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Abstract

Machine learning methods for protein function prediction are urgently needed, especially

now that a substantial fraction of known sequences remains unannotated despite the exten-

sive use of functional assignments based on sequence similarity. One major bottleneck

supervised learning faces in protein function prediction is the structured, multi-label nature

of the problem, because biological roles are represented by lists of terms from hierarchically

organised controlled vocabularies such as the Gene Ontology. In this work, we build on

recent developments in the area of deep learning and investigate the usefulness of multi-

task deep neural networks (MTDNN), which consist of upstream shared layers upon which

are stacked in parallel as many independent modules (additional hidden layers with their

own output units) as the number of output GO terms (the tasks).

MTDNN learns individual tasks partially using shared representations and partially from

task-specific characteristics. When no close homologues with experimentally validated

functions can be identified, MTDNN gives more accurate predictions than baseline methods

based on annotation frequencies in public databases or homology transfers. More impor-

tantly, the results show that MTDNN binary classification accuracy is higher than alternative

machine learning-based methods that do not exploit commonalities and differences among

prediction tasks. Interestingly, compared with a single-task predictor, the performance

improvement is not linearly correlated with the number of tasks in MTDNN, but medium size

models provide more improvement in our case. One of advantages of MTDNN is that given

a set of features, there is no requirement for MTDNN to have a bootstrap feature selection

procedure as what traditional machine learning algorithms do. Overall, the results indicate

that the proposed MTDNN algorithm improves the performance of protein function predic-

tion. On the other hand, there is still large room for deep learning techniques to further

enhance prediction ability.

Background

The biological roles of the vast majority of known amino acid sequences remain partly or

completely unknown: the UniProtKB database [1] currently stores more than 60 million
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sequences, but UniProt-GOA [2] lists only about 600 thousand experimentally-supported

functional annotations in the form of Gene Ontology (GO) terms [3]. This information is far

from uniformly spread across protein sequences, so elucidating their molecular activities, their

whereabouts, their biological partners, and the environmental conditions enabling them has

been increasingly dependent on computational methods that mostly perform annotation

transfers from sequence [4]. Because naive or iterative application of these methods can gener-

ate uncontrolled error propagation in databases [5], curators nowadays rely on complement-

ing transfers from orthologous proteins and from domain family assignments with mappings

between controlled vocabularies and GO [2]. Notwithstanding, a substantial fraction of depos-

ited sequences still has no annotations at all, many more lack information for at least one GO

domain, and the hypotheses generated are often too generic to suggest a limited number of

specific validation assays.

Machine learning represents an attractive avenue to help fill in this gap, by modelling the

relationship between protein function and the features extracted from individual or multiple

biological data sources. When informative patterns can be detected, this approach can over-

come the limitations of homology-based transfers due to the lack of similar sequences with

known function, or to misleading alignment results. Many research groups have tested this

hypothesis with success by examining heterogeneous data sources such as protein sequences

[6–9], genomic information [10,11], gene expression profiles [12], and functional association

networks [13], using neural networks (NN) [14], support vector machines (SVM) [7–9] and

random forests [15].

Further efforts are going into integrative approaches, that try to leverage the strengths of

individual methods and data types and to lessen the effects of their intrinsic limitations [16–

19]. For instance, protein sequence and structure analysis can predict molecular function GO

terms much better than biological process terms; in turn, the latter are more confidently

inferred from genome-wide datasets. The evaluation results of the community-wide Critical

Assessment of Function Annotation (CAFA) experiments confirmed these observations, but

also highlighted that predicting protein function accurately still remains an open problem

[20,21].

One of the major challenges supervised learning methods face in protein function predic-

tion is the structured and multi-label nature of the problem, because the biological roles are

described by sets of terms from the hierarchically organised GO domains. Given the complex-

ity of this challenge and the tools at hand, most previous studies benefitted from handling

many more tractable binary classification tasks [7–9] - one for each GO term. So far, very few

groups have tried to build one classifier able to predict all relevant labels at once [14], but

recent developments in the field of machine learning now make this approach feasible. Deep

learning is a fast-evolving area of research, which tries to address regression or classification

problems by extracting informative internal representations of the input data (aka feature rep-

resentations) at different levels of abstraction. This is usually achieved with artificial deep neu-

ral networks (DNN), which include multiple hidden layers with hundreds of units each aimed

at capturing high-level feature representations. The concept of DNN appeared a few decades

ago, but remained impractical until Hinton and colleagues showed that layer-wise pretraining

techniques allow deep networks to learn better feature representations and leading to

improved classification performance[22]. Its growing power and popularity depend on several

theoretical and technical advances that speed up training and reduce the risk of overfitting.

