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Abstract

RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the
mechanisms behind their functions requires knowledge of their tertiary structures. Though computational RNA folding
approaches exist, they often require manual manipulation and expert intuition; predicting global long-range tertiary
contacts remains challenging. Here we develop a computational approach and associated program module (RNAJAG) to
predict helical arrangements/topologies in RNA junctions. Our method has two components: junction topology prediction
and graph modeling. First, junction topologies are determined by a data mining approach from a given secondary structure
of the target RNAs; second, the predicted topology is used to construct a tree graph consistent with geometric preferences
analyzed from solved RNAs. The predicted graphs, which model the helical arrangements of RNA junctions for a large set of
200 junctions using a cross validation procedure, yield fairly good representations compared to the helical configurations in
native RNAs, and can be further used to develop all-atom models as we show for two examples. Because junctions are
among the most complex structural elements in RNA, this work advances folding structure prediction methods of large
RNAs. The RNAJAG module is available to academic users upon request.
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Introduction

Exciting recent discoveries have made it clear that RNA

functions much like a master programmer – far beyond

information transfer and protein synthesis [1–4]. Indeed, RNA’s

regulatory roles encompass RNA splicing, protein regulation,

small-metabolite sensing, RNA interference, and RNA modifica-

tions among others. Intimately connected with these gene altering

and editing roles are the structural properties of RNAs because

they dictate the dynamics of RNAs as well as interactions with

other molecules. The close connection between structure and

function of RNAs is evident from the many recent studies of RNA

tertiary motifs, as well as advances in various aspects of RNA

structure; these advances have in turn stimulated efforts in the

structure prediction of RNA (see [5] for de novo RNA structure

prediction, and [6–10] for recent reviews on these topics of 3D

structure modeling and prediction).

To aid in the study of RNA structure, mathematical and

computational approaches have contributed to the RNA structure

prediction field. For example, RNA2D3D [11] and ASSEMBLE

[12] are semi-automated programs that build first-order approx-

imations of RNA 3D models using secondary or tertiary structure

information from homologous RNAs. Other automated 3D

structure prediction programs have been developed; FARNA

[13], iFoldRNA [14], and NAST [15] rely on coarse-grained

modeling with simulations to fold RNAs with the guidance of

physics or knowledge-based energy functions; MC-Sym [16]

predicts all-atom models of RNA by inserting small cyclic motif

fragments, collected from solved RNA structures. BARNACLE

[17] uses a coarse-grained probabilistic model of RNA to predict

atomic models by efficient sampling of RNA conformations.

MOSAIC [18] is another approach to efficiently and accurately

model RNAs by including the local and global hierarchical folding

principles. While these advances are significant, current limitations

of all such programs, however, lie in predicting large or complex

RNA structures, mainly due to the large size of the conformational

space. In particular, predicting the 3D structures of RNA

junctions, formed by multiple helical arms, is challenging because

the spatial organization is often determined by non-canonical base

pairs and base stacking interactions occurring within the junction

domain. Furthermore, even if these programs can successfully

generate models that locally resemble native RNA structures, the

spatial organization of helical elements in junctions tend to be

inaccurate, thus requiring manual intervention, as recently

reviewed by Laing and Schlick [6].

A reduction of the conformational space size can also be

achieved with graphical representations of RNA. Indeed, using

tree graphs to describe the discrete repertoire of RNA molecules
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has led to prediction of new RNA folds and design of novel motifs

(see [8,19] and Kim et al. submitted [20] for recent reviews). These

graphical approaches began with pioneering works of Waterman

[21], Shapiro [22], and others [23,24]. Recently, we introduced

the RNA-As-Graph (RAG) tree and dual graphs to represent RNA

2D topologies, catalogue all possible topologies [25,26], and

predict novel RNA motifs [26–29]. Knisley and coworkers applied

the RAG tree graphs to analyze secondary structures of RNAs and

predict larger RNA-like structures by merging two RNA graphs

and applying neural network analysis [30]. Gopal et al applied

RAG to model large viral RNAs [31]. Many other applications of

RAG have been reported (see review in Kim et al. [19]). The much

reduced RNA conformational space using these graphs opens new

ways to describe and predict large RNA topologies.

Here we develop tree graph representations to model helical

arrangements in RNA structures. We aim to efficiently sample the

3D conformational space and predict global orientations of RNA

junctions, which are important structural elements that form when

three or more helices come together in space. As input, we use

knowledge of the secondary structure, which can be predicted

from the sequence by using programs such as Mfold [32] and

RNAfold [33] based on the dynamic programming algorithm first

proposed by Nussinov [34,35], or can be extracted from multiple

sequence alignments [36] or from experimental techniques such as

RNA probing [37], crystallography, and NMR (resources avail-

able in databases such as RNA STRAND [38] and Rfam [39]).

The output is a graph model of the predicted junction topology.

