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ABSTRACT
Early recognition and prediction of human activities are of
great importance in video surveillance, e.g., by recognizing a
criminal activity at its beginning stage, it is possible to avoid
unfortunate outcomes. We address early activity recogni-
tion by developing a Spatial-Temporal Implicit Shape Mod-
el (STISM), which characterizes the space-time structure of
the sparse local features extracted from a video. The ear-
ly recognition of human activities is accomplished by pat-
tern matching through STISM. To enable efficient and ro-
bust matching, we propose a new random forest structure,
called multi-class balanced random forest, which makes a
good trade-off between the balance of the trees and the dis-
criminative abilities. The prediction is done simultaneously
for multiple classes, which saves both the memory and com-
putational cost. The experiments show that our algorithm
significantly outperforms the state of the arts for the human
activity prediction problem.

Categories and Subject Descriptors
H.4.0 [[INFORMATION SYSTEMS APPLICATION-
S]: General
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1. INTRODUCTION
Surveillance cameras are widely used nowadays and the

functions of these cameras are mainly for security monitor-
ing and detecting illegal actions and events. With more
and more equipped surveillance cameras, it is of great inter-
ests to develop intelligent video surveillance that can sense
and understand the human activities. Although many ac-
tivity recognition methods have been proposed to enable
intelligent surveillance, most of them only provide after-the-
fact classification of completed activities [5][10]. However,
in many surveillance scenarios, it is desirable to recognize
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Figure 1: An illustration of the human activity pre-
diction problem. We want to predict the “push” ac-
tivity and seven sample frames are selected among
the testing video. Three experiments on different
observation ratios (at 2/7, 4/7, 7/7) are shown with
the red curve describing the score at each frame.
The green solid line on the time coordinate refers to
the predicted activity in the testing video.

activities even before they are completed. For instance, in a
supermarket, it is better to send off an alarm while someone
is stealing rather than after the stealing, because it can pos-
sibly prevent this criminal activity and also provide more
time for the security guard to react. As another example
shown in Fig. 1, when there are people fighting on a street,
it is extremely useful to recognize and stop the fighting ac-
tivity early before the situation becomes worse.

The problem of human activity prediction has been pro-
posed in [6]: inference of the ongoing activity given tempo-
rally incomplete observations. Integral bag-of-words (BoW)
and dynamic bag-of-words are proposed in [6] to enable ac-
tivity prediction with only partial observations. Despite cer-
tain successes of [6], it still has several limitations. First,
since the BoW model ignores the spatial-temporal relation-
ships among interest points, it is not discriminative enough
to describe human activities. Also, although integral BoW
and dynamic BoW in [6] consider the temporal information
by matching between sub-intervals, there lacks a principled
way to determine the optimal interval length. Finally, as
we usually have a large number of categories of activities to
detect, it demands an algorithm whose computational com-
plexity is sub-linear or constant to the number of categories.

To address these limitations, we propose Spatial-Temporal
Implicit Shape Model (STISM), which can well model the re-
lationships between the local features and efficiently predict
multiple activities simultaneously. To enable efficient and
robust matching, a new type of random forest is proposed,



which makes a good trade-off between the tree balance and
discriminative ability. Meanwhile, the trees will be trained
for multi-class purpose, which makes our algorithm scalable
to the number of classes. Given a normal desktop PC, our
human activity prediction algorithm can be run in real-time.
In addition to the speed benefit, STISM makes it possible
to progressively predict the human activities thanks to the
additive nature of the model. Even when we only have par-
tial observation, the prediction can be accurate as well. Our
action prediction experiments on UT-Interaction dataset [7]
further validate the performance of our algorithm.

1.1 Activity Prediction Problem
Fig. 2 summarizes the differences among human action

classification, action detection and action prediction (ac-
tion and activity are used interchangeably). In the past
decade, there have been a lot of great works in the human
action classification [1][5][10][9][13]. The goal of human ac-
tion classification is to determine the action category of a
segmented video clip, referred to as X, among a set of class-
es {1, · · · ,K}. For the action detection [3][11], it aims to
not only determine the category but also localize the po-
sition of the human action, i.e., fc(X) → [x,w, y, h, t, d],
where fc(X) refers to the detection function for the action
category c and [x,w, y, h, t, d] refers to the 3D position of
the human action (center position x, y, t and scale w, h, d).