Rectified activation functions force the model to learn sparse representations and ease vanish-

ing-gradient issues that typically affect networks with many layers and sigmoid activation

functions [23]. The dropout regularization technique—which consists in randomly omitting a

different subset of the model parameters during training—greatly helps perform model
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averaging and reduce the risk of overfitting to known observations [24]. Finally, batch-normal-

ization transforms each neuron input values from a randomly chosen subset of the training

data (aka mini-batch) so that their distributions do not change dramatically during training

[25]. The increasing availability of general-purpose graphical processing units (GPUs) and

application programming interfaces (APIs) have also made a substantial contribution to the

widespread application of deep learning techniques within both academia and industry.

Deep learning has been applied to a wide range of problems in sequence and -omics data

analysis, biomedical imaging and biomedical signal processing [26–29]. Multi-task deep neural

networks are a particular type of architectures which consist of initial shared layers followed

by as many independent modules (made up of individual output neurons possibly down-

stream of additional hidden layers) as the number of target labels (aka tasks). This design is

meant to exploit commonalities and differences among tasks through the combination of

shared and task-specific representations, and thus has the potential to compensate for the lim-

ited number of observations available for some tasks. This modelling approach has been previ-

ously applied to virtual screening [30], toxicity prediction [31] and prediction of protein

biophysical features including secondary structure, solvent accessibility, transmembrane seg-

ments and signal peptides [32].

In this work, we investigate the usefulness of multi-task DNN (MTDNN) to tackle protein

function prediction, an area which is expected to benefit from learning the dependencies

among functional classes. We build a two-stage MTDNN structure, in which a set of feedfor-

ward layers shared by all tasks are in the first stage and as many task-specific feedforward lay-

ers as the number of tasks are parallel stacked upon the shared layers. This structure leverages

both the shared representations of all tasks and specific characteristics of individual tasks. The

effectiveness of the proposed approach is gauged against a naive multi-label DNN (MLDNN)

—a feedforward structure with as many output units as the number of GO terms and several

shared hidden layers—as well as three baseline methods. The experimental results show that

MTDNN achieve higher F1 scores than the other methods tested; interestingly, the perfor-

mance improvement over a single-task predictor is not linearly correlated with the number of

tasks in the MTDNNmodel: medium size models with 20–50 GO terms appear to be more

effective in our case. Another advantage is that there is no requirement for MTDNN to have a

bootstrap feature selection procedure when given a set of features, in contrast to many tradi-

tional machine learning methods. This flexibility may lead to our future work to improve the

performance of protein function prediction further by connecting MTDNN with many differ-

ent biological data sources, such as graph embedding features from protein-protein interaction

networks, or gene expression data etc.

Methods

Data collection

The protein sequences and feature data, the GO term vocabulary and the functional annota-

tions used in this study are identical to those used to develop FFPred3 [9]. Annotations for

human proteins were obtained from the Gene Ontology Annotation (GOA) [2] database

released on 2015-02-02. The Gene Ontology (GO) OBO file released on 2015-02-03 was used

for term definitions and semantic relations [33]. All GO terms in the biological process (BP),

molecular function (MF) or cellular component (CC) domain with at least 150 annotations

and 500 putative negative examples were selected. The negative examples of one GO term are

the proteins that are (i) not labelled with the term under consideration, its descendants and its

ancestors; (ii) nonetheless bear at least 2 MF terms and 2 BP terms with evidence code other

than IC, NAS, TAS, and IEA. In total, 868 GO terms across the three domains were selected.
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Amino acid sequences were retrieved from UniProtKB version 2015_03 [1], and encoded

through 258 features covering 14 different functional and structural aspects, including protein

secondary structure, intrinsically disordered regions, transmembrane segments, signal pep-

tides, post-translational modification sites, coiled-coil regions, and other sequence motifs [9].