Our new module denoted RNAJAG (RNA-Junction-As-Graph)

predicts tree graphs of RNA junctions for a given secondary

structure (see Figure 1 for the computational procedure). It

expands upon our program Junction-Explorer in several important

ways; first, RNAJAG generates a candidate junction graph model

with specific helical arrangements (on top of family type/stacking

orientation); second, the predicted graph incorporates native-like

RNA junction features such as interhelical distances obtained from

analysis of hundreds of solved RNA junction structures; third, the

graph serves as basis to build all-atom models. Results show that

RNAJAG reproduces native-like folds of helical arrangements in

most junctions tested in the cross validation procedure (3- and 4-

way junctions). Specifically, comparisons between our predicted

tree graphs and the graphs obtained from solved crystal structures

yield RMSD (root-mean-square deviation) values within range of

2–11Å (3-way) and 2–26Å (4-way), for all corresponding junctions.

Importantly, the graph output of RNAJAG can be utilized to build

coarse-grained or all-atom models and extend the approach to

higher-order junctions. In addition, RNAJAG allows determining

helical packing arrangements in junction domains (e.g., coaxial

stacking) for larger RNAs, which is one of the main limitations

among current RNA 3D prediction methods.

Materials and Methods

Overview
RNAJAG is the new module developed to represent RNA

junctions as tree graphs and to generate a helical arrangement

ensemble that approximates plausible 3D structures (Figure 1).

This module combines our previous junction topology prediction

program called Junction-Explorer [40] with models of scaled tree

graphs. RNAJAG proceeds in two steps: first, an updated

Junction-Explorer version (see below) determines the junction

topology, as well as coaxial stacking patterns between helical

elements of the target RNA junction; second, using the prediction

results in the first step, a tree graph is constructed using scaling

parameters to determine the length of every edge representing a

helical axis as well as geometric parameters to position the edges in

the junction domain. Details are provided below for these two

steps followed by the analysis tools needed to assess our predicted

graphs, namely converting crystal structures into graphs for

measuring various geometric features and assessing the perfor-

mance of RNAJAG.

Junction topology prediction
Our analysis of RNA junction topologies [41,42] is built upon

previous topology analysis of 3-way junctions by Westhof and co-

workers [43], who categorized three major families A, B, and C

(Figure 2A). For 4-way junctions, we identified nine major families:

H, cH, cL, cK, p, cW, y, cX, and X by coaxial stacking patterns and

helical configurations (Figure 2B). Helices within RNA junctions

prefer to arrange in parallel and perpendicular patterns, and

conformations are stabilized using common 3D motifs like coaxial

stacking, loop-helix interactions, and helix-packing interactions.

Because the axes of helices in junctions tend to be coplanar [44],

we represent junctions using planar tree graphs.

Junction-Explorer [40] uses a data mining approach known as

random forests, which relies on multiple decision trees trained here

using feature vectors (extracted from the 2D structures of solved

RNAs used as the training dataset) for loop length, sequence, and

other variables specified for any given junction; to determine the

2D information from the training dataset of 3D structures, we use

three different programs – FR3D [45], MC-Annotate [46], and

RNAVIEW [47] – and curate the 2D structures to contain only

three base pairing types (AU, GC, or GU). We found some cases

where programs yield different 2D structures; in such cases, we

select the 2D structure with the lowest free energy among these

programs as evaluated by the formation of AU, GC, or GU base

pairs. To simplify the parsing of an RNA secondary structure into

junctions, pseudoknots are automatically removed during the

search. Similarly, because we aim to present a computational tool

to predict helical arrangements within junctions based solely on a

secondary structure, no knowledge from tertiary contacts (includ-

ing pseudoknots) is introduced in an input secondary structure.

Junction-Explorer uses these properties of RNA junctions as a

function of sequence content and loop size to predict coaxial

stacking patterns and junction family types. For example, a correct

prediction of both the family type and coaxial stacking topology

for the RNA in Figure 1B is family B and H1H2 stacking; family B

with H1H3 stacking or family A with H1H2 would be incorrect in

part.

Our updated version of Junction-Explorer uses an experimental

dataset and a standard statistical analysis procedure. Our previous

non-redundant junction dataset [40] was updated to include the

most recent solved structures found in the PDB database as of

October 2012. This dataset includes 130 3-way junctions, and 114

4-way junctions. With the exception of a few 3-way junctions with

no coaxial stacks, most new junctions fit within the junction family

classifications reported by the Westhof and Schlick groups [41,43].

Graph representation
Our previous graph theory work considered RNA-As-Graphs

[48] to represent RNA secondary structures from a topological

perspective [25,49]. A RAG graph defines trees by representing

helices as edges, and loop domains (hairpins, internal loops, and

junctions) as vertices [50] (Figure 3A-B). This simple and intuitive

representation provides themathematical tools to estimate the RNA

structural space as well as to predict yet unknown motifs [26].

In this work, we add further detail to the tree graphs to

represent junction structures. We refine the RAG tree graphs by

adding vertices at the terminal base pairs of a helix to represent

Predicting Helical Topologies in RNA Junctions
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helices of different lengths. We also include a vertex in the center

of the junction domain to capture the junction’s spatial properties.

In addition, we consider edges connecting the vertices at the end of

helices, and edges to connect the end of a helix with the vertex in

the center of the junction (Figure 3C). We illustrate how to

translate RNA structures into RNA graphs, as well as the

differences between RAG and RNAJAG, with two examples – a

helix and a 4-way junction (Figure 3). This new graph

representation captures properties of the helical organization for

any degree of RNA junctions in 3D space.