Action prediction [6], however, is more challenging be-
cause we need to efficiently predict the action given incom-
plete observations. Compared with action detection, action
prediction focuses more on determining whether or not a
specified action is happening. Thus, it does not require the
exact localization of the human actions. In our paper, in-
stead of determining the exact 3D-volume of the human ac-
tions, we focus on determining the existence of an action
given incomplete observations. Formally, we want to find a
function:

f(O)→ {0, 1, · · · ,K}, (1)

where O ⊂ X refers to the incomplete observations, and
{1, · · · ,K} refers to the category of the predicted action
while 0 means no target action is happening. Observation
O can be either on segmented videos similar to action clas-
sification or unsegmented videos similar to action detection.
In this paper, we only focus on predicting actions with seg-
mented videos, but our algorithm can be extended to handle
the case when the testing videos are not segmented.
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Figure 2: Comparison of action classification, action
detection, and action prediction.

2. PROBLEM FORMULATION
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Figure 3: An illustration of our spatio-temporal ac-
tivity matching.

We represent the videos with spatial-temporal interest
point (STIP) [1] due to its sparsity and good performance
for action recognition. Other types of local features are
also applicable to our algorithm. Given a video, we re-
fer our Spatial-Temporal Implicit Shape Model (STISM) as
V = {(fi, si, c)}, where fi refers to the feature description,
si = li − lV refers to the spatio-temporal location shift from
the ith STIP position (li) to the center position of video lV ,
and c refers to the category of the video. STISM is a 3D
extension of implicit shape model in [2]. Fig. 3 illustrates
the idea of using STISM for activity matching. The yel-
low dots refer to the detected interest points and the white
dash lines refer to the shift from the interest point to the
video center, i.e., li − lV . The benefits of our implicit shape
model are two-fold. On one hand, it is flexible to utilize
the spatial-temporal configuration of the interest points for
recognition. More specifically, we do not need to explicitly
define and learn a model. On the other hand, the computa-
tional cost is low which enables real-time activity prediction.
Our goal is, given a training set D = {(fj , sj , cj)} (several
different fj will share the same video center location and cj
if they are from the same training video), to determine the
category of c for testing video V. Following [2], our similar-
ity score of an incomplete testing video Vδ belonging to a
specific class C ∈ {1, 2 · · · ,K} is defined as:

S(C,Vδ, lV) =
∑

(fi,li)∈Vδ p(ci = C, lV , fi, li)

∝
∑

(fi,li)∈Vδ p(ci = C, lV |fi, li),
(2)

where Vδ refers to the percentage (δ ∈ [0, 100%]) of video
V observed, i.e., O in Eq. 1. The prior p(fi, li) in Eq. 2 is
assumed to follow a uniform distribution. The probability
of p(ci = C, lV |fi, li) can be computed as:

p(ci = C, lV |fi, li)
=

∑
(fj ,sj ,cj=C)∈D

p(ci = C, lV |fj , sj , cj = C, fi, li)

× p(fj , sj , cj = C|fi, li)
=

∑
(fj ,sj ,cj=C)∈D

p(ci = C, lV |sj , cj = C, li)

× p(fj , cj = C|fi).

(3)

Similar to [2], we made two assumptions for Eq. 3. The
first assumption is:

p(ci = C, lV |fj , sj , cj = C, fi, li) = p(ci = C, lV |sj , cj = C, li),

referring to the similarity based on the spatial-temporal shift-
s (white dash line in Fig. 3). We can further compute it as:

p(ci = C, lV |sj , li, cj = C) =
1

Z
exp

−((li−lV )−sj))
2

σ2 , (4)

where Z is a normalization constant and σ2 is a bandwidth
parameter. The second assumption is that p(fj , sj , cj =



C|fi, li) = p(fj , cj = C|fi), which serves as a weight based
on feature description for each matched interest point pair
(fj , sj , cj) ∈ D and (fi, li) ∈ V.

