 

gradient: the algorithm of the steepest descent. 

In the second part of the research, the RBT-type of 

networks was used (Radial Base Functions). In these types of 

networks a latent neuron plays the function, radially 

changing around the selected center c. The role of the latent 

neuron is the radial mirroring of the space around one point 

or many points. Radial-type networks are complementary to 

sigmoid networks [37]. A sigmoid neuron constitutes a kind 

of hyper-plane dividing the multi-dimensional space into two 

parts for which the following condition is satisfied: 

0>∑ j

j

ij xW   or  0<∑ j

j

ij xW                    (4) 

A radial neuron constitutes a kind of hyper-sphere in the 

middle of which there is the central point. 

The use of radial neurons in modelling means that for the 

case of radial symmetry of the data set, the quantity of data 

required for classification purposes is reduced considerably. 

In the case of an excessive quantity of data for training, the 

system becomes re-dimensioned with too great a number of 

degrees of freedom, which in effect leads to lower 

generalizing abilities for the network. As a result, it is 

necessary to introduce additional ties to limit the degrees of 

freedom for given parameters. Methods of regularization are 

used for this purpose. Green’s functions are used most 

frequently, of which Gauss’s function is the best. The 

algorithms defined serve as the basis for selecting the 

quantity of base functions (e.g. Gram-Schmidt 

ortogonalization), though in this research an empirical 

selection was made of the quantity of neurons in the hidden 

layer.  

This research was conducted on the actual building 

complex on WUT’s main campus. Its dynamic thermal 

properties were determined with a view to aid the forecasting 

of heat power demand required for heating the buildings at a 
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chosen level, this being mainly related to weather conditions. 

The analysis of the phenomena occurring in one building 

under consideration and the synthesis of this building’s 

model will be carried out on the basis of a time series of 

physical quantities connected with the process of heating the 

buildings. In effect, the model built (or rather, seeing as 

neural networks are used as a tool, taught) serves to forecast 

heat power demand in the form of a time series (power 

values at given times).  

The preparation of input data for the simulation research 

of the model of identification of the building complex and 

prediction of heat consumption by these buildings was made 

possible by the pre-existing computerized system for 

automatically regulating and monitoring WUT’s main 

campus. The system was launched in November 1995 and 

covers the heating system as well as 16 heat substations on 

WUT’s main campus and a few substations off campus. Each 

heat substation in the building is equipped with a system to 

automatically regulate the temperature, feeding the central 

heating installation depending on external temperature and 

the system that measures heat consumption. Identification of 

the building complex was performed using data obtained 

from the main heat gauge. Data such as temperature, 

pressure, flows and heat power were read at a frequency of 

1-10 minutes and then averaged and committed to memory 

every hour. These hourly quantities were used to teach and 

test an artificial neural network. The data gathering took 

place from 1995 to 2009.  

In order to teach the network the dynamics of a system 

such as the building complex, in which external air 

temperature constitutes an input signal and heat power 

demand is an output signal, the following approach was used.  

It was assumed: at the output of the network one signal – 

heat power taken md,h (power was taken on day d at hour h), 

at the input of the network the values of power taken on the 

same day one hour, two and three hours earlier (md,h-1, 

md,h-2, md,h-3), power taken on the previous day, 

respectively, md-1,h,  md-1,h-1, md-1,h-2 , md-1,h-3, power 

taken two days earlier at appropriate times md-2,h, md-2,h-1, 

md-2,h-2 , md-2,h-3 and the temperature on the following 

days and times: td,h, td,h-1, td,h-2, td,h-3, td-1,h, td-1,h-1, 

td-1,h-2, td-1,h-3, td-2,h, td-2,h-1, td-2,h-2, td-2,h-3. 

In the research it was assumed, on the basis of general 

premises, that a neural network with one hidden layer was in 

operation. A series of experiments was carried out, teaching 

and testing networks with a differing number of neurons in 

the hidden layer. It was established that the best effects were 

achieved with 25 neurons in the hidden layer of the network. 

The configuration of the network for research was as follows: 

23 neurons in the input layer, 25 neurons in the hidden layer 

and one neuron in the output layer. 

Only networks with back-propagation of error and one 

hidden layer were used in the research. The number of inputs, 

neurons in the hidden layer and the number of the network’s 

outputs, for each of the variants considered, are the outcome 

of the manner of presenting the data at the input and output 

of the network. The tests were performed for 2 different 

cases:  

4.1. Case 1 

Four different neural networks were taught and tested. 

Following the results of research conducted earlier that tested 

heat power demand prediction for a building complex, new 

research was carried out using for training purposes an 

extended database covering 5 heating seasons. For this 

purpose, a model of a neural network with back-propagation 

of error with one hidden layer was used. The number of 

inputs, the number of neurons in the hidden layer and the 

number of outputs of the network for each of the variants 

considered result from the means of the presentation of the 

data at the input and output of the network. The input vector 

covered 14 types of data and in the hidden layer there were 

18 neurons. In the research under consideration, appearing at 

the input are the following data: external air temperature and 

heat power taken at times (d – stands for day, h – stands for 

hour): d,h ,  d,h-1  ,  d,h-2 , d-1,h+1 , d-1,h  ,  d-1,h-1 , d-1,h-

2 ,  d-2,h+1 ,  d-2,h , d-2,h-1 , d-2,h-2. 

At the output of the particular networks, the value of heat 

power was expected at one hour (d,h+1), two hours (d,h+2) 

and three hours (d,h+3) in advance. The results of the tests 

run on the networks taught are shown in Figures 2-4.  

 

Figure 2. Predicted heat power demand 1 hour ahead of time. 

 

Figure 3. Predicted heat power demand 2 hours ahead of time. 
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Figure 4. Predicted heat power demand 3 hours ahead of time. 