Translation of RNA crystal structures into graphs
To evaluate the accuracy of our approach for predicting helical

arrangements via tree graphs, we generate a set of graphs obtained

from solved crystal structures according to the definition of tree

graphs described above. Thus, a helical element in an RNA

junction is defined only if at least two consecutive Watson-Crick

base pairs (GC and AU, and GU) are present. As described above,

we represent each helix by two vertices and one edge: the vector

origin (O9) of each vertex is determined by three steps: 1) find the

midpoint M of C19 atoms between the purine ((A)denine and

(G)uanine) and pyrimidine ((C)ytosine and (U)racil) of the terminal

base pairs of a helix; 2) consider the orthogonal projection from M

to the line connecting the C8 and C6 atoms of the purine and

pyrimidine, respectively; 3) scale the vector projection by 4Å as

proposed by Schlick [51] (see Figure 4A). This definition for

positioning a vertex is applied to both terminal base pairs of a

helix. An edge is then added to connect the two adjacent vertices.

Note that this edge aligns with the axis of the helix.

We extend this graph definition for helices to describe RNA

junctions. For instance, an n-way junction translates into 2n+1

vertices – 2n vertices for n helices and one vertex for a junction

centroid – and 2n edges; the junction centroid is an average of

adjacent vertices Vi (i=1,…, n). Figure 4B illustrates examples of 3

and 4-way junctions and their translation into tree graphs; red

edges represents helices while cyan edges illustrates the edges

connecting the center of each junction to the helix edges. By

converting a set of solved crystal structures into our graph

notation, we can derive knowledge-based information about the

spatial arrangements of helices within junctions. Table S1 shows

the list of RNA junctions in solved crystal structures considered

here.

Distance parameter calculations using graphs
To determine the distance parameters to scale RNA graphs

properly, we analyze structural data of 224 junctions collected

from a non-redundant dataset of 47 solved crystal RNA structures

(see Figure S1 and Table S1) and calculate the distances between

coaxial helices, parallel, perpendicular, and diagonal helical

arrangements in all 3 and 4-way junction elements of our graphs

(Figure 5). We classify a ‘diagonal’ topology when the helix axis

roughly forms a 45u angle with respect to the axis of stacked

helices. Using linear regression we determine the distance between

coaxial helical stacks by s0= (2.75L+3.91)Å (R2 =0.84), where L is

the number of nucleotides between the helical elements forming

coaxial stacks and R2 describes how well the linear regression fits

the dataset (Figure S1A); the distances between parallel, perpen-

dicular, and diagonal helical arrangements within junctions are

determined by the position of unstacked helices with respect to the

coaxially stacked helices (see s1, s2, and s3 in Figure 5 and S1) and

Figure 1. RNAJAG starts from an RNA secondary structure (A), uses Junction-Explorer to predict coaxial stacking and junction
family types (B), and constructs a scaled tree graph using length parameters (C).
doi:10.1371/journal.pone.0071947.g001

Figure 2. Schematic representation of 3- and 4-way junction
families. (A) Three major family types – A, B, and C – are found in 3-
way junctions where the helical arm, not involved in coaxial stacking,
has different helical arrangements with respect to the coaxially stacked
helices. (B) Nine major families – H, cH, cL, cK, p, cW, Y, cX, and X – are
determined in 4-way junction based on coaxial stacking and overall
helical arrangements.
doi:10.1371/journal.pone.0071947.g002

Predicting Helical Topologies in RNA Junctions
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reported as average values (with standard deviations) of

20.48(65.25)Å, 19.95(62.71)Å, and 21.17(65.20)Å, respectively

(see Figure S1 for the distance distributions).

In addition, we estimate the length of edge parameters

representing the helical axis based on the distance of solved

helical elements found within our non-redundant dataset. The

helix length parameter is given by 2.87(b-1)Å, where b is the

number of base pairs and 2.87Å corresponds to the base rise [51].

Relation between graph and atomistic models
To analyze the relation between root-mean-square deviation

(RMSD) for tree graphs as opposed to atomic models, we calculate

RMSDs for 13 all-atom models predicted from MC-Sym [16],

NAST [15], and FARNA [13] against their corresponding all-

atom native structures (33 calculations in total). This dataset of 13

structures composed of 3 or 4-way junctions was selected because

both secondary and tertiary structures have been experimentally

determined and they represent diverse features: the lengths vary

from 51 to 117 nucleotides, and the topologies are diverse,

including pseudoknots and loop-loop interactions. In addition,

while some structures have been solved in the presence of proteins,

others are structurally stable (e.g., tRNA), or rearrange upon

binding to a substrate (e.g., ribozymes, riboswitches). We then

build the tree graphs associated with these predicted atomistic

models and compare these graphs to the corresponding graphs

obtained from native structures (as described above). When

performing a linear regression analysis using the RMSD values,

we observe a positive correlation between all-atom and graph

models (Figure 6). Thus, assessing graphs using the RMSD

method is not equivalent to all-atom RMSD calculations but

indicates similar trends.