To reduce the computational cost caused by the enumer-
ation of all the interest point pairs in Eq. 3, we propose
a new random forest structure, called Multi-class Balanced
Random Forest (MBRF), in the next section. With the help
of MBRF, we only need to focus on the interest point pairs
which fall into the same leaf.

3. MATCHING AND PREDICTING
Random forest has been widely used in many multimedia

applications because it has superior performance and fast
computational speed. However, for action recognition prob-
lems, there are two challenges we need to address. First,
since our training data is usually unbalanced, i.e., the num-
ber of negative videos will be significantly larger than the
number of positive videos. This would easily lead to unbal-
anced trees, resulting in low discriminative ability and low
matching accuracy. Besides, for the human activity predic-
tion problem, one usually needs to recognize multiple cat-
egories of actions. It is desirable to develop an algorithm
that is scalable to the number of activity classes. Instead
of building one-versus-all random forest for each category as
in [3], we use a multi-class random forest that saves a lot of
computation and storage.

Given the training data, D = {(fj , sj , cj), j = 1, 2, · · · , ND}
where fj is described with Histogram of Gradient (HoG) and
Histogram of Flow (HoF), we construct NT trees as follows.
For each node, we choose one of the two splitting measures
with equal probability:

• Distribution based measure: to ensure the tree balance
and model the underlying data distribution.

• Entropy based measure: to ensure the discriminative
ability of the trees.

Nh hypotheses will be generated for each node based on the
selected splitting measure. For each hypothesis with the
distribution based measure, we randomly select two dimen-
sion indexes τ1 and τ2 (either from HoG or HoF part). The
variance of the training data on the two dimensions can be
computed:

V ar(τ1,τ2) =

ND∑
j=1

((fj(τ1)− fj(τ2))− µ(τ1,τ2))
2, (5)

where µ(τ1,τ2) = 1
ND

∑ND
j=1(fj(τ1)− fj(τ2)).

Based on the Nh hypotheses, we select the one with the
largest variance V ar(τ1,τ2) and the corresponding µ(τ1,τ2) is
used as the splitting threshold. This distribution based s-
plitting measure has two benefits. On one hand, it can make
the trees balanced since the two child nodes after splitting
are usually of the similar size. On the other hand, this can
be considered as the data distribution modeling. Consider
the extreme case when all the nodes are split with distri-
bution based measure, the tree constructing process can be
considered as a clustering step, with each leaf as a word in
a vocabulary (BoW). The difference between our random
forest with the BoW is that we have multiple trees and the
variance of the estimation error can be reduced.

Another splitting measure is entropy based measure. Sim-
ilarly, we generate a set of hypotheses. For each hypothesis,

two random numbers for feature dimension indexes are first
generated, τ1 and τ2. A small jitter value, ξ, is randomly
generated as well. We set splitting threshold γ as:

γ =
1

ND

ND∑
j=1

(fj(τ1)− fj(τ2)) + ξ. (6)

The node will be split into two child nodes based on the
threshold γ. For the current node, we can compute the
entropy as

E(τ1, τ2, γ) = 1
|Fl|

∑K
C=1−pC(Fl)log(pC(Fl))

+ 1
|Fr|

∑K
C=1−pC(Fr)log(pC(Fr)),

(7)

where

Fl = {j : fj(τ1)− fj(τ2) < γ}
Fr = {j : fj(τ1)− fj(τ2) ≥ γ}, (8)

and

pC(Fl) =
1

|Fl|
∑
j∈Fl

I(cj = C), (9)

is the probability of samples belonging to the category c
in the Fl set. I(x) is an identity function. We can define
pC(Fr) in a similar way. By choosing the hypothesis with the
smallest entropy, we can increase the discriminative ability
of our trees.

The above process is repeated until the predefined maxi-
mum tree depth is reached or the number of feature points
in a node is smaller than a pre-defined number. We name
this tree structure as Multi-class Balanced Random Forest.
Now let us revisit Eq. 3. The weight for the interest point
pair can be computed as:

p(fj , cj = C|fi) =
1

|NT |

NT∑
t=1

1

|Lt|
∑
j∈Lt

I(cj = C), (10)

where Lt refers to the leaf node in tth tree which both train-
ing STIP j and testing STIP i fall in. Rather than enumer-
ating all the interest point pairs between training data and
testing video, the computational cost can be significantly re-
duced by traversing our MBRF and a small subset of interest
points from the training data D will be found with positive
weight p(fj , cj = C|fi) for each testing interest point i.