The coefficient of variation (CV) is often used as an 

accuracy measure. The CV is a common metric used for 

neural networks [24]. Another metric can be correlation 

coefficient R2 or cross linear Pearson correlation coefficient 

between observed and predicted date. CV and R2 were 

estimated for case 1: CV (4.6 %, 6.6 % and 7.3 %) and R2 

(0.88, 0.84, 0.82). The results are good, indicating that the 

neural network parameters were well-selected.  
The accuracy and quality of the forecast can be estimated 

using MSE (mean square error), RMS (root mean error),  

Table 1. Forecast errors 1, 2 and 3 hours ahead of time.  

 
MAPE 

error 

Mean 

error 

Max. 

error 

Net-1-hour-advance forecasting 2.9% 0.6% 12.1% 

Net-2-hour-advance forecasting 4.1% 1.5% 21.9% 

Net-3-hour-advance forecasting 4.7% 4.1% 16.5% 

MRE (mean relative error) and others. It is common 

practice to resort to the Mean Absolute Percentage Error 

(MAPE) summary measure. It is defined as follows:  

∑
=

⋅
−

=
n

i i

ii

y

dy

n
MAPE

1

%100
1

                   (5) 

where d is the predicted value, y is the actual value of heat 

power, n determines the scope for which one estimates 

forecast error. The following were calculated for all research 

tests: the mean difference between the actual and predicted 

value, taking into consideration the deviation mark for the 

entire measured period and the maximum forecast error 

estimated for one hour.The MAPE errors, depending on the 

forecast’s time advance, are in the range 2.9 to 4.7%. Table 1 

shows the calculated errors for forecasts of heat power 

demand 1, 2, and 3 hours in advance. 

The longer the forecast period, the lower the accuracy of 

the forecast. For one-hour- and two-hour-advance forecasts, 

the mean relative error of 0.6% and 1.5% proves that the 

neural network is well adjusted to the characteristics of the 

object under investigation. That is indicative of the fact that 

heat power demand averaged for the entire measured period 

is implemented with high accuracy. 

4.2. Case 2 

In case 2, for the same input data, neural network models 

were compared. The comparison concerned the heat 

consumption model two days earlier and one day earlier with 

the model analyzing heat consumption only the day before. 

The aim was to discover whether information about heat 

consumption in the more distant past significantly influences 

the heat consumption forecast. Using input data, the research 

tested many different heat demand forecast variants for 

WUT’s main campus buildings. The calculated heat 

consumption values were compared to actual values. Figure 

5 shows the result of a one-hour-advance forecast of heat 

consumption. The data for training and testing included 

changes in temperature and heat power on the previous day. 

 

Figure 5. Heat power predicted 1 hour ahead of time for a neural network 

(d-1). 

The results presented in Figure 5 can be compared with 

the results from Figure 6, which were obtained for the same 

temperature and heat power values though including changes 

going back one and two days. 

 

Figure 6. Heat power predicted 1 hour ahead of time neural network (d-1, 

d-2). 

Coefficient CV and coefficient R2 were also calculated for 

case 2. The results were good: CV (2.6 % , 5.3 %) and R2 

(0.97 , 0.90).  

Errors have been calculated for all cases of heat 

consumption forecasts and these are shown in Table 2.  
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Table 2. Forecast errors for a network including changes 1 day earlier and 

1 and 2 days earlier. 

 
MAPE 

error 

Mean 

error 

Max. 

error 

Net– including changes on d and d-1  2.1% 0.5% 5.6% 

Net– including changes on d , d-1 and 

d-2 
4.2% 1.5% 17% 

The error for the forecast based on the reference going 

back one day was 2.1%, and for the forecast going back one 

and two days it was twice as big, at 4.2%. 

Heat demand forecasting is also possible in extreme 

weather conditions. That entails modelling temperature 

changes so as to determine heat consumption in these 

conditions. This may constitute the basis for an update of the 

power order placed with the district heating company. The 

condition necessary for using this method is a very large data 

set for learning, a long training period and a good correlation 

between obtaining results and the parameters of the training 

method. Good results prove that the tests the neural network 

went through were successful. The neural network very 

accurately reflects the heating characteristics of the buildings 

on WUT’s main campus.  

5. Summary 

This research has shown that the forecasting methods 

employed are a useful tool for steering heat networks and 

heat sources. The possibility of estimating heat demand a 

few hours in advance enables optimal determination of the 

quantity of heat energy to be produced. Adjusting heat 

production to current demand may boost production system 

efficiency by as much as a few percent. The use of a model 

based on artificial neural networks also produced good 

forecasting results. The choice of the two kinds of networks, 

namely the back-propagation type and the RBF type (Radial 

Base Functions), proved appropriate in light of the results 

obtained from the experiments. The accuracy of the results 

obtained falls in the range of 3-5%, depending on the kind of 

network, its architecture, the size and type of input data and 

the forecast period. For the purposes of steering the heat 

source, this level of accuracy is sufficient. To satisfy the 

necessary condition for forecasting heat consumption with 

the use of an artificial neural network one needs to possess a 

database of the main heating parameters of a district heating 

system covering a few years of operation. Research into 

forecasting the load of a district heating system may be 

performed for as long as new tools improving prediction 

quality appear. Neural networks undoubtedly open up new 

vistas for the discipline and merit use in real life situations. 

Symbols 

Bi biases, 

di i –forecast value, 

E mean square error [%], 

M number of training patterns, 

md,h heat power taken on day d, at hour h, 

p number of output neurons, 

td,h external temperature on day d, at hour h, 

ti computational internal temperature [oC], 

ui output signal, 

Wij weight for input signal, 

xi empirical value of random variable, 

yi empirical value of random variable, 
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