Comparing tree graphs using RMSD and MaxAngle
calculations
We utilize two comparison methods – RMSD and Maximum

Angle (MaxAngle) – to assess the quality of predicted graphs with

respect to the native structures. The RMSD and MaxAngle [48]

are useful for measuring global and local similarity of graphs,

respectively.

The RMSD measures an average distance of vertices between

superimposed graphs, defined as

RMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i~1 Vi{Vi

n

s

,

where n is the total number of vertices, and Vi and Vi (1#i#n) are

vertices in the reference and predicted graphs, respectively. To

compare a pair of graphs, we translate these graphs into the origin,

calculate an optimal rotation matrix using the singular value

decomposition (program JAMA, adapted from a java matrix

package (http://math.nist.gov/javanumerics/jama)), and super-

impose them by a rotation matrix.

MaxAngle finds a maximum angle by calculating an angle of

aligned two vectors of edges in the reference and predicted graphs

defined by

MaxAngle~max
i

cos{1 Ei.Ei

DEi DEi

� �

,

where i is the number of edges, and Ei and Ei are vectors of edges

from the reference and predicted graphs, respectively.

Computational performance of RNAJAG and other RNA
folding programs
To benchmark overall CPU times, we use the independent test

dataset of 13 junctions described by Laing and Schlick [6] and

determine CPU times for FARNA [13], MC-Sym [16], NAST

[15], and RNAJAG.

We predict junction structures for MC-Sym from their own web

server (http://www.major.iric.ca/MC-Sym/) and FARNA,

Figure 3. RNA graph representations. (A) RNA junction elements in a secondary structure. (B) RAG tree representation, which describes a helix as
an edge and a loop as a vertex. (C) RNAJAG tree representation, which defines a helix using an edge and a loop and helix ends using a vertex.
doi:10.1371/journal.pone.0071947.g003
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PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e71947



NAST, and RNAJAG from our local machine, a 262.26 GHz

Quad-Core Intel Xeon processor with 8GB of memory. Due to the

different setup of each program, we cannot directly compare

computational efficiency; however, the general trend is that to

generate an RNA tree graph in RNAJAG (implemented in C++)

takes less than 2 seconds CPU time; NAST is less CPU intensive

than FARNA and MC-Sym. We found that all programs returned

results in less than a few hours unless they failed to produce a

model.

Cross validation procedure
To evaluate the performance and the fitness level of our

classifier, we perform the standard leave-one-out cross-validation

(LOOCV) procedure [52] using feature vectors of 3-way and 4-

way junctions. That is we train RNAJAG using the feature vectors

collected from (k–1) junctions to test the remaining one.

We repeat this process for all (k) junctions, and report the

predicted junction topology as well as RMSD between our

predicted junction and its corresponding native structure repre-

sented by our graph. We use this procedure to show general

performance on 200 RNA 3- and 4-way junctions (Table S2) as

well as to demonstrate performance on 13 representatives RNA

(Table 1).

Building atomic models using graphs
Our general idea is to use a threading-like procedure to

determine the atomic coordinates of the graphs predicted by

RNAJAG based on a search for graph similarities in ‘‘3D-RAG’’,

an extension of the RAG database. 3D-RAG contains 3D atomic

models extracted from high-resolution RNA crystal structures

from the PDB databank; atomic structures are linked to

corresponding 3D graphs. Figures S2-3 illustrate the build-up

and search procedure of the 3D-RAG database (unpublished). The

3D graphs are classified based on RAG motif IDs, which reflect

topological properties of secondary structural elements. We

construct all-atom models in three steps (see Figure S3). First, we

identify a motif ID of the target graph. Second, we compare the

target graph to all 3D graphs catalogued with the same motif ID in

3D-RAG based on a standard RMSD calculation. Third, we select

the graph with the lowest RMSD, extract its all-atom 3D

Figure 4. Graph representation of a helix and RNA junctions. (A) definition of coordinates for the origin (O9) of base pairs (see [51]) and a
global helical axis for A-form RNA, from the top and the side. (B) Graphs of RNA junctions are obtained by translating helical branches into vertices
and edges, and locating the center vertex C of each RNA junction (colored cyan); the center vertex C of an n-way junction is positioned as the average
of adjacent vertices of C (vi, i = 1,…, n, for n-way junction) at helix ends.
doi:10.1371/journal.pone.0071947.g004
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coordinates, and verify that it contains the same number of

nucleotides as the target sequence. The bases are then altered to

match the target sequence as needed, while keeping the backbone

intact.

If we do not find any structure match for the entire predicted

RNAJAG graph, we partition the target graph into subgraphs and

follow the procedure described above for each subgraph. We then

assemble all the atomic fragments of the subgraphs to form a final

all-atom RNA model. Energy minimization may be implemented

in the future to relax the structure.

Results

RNAJAG prediction performance
To assess general RNAJAG performance, we consider the set of

200 junction domains (100 each for 3-way and 4-way systems)

from high-resolution crystal structures as prediction targets.

Results in Table S2 and Figure 7 (RMSD distributions) show

that RNAJAG reproduces well native-like RNA folds in most of

the 3- and 4-way junctions tested in the cross validation procedure.

As the module RNAJAG consists of two components – junction

topology prediction and graph modeling, we discuss the two parts

in turn.