The final score for the segmented testing video is the ac-
cumulation of all the votes based on Eq. 2. The category of
the video given observation Vδ is then determined by:

C∗ = argmax
C

S(C,Vδ, lV). (11)

With more observations δ provided, more matched pairs will
be found and the score will be increased. Thus, the results
will be further refined.

In our method, the scale (both spatial and temporal)
variations are ignored based on two reasons. First, since
our STIP feature already encodes the scale information, the
matched STIP pair i and j share the similar activity scale.
Second, we add a smooth kernel in Eq. 4 for each vote so
that the small scale variations can be well handled.

4. EXPERIMENTS
We choose UT-Interaction dataset [7] to evaluate our al-

gorithm for the following two reasons. First, the dataset is
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Figure 4: Human activity prediction on UT-Interaction dataset. (Set 1: Left; Set 2: Right)

recorded under the realistic surveillance environment. Sec-
ond, the activities that a surveillance system is interested in
predicting such as shoplifting are usually non-periodic and
instantaneous, similar to the six activities in UT-interaction
dataset. UT-interaction dataset contains two scenes with
60 videos each. The six types of activities are: handshaking,
pushing, punching, pointing, kicking, and hugging.

The same setting as [6] (Leave-one sequence-out cross val-
idation) is used to evaluate our algorithm. Fig. 4 shows the
results compared with the other algorithms on set 1 and set
2, respectively. The following algorithms are compared: dy-
namic BoW[6], integral BoW[6], SVM based on Cuboid fea-
tures, Bayesian classifiers with Gaussian models, BP-SVM:
constructing a set of SVMs for each observation level, Vot-
ing: a basic voting-based approach that casts a probabilistic
vote for each cuboid feature. The details of these algorithms
can be referred to [6].

According to Fig. 4, we obtain on average 20% perfor-
mance gains over the state-of-the-art techniques. Remark-
ably, with only 60% observations, our algorithm achieves
over 80% accuracy on both set 1 and set 2. This demon-
strates that our algorithm is well suited for activity pre-
diction with incomplete observations. Table 1 compares
our results with the state-of-the-arts on the UT-Interaction
dataset. The results for the first five rows are slightly dif-
ferent from the results in Fig. 4 because Fig. 4 shows the
average results with 20 runs of clustering while Table 1 is
the best result among 20 runs. We can see that, in both the
case of half observations and the case of full observations,
our algorithm significantly outperforms the state-of-the-art
techniques.

Method half observation full observation
Integral BoW [6] 65% 81.7%
Dynamic BoW [6] 70% 85 %

Cuboid + Bayesian [6] 25% 71.7%
Cuboid + SVMs [7] 31.7% 85%

BP-SVM [8] - 83.3%
Pose ‘Doublet’ [12] - 79.17%

Mid-level [4] - 78.2%
Our proposed 80% 91.7%

Table 1: Comparison of classification results on UT-
Interaction.

In our experiments, the number of trees is set to 100 and
the tree depth is set to 15. The feature (STIP) extraction
code is downloaded from the author’s website [1]. Excluding
the feature extraction cost, our algorithm runs in real-time
on a normal desktop PC.

5. CONCLUSION
In this paper, we presented a simple yet surprisingly effec-

tive solution for human activity prediction problem. Spatial-
temporal implicit shape model is proposed to capture the
spatio-temporal structure of local features. Matching be-
tween the testing and training video is effectively and effi-
ciently solved with our proposed multi-class balanced ran-
dom forest, which makes a good trade-off between the dis-
criminative ability and tree balance. Besides, our MBRF
models all classes simultaneously and therefore is scalable to
multi-class prediction. Experimental results show that our
algorithm significantly outperforms the state-of-the-arts. In
the future work, we plan to handle the activity prediction
problem on unsegmented videos.
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