Overall, for the first component – junction topology – results

indicate that the junction topology predictor module of RNAJAG,

Junction-Explorer, identifies topologies and stacking patterns

reasonably well for most of the test examples. Specifically, the

module achieves accurate coaxial stacking prediction (95/100 for

3-way and 92/100 for 4-way) as well as junction family type (94/

100 for 3-way and 87/100 for 4-way). Interestingly, most of the

incorrect predictions for 4-way junctions correspond to families p

and X, which are junction topologies rarely encountered. Other

cases involving unusual inter or intra-molecular interactions (e.g.,

D-loop/T-loop interaction) are beyond the capability of our data

mining approach and can lead to erroneous topology predictions.

Our second component, graph modelling, builds a candidate

model graph compatible with the predicted junction topology as

described under Methods. These scaled tree graphs are generated

and compared using RMSD and MaxAngle to those graphs from

the corresponding native crystal structures. While RMSD is a

global measure of graph similarity, MaxAngle, defined by a

maximum angle of two aligned edge vectors (See Figure 8), is a

local measure of accuracy that can help understand specific graph

differences. For all 200 junctions considered, comparisons between

our predicted and native tree graphs for all corresponding

junctions yield RMSD values within range of 2–11Å (3-way) and

2–26Å (4-way). The RMSD values are presented and grouped by

Figure 5. Scaling parameter calculations using graphs translated from crystal structures. The diagram shows the scaling distance
parameter calculations for 3-way junctions where the scaling parameters s0, s1, s2, and s3 denote the distances between coaxial helices,
perpendicular, diagonal, and parallel helical arrangements, respectively.
doi:10.1371/journal.pone.0071947.g005

Figure 6. Statistical analysis of RMSDs for graphs with respect
to their atomic models using a linear regression. Overall, a
positive trend between all-atom models and graphs is observed with a
slope value of 0.86.
doi:10.1371/journal.pone.0071947.g006
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successful or missed junction family predictions in Figure 7.

Interestingly, we note that for junctions corresponding to family C,

our method produces reasonably graph junction models, while

RMSDs for junctions belonging to family B perform poorly. A

possible explanation is that for junction members of the family B,

there is a high variability of the spatial arrangement between the

coaxial stacking and its third helix. The parallel helical packing

from junction elements of family C, on the other hand, tends to

make a small variation because the coaxial stacking and its third

helix often form long-range contacts. Similarly, we can observe

that 4-way junction families of types cL, cH present better RMSD

scores because these families are among the most abundant, and

also present less variability in their inter-helical distances due to

long-range contacts formed at the point of strand exchange.

We now analyze these RNAJAG results for a set of 13

representative RNAs of diverse sizes and functions (Table 1) by the

same cross-validation procedure (leave-one-out). Correct junction

topology classification is critical to achieve native-like graphs.

Among the correct predictions for the junction topology in 3 and

4-way junctions are, for instance, the riboswitch (PDB 2GDI) and

tRNA (PDB 2DU3), yielding best RMSD values of 1.98Å and

2.01Å, respectively.

An example of a misclassification involves the tRNA (PDB

2FK6); it was assigned to a family A, but the native RNA structure

forms a D-loop/T-loop motif (loop-loop tertiary interaction

commonly observed in tRNA [53]) outside the junction domain

that stabilizes its structural configuration as a family C (see

Figure 9). Such misclassifications also occur for coaxial stacking;

the hammerhead ribozyme (PDB 2QUS) was correctly classified in

family type, but the coaxial stacking was predicted as H1H2

instead of H1H3. Finally, the signal recognition particle (PDB

1LNG) is incorrectly predicted, perhaps due to the small loop size

differences, 1 nt, between H1H2 and H1H3 (see Figure 9).

Most RMSD values fall below 7Å except for the three examples

(ribozyme (2QUS), SRP (1LNG), and riboswitch (2GIS)) that are

within the range of 9 to 13Å. Similarly, most MaxAngle values fall

below 75u, except for the two examples (tRNA (2KF6) and

ribozyme (2QUS)) that have values higher than 159u due to

Table 1. List of 13 RNA junctions from the PDB database.

PDB Degree Native Structure RNAJAG

Nts RNA Type Coaxial Stacks Family Type Coaxial Stacks Family Type RMSD (Å) Max Angle (u)

2FK6 52 tRNA 3WJ H1H3 C H1H3 A 4.01 166.43

1DK1 57 rRNA 3WJ H2H3 A H2H3 A 6.16 65.70

1MMS 58 rRNA 3WJ H1H3 C H1H3 C 4.13 16.36

3EGZ 65 Riboswitch 3WJ H2H3 C H2H3 C 6.59 46.63

2QUS 64 Ribozyme 3WJ H1H3 C H1H2 C 10.40 159.06

2OIU 51 Ribozyme 3WJ H1H2 A H1H2 A 2.12 28.98

3D2G 77 Riboswitch 3WJ H1H2 A H1H2 A 2.07 45.90

2HOJ 78 Riboswitch 3WJ H1H2 A H1H2 A 2.18 52.36

2GDI 80 Riboswitch 3WJ H1H2 A H1H2 A 1.98 58.95

1LNG 97 7S.S SRP 3WJ H1H3 C H1H2 A 9.04 62.26

1MFQ 117 7S.S SRP 3WJ H1H3 C H1H3 C 5.26 16.21

2DU3 71 tRNA 4WJ H1H4,H2H3 cL H1H4,H2H3 cL 2.01 29.51

2GIS 94 Riboswitch 4WJ H1H4,H2H3 cL H1H4,H2H3 cL 12.18 74.08

Each junction is listed with its junction family and coaxial stacking arrangement. RNAJAG achieves graphs with RMSD values below 11Å and 13Å for 3- and 4-way
junctions, respectively.
doi:10.1371/journal.pone.0071947.t001

Figure 7. Distribution of RMSD scores for 3-way junctions (top)
and 4-way junctions (bottom). The RMSD comparison is computed
between the RNAJAG graphs and the graphs obtained from the PDB
structures corresponding to the target RNA. Values are color-coded
according to their correctly predicted family topology (solid colors), as
well as the failed family predictions (false negatives with same shape
but no filling).
doi:10.1371/journal.pone.0071947.g007
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incorrect topology predictions. The graphs (corresponding to

RNAs listed in Table 1) are shown in Figure 9 for both the native

structures and RNAJAG models.

Comparison with other prediction methods
To compare the performance of RNAJAG with other programs,

we made use of programs such as MC-Sym [16], NAST [15], and

FARNA [13] to produce models from a selected set of 13 RNA

junctions. The junctions consist of 3- and 4-way junctions and

represent diverse features including nucleotide length and

topology. To make comparisons at the graph level, we translate

all predicted atomistic models into tree graphs using our graph

definition (Figure 4, see details on ‘Materials and Methods’), and

compute RMSD and MaxAngle against the corresponding graphs

of native structures (graph from predicted structure vs. graph from

crystal structure). The results are presented in Table 2 and the

distributions in Figure S4.

Although comparative RMSD values with respect to graphs and

atomic models are not interchangeable, they are closely correlated

as discussed in ‘Materials and Methods.’ Our statistical analysis

uncovers the relationship between atomic models and their

translated graphs, indicating that atomic models are well described

in highly coarse-grained models (Figure 6).

We observe that both the RMSD and MaxAngle values range

widely depending on the program. Specifically, RNAJAG

produces a wider range of RMSD values varying from 1.9–

12.2Å, with the largest values occurring mostly when coaxial

helices or junction family (or both) are inaccurately predicted. In

tandem, the best prediction values are observed when RNAJAG

correctly classifies both the junction family type and coaxial

stacking formation. The RMSD values for MC-Sym range from

4.2–13.5Å, NAST from 2.9–11.7Å, and FARNA from 3.5–12.3Å.

By considering the number of predicted structures with best

RMSDs over these 13 test cases, RNAJAG outperforms with 7

predictions followed by MC-Sym, NAST, and FARNA for 3 or

less. MC-Sym and NAST often fail to predict structures, possibly

due to some complications with the fragment insertion or assembly

as reported in our previous study [6]. Although FARNA performs

structure predictions least accurately, the program produces a

model for all the structures along with RNAJAG.

To complement the RMSD measures, we also use MaxAngle to

assess a local agreement of edges in the predicted graphs. The

MaxAngle values for RNAJAG range from 16.2–166.4u, but

mostly less than 65u with only three exceptions. Again, the largest

(worst) values occur when RNAJAG fails to achieve the correct

junction family and/or coaxial stacking patterns. The MaxAngle

values for MC-Sym range from 32.4–130.5u, NAST from 32.4–

122.4u, and FARNA from 42.4–140.4u. Overall, RNAJAG

performs better on 7 of the 13 predictions, followed by NAST,

FARNA, and MC-Sym for 4 or less.

Figure 8 presents two cases of graph comparisons between the

native structure and graphs predicted by RNAJAG and the other

programs to illustrate where predictions deviate from the

experimental structure and from each other. The first example

(Figure 8A) considers the 3-way junction structure of the TPP

riboswitch (PDB 2GDI). When the RNAJAG graph is compared

to the native one, RMSD and MaxAngle values of 1.98Å and

58.95u, respectively, are obtained. Interestingly, RNAJAG pro-

duces the best graph model with the lowest RMSD value, but not

the lowest MaxAngle value; NAST yields a graph with the best

MaxAngle value of 32.39u. Note that the graph conformations of

RNAJAG for 3-way junctions are predefined by the major

junction family types (Figure 2A) whereas NAST has much larger

conformational space to explore, thus leading to a better fit of H3

to the native structure in this case. Our graph representation also

gives ideal alignments for the coaxial helices, which is not always

the case for graphs obtained from native structures, possibly due to

helical rearrangements outside the junction domain.

The second case is the 4-way junction obtained from a Cys-

tRNA transfer RNA (PDB 2DU3). In contrast with other

programs, RNAJAG generates the typical L-shape with similar

proportions to the native state (Figure 8B), without knowledge of

the D-loop/T-loop interaction occurring outside the junction

domain, and yields the lowest RMSD (2.01Å) and MaxAngle

(29.51u) among the programs. Considering the RMSDs, NAST

follows RNAJAG, with 11.73Å, and it is followed by FARNA

Figure 8. Prediction results of 3D modeling programs. Starting from the bottom left, a list of predictions from each program is presented by
increasing RMSD values against the native structure in the counterclockwise direction. (A) 3-way junction of the TPP riboswitch (PDB 2GDI) with
family type A and coaxial stacking between helices H1 and H2. Based on these examples, RNAJAG predicts most accurately followed by NAST, and
FARNA. (B) 4-way junction of tRNA (PDB 2DU3) with family type cL and coaxial stacking between helices H1 and H4, and H2 and H3. After RNAJAG,
NAST predicts most accurately followed by FARNA.
doi:10.1371/journal.pone.0071947.g008
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(12.29Å). MC-Sym was unable to generate a model in these

examples, possibly due to the insufficient number of cyclic motif

fragments to insert.

In both prediction cases, RNAJAG configures most edges

similar to the native structures; however, the scaling of the loop

region in the tRNA (Figure 8B) is slightly inaccurate and would

require additional information (e.g., tertiary motifs) for proper

orientation.

Building All-atom Models Using Graphs
Of course, predicted model graphs are only a starting point.

Ultimately, a protocol to build atomic models is required. Using

the threading/build-up procedure described in Methods, we

illustrate this idea for two mid-sized (,50 nts) junction structures

(see Figure S2-3 for technical details).

The 3-way junction, guanine riboswitch RNA, is 53 nts long

(PDB entry 3RKF) and belongs to the family type C. RNAJAG

correctly predicts both the junction family type and the coaxial

stacking and yields a graph with RMSD value of 4.32 Å with

respect to the graph of its native structure (See Table 3 and

Figure 10).

We superimpose the predicted graph against all the graphs of

the same motif ID family (namely (4, 2)) available in the 3D-RAG

database, and order all these matches based on their RMSDs to

the target graph. We extract the all-atom coordinates of the lowest

RMSD graph (4.41Å), and create a model by mutating the bases

to match the query sequence. We obtain an RMSD value of 5.09Å

for the all-atom model junction region compared to its native

structure.

The 4-way junction topology of the tRNA of Staphylococcus

aureus, 50 nts long (PDB entry 1QU2), is correctly predicted by

RNAJAG. It generates graph with 6.22 Å RMSD compared to the

graph of its native structure (See Table 3 and Figure 10).

Similar to the 3-way junction, we search the 3D-RAG database

for graph similarities in the same motif ID family (5, 3). We verify

the 2D structure and construct an atomic model by mutating the

bases of the extracted structure to match the query sequence. We

achieve an all-atom model with RMSD of 3.39Å against the

junction native structure.

Discussion

With the continuous discovery of novel RNAs, it is imperative to

advance computational methods to determine RNA structure and

thus help in understanding RNA function. A major limitation in

the field of RNA structure is the size of RNA molecules that can be

accurately predicted. Indeed, the structural complexity grows

rapidly as molecular size increases.

RNA junctions are important structural components that are

often difficult to determine at both the secondary and tertiary

structure levels. To address this problem, we introduced here a new

graph theoretic approach that is applied to model RNA junctions in

3D space. The simplicity of using tree graphs to represent RNA

junctions allows us to sample the minimal conformational space,

particularly on the assembly of helical elements. Although our tree

graph notation cannot represent pseudoknots, the proximity in 3D

space of edges representing helices in junctions can suggest the

formation of long-range interactions (pseudoknots, kissing hairpins,

loop-receptors, etc. [54]).

RNAJAG is the new module that predicts and builds helical

models for RNA junctions as tree graphs and consists of two

components – junction topology prediction and graph modeling.

Using an updated version of Junction-Explorer [40], we determine

both the junction family type and coaxial stacking patterns. Based

on these prediction results, an RNA graph, consisting of vertices

and edges, is then constructed using length parameters describing

spatial arrangements of helices in junctions. Note that the accurate

Figure 9. Graphs of the 13 RNA junctions. In each column from left
to right, PDB entry, junction type, native structure, graph from native
structure, and graph from RNAJAG are shown.
doi:10.1371/journal.pone.0071947.g009
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prediction performance of Junction-Explorer is a critical step in

RNAJAG as the tree graph generation depends sensitively on the

outcome of Junction-Explorer.

Overall, RNAJAG reproduces reliable helical arrangements of

the junctions with competitive RMSD values, in the range of 2–

11Å (3-way) and 2–26Å (4-way) (see Table S2). In addition, the

predicted graphs described here are comparable or better than

other RNA folding programs. Note that RMSDs for RNAs are

generally much larger than scores from protein predictions [8,55]

and also have a larger volume per unit mass. Thus, while 6Å

RMSD is generally considered poor for proteins, it is a good

prediction for RNAs. For atomic models, other measures besides

RMSDs have alternatively been proposed to better assess RNA

predictions [55,56]. This is partly because nucleotides have a

larger molecular size than proteins (while the diameter of a a-helix

is 12Å, a typical A-DNA helix has a diameter of 23Å). The results

from Table 2 show that our approach provides the largest number

of best predictions, 7 for both RMSD and MaxAngle measures

among compared graphs. Specifically, RNAJAG gives top 7

RMSD values compared to 3 or less out of 13 graphs with respect

to MC-Sym, NAST and FARNA. Similarly, RNAJAG yields the

top 7 MaxAngle measures compared to 4 or less for MC-Sym,

NAST and FARNA.

Accurate predictions of Junction-Explorer in most instances

make RNAJAG competitive with other programs. On the other

hand, incorrect determinations of coaxial stacks and/or junction

family types in a minority (20%) of the cases (Table 1) lead to

dramatic deterioration of accuracy. The wide range of RMSD and

MaxAngle values may reflect this possibility as reported in Table 2.

Our resulting tree graphs hold promise for further refinement of

RNA structures. For example, our graphs can be used as starting

templates to build coarse-grained or full atomic models using a

Table 2. Comparison between RNAJAG and other tertiary structure prediction programs.

RMSD (Å) MaxAngle (u)

PDB RNAJAG MC-Sym NAST FARNA RNAJAG MC-Sym NAST FARNA

2FK6 4.01 8.51 N/A 11.38 166.43 108.31 N/A 49.10

1DK1 6.16 5.74 4.06 6.63 65.7 129.42 46.19 140.39

1MMS 4.13 9.85 2.89 9.46 16.36 32.46 96.15 112.55

3EGZ 6.59 5.53 5.69 9.90 46.63 50.32 36.04 72.07

2QUS 10.40 8.34 10.86 8.94 159.06 130.49 59.80 42.45

2OIU 2.12 4.21 N/A 8.39 28.98 71.55 N/A 84.00

3D2G 2.07 N/A N/A 3.56 45.90 N/A N/A 88.84

2HOJ 2.18 N/A N/A 4.17 52.36 N/A N/A 74.07

2GDI 1.98 N/A 4.25 7.12 58.95 N/A 32.39 80.25

1LNG 9.04 6.47 7.55 8.92 62.26 80.16 57.62 73.84

1MFQ 5.26 9.93 11.01 8.88 16.21 82.10 83.05 78.30

2DU3 2.01 N/A 11.73 12.29 29.51 N/A 122.37 70.78

2GIS 12.18 13.51 N/A 11.27 74.08 101.37 N/A 122.67

Only the junction domain is considered for the RMSD and MaxAngle calculation using graph representation. The best RMSD and MaxAngle values for each structure are
highlighted in bold on background. We denote N/A for those structures that other programs failed to predict using secondary structure information.
doi:10.1371/journal.pone.0071947.t002

Figure 10. Derived all-atom models from predicted RNAJAG graphs using 3D-RAG threading for: (A) 3-way junction of a guanine-
riboswitch RNA (PDB entry 3RKF) and (B) 4-way junction of a tRNA of Staphylococcus aureus (PDB entry 1QU2).
doi:10.1371/journal.pone.0071947.g010
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threading/build-up procedure to link subgraph components and

atomic structure (Figures S2-3). For these two examples, accurate

all-atom models are achieved with RMSD values of 5.09Å and

3.39Å for 3 and 4-way junctions, respectively (Figure 10 and

Table 3). Current work is focusing on generalizing this approach.

Although the tree graphs and all-atom models are not

comparable, our statistical analysis shows that the RMSD

measures of these two distinct models are positively correlated

(Figure 6); a tree graph model is an oversimplified representation

of the atomic RNA structure where helical elements and loop

regions are mapped by a finite number of edges and vertices.

Generally speaking, lower RMSD values for atomic models can be

obtained compared to graph models. Additionally, we use

MaxAngle to evaluate the quality of predicted local helical

arrangements.

In this work we have primarily focused on pseudoknot-free 3

and 4-way junctions. These junctions represent over 80% of RNA

junctions found in all available crystal structures to date [40].

RNAJAG can potentially be extended to predict higher order

junctions since Junction-Explorer is capable of predicting coaxial

stacking patterns for any junction order. For example, 5-way

junctions can be partitioned into various possibilities of 3- and 4-

way junctions [42], and thereby model the subset of junctions

using RNAJAG.

Though our promising approach could be easily adapted to

large RNAs with multiple junctions, several challenges remain

with respect to the prediction accuracy of both the junction family

and coaxial stacking configurations. For example, when loop-loop

interaction motifs (e.g., PDB 2FK6) form outside the junction

domain, they lead to unpredictable junction configurations. We

also cannot account for protein-RNA interactions or solvent

effects, challenges to all other tertiary structure prediction

programs.

Finally, RNAJAG considers a limited range of the conforma-

tional space (Figure 2) [41,43] since we only consider parallel,

perpendicular, and diagonal helical arrangements. These orienta-

tions make graph generation very rapid; however, describing the

dynamic nature of RNA structures requires flexible models, which

can be addressed using coarse-grained or atomic models.

Additional ongoing work involves determining the optimal

helical positions of the internal loops as well as the helical elements

connecting these loops for large RNAs. Internal loops flanked by

two helices can also be represented using tree graphs; therefore,

preferred structural arrangements based on loop size and sequence

content for them will improve the overall models. Ultimately, a

pipeline that starts from our tree graphs and results in all-atom

models can be envisioned. Combined with successful predictions of

helices and internal loops, junction arrangement predictions could

eventually provide a novel hierarchical approach to build tertiary

RNA models for large RNA molecules.
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