These biophysical attributes can be easily calculated or predicted from amino acid sequences

or their evolutionary profiles as reported before [8].

For benchmarking purposes, the set of human proteins that received GO term assignments

supported by evidence code EXP, IDA, IMP, IGI, IEP, TAS or IC exclusively between 2015–02

and 2017–02 was collated from GOA database. Annotations to the term “protein binding”

(GO:0005515) were discarded because they convey limited functional information. This test

set was made up of 1754 annotations for 707 proteins in total—349 MF annotations for 236

proteins, 556 BP annotations for 259 proteins, and 849 CC annotations for 492 proteins. Con-

sidering backpropagation, we have 2196 MF annotations covering 527 GO terms, 7353 BP

annotations covering 1712 GO terms, and 4906 CC annotations covering 256 GO terms.

Multi-task deep neural networks (MTDNN)

Overview. MTDNN implements a multi-task architecture, with a set of feedforward layers

shared by all tasks, upon which as many task-specific feedforward subnets as GO terms under

investigation are parallel stacked—see Fig 1(A). This layout is meant to help the network learn

individual tasks partially using a shared representation and the rest from task-specific charac-

teristics. The network architecture is implemented using Lasagne and Theano [34]; each hid-

den layer is fully connected to the previous one, has batch normalised input values and has

dropout applied in the course of training. The neurons in the hidden layers are activated by

rectified linear functions, while output units make use of softmax functions with two outputs.

The confidence score of each GO term corresponds to the value associated with the positive

class from the relevant neuron.

Branching. We experienced difficulties in training one MTDNN network for each GO

domain, because the high demands for memory exceeded the amount available on the GPUs.

Therefore, we grouped the GO terms based on the “is_a” relationships in GO, and trained one

separate model for each branch—one of the subgraphs rooted at each level-1 nodes—to predict

Fig 1. Schematic diagrams of MTDNN (a), and MLDNN (b).

https://doi.org/10.1371/journal.pone.0198216.g001
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the subset of its descendants included in our vocabulary. For example, our vocabulary lists 17

descendants of the level-1 term immune system process (GO:0002376), and the corresponding

branch has 18 tasks, inclusive of itself. This procedure led to 38 branches in total: 18 within the

biological process (BP) domain, 11 for molecular function (MF), and 9 for cellular component

(CC). The summary of all branches is provided in supplementary material S1 Table. The num-

ber of GO terms in each branch varies a lot branch by branch. The largest branch is biological

regulation (GO:0065007) with 218 output units for as many GO terms, while the smallest ones

have only 2 output nodes. Given the semantic relationships in GO, some terms were included

in different branches: cell morphogenesis involved in neuron differentiation (GO:0048667)

appears in four branches, namely cellular process (GO:0009987), single-organism process

(GO:0044699), cellular component organization or biogenesis (GO:0071840), developmental pro-

cess (GO:0032502) for example. There are 290 out of 606 GO terms in BP, 71 out of 104 GO

terms in CC, and 8 out of 158 GO terms in MF appearing in multiple branches, which generate

as many predictions. For such GO terms, MTDNN returns one combined result by calculating

the average value from the different branches.

Training and optimisation. All tasks in MTDNN were trained individually while the

shared layers were updated for all tasks. To this end, the protein sequences were initially clus-

tered at 50% sequence identity with kClust [35], and for each task the resulting clusters were

assigned to either the training or test set. Approximately 70–80% were used for training and

the remaining 20–30% for testing—making sure there are at least 35 positive test examples for

each GO term.

One of the most severe issues of protein function prediction using deep neural networks is

the imbalance training problem, i.e., the numbers of positive examples in some GO terms are

much fewer than the numbers of their negative examples. To deal with the issue, we investigated

two strategies. The first one is that we aggregated weights of classes into the loss function to

impose an additional cost on the model for making mistakes on the minority class during train-

ing. In this strategy, each batch composes of examples randomly sampled from the training set.

The second strategy is that we oversampled the minority class, kept each batch with balanced

positive and negative examples during the training, and in the prediction phase, penalized the

minority class with a weight. The weight is defined as the ratio of the number of negatives to the

number of positives in the training set. To determine the best strategy to deal with imbalanced

training sets, we did a quick experiment only on MF terms because MF has a relatively small

group of GO terms. The Fmax performance of the strategy one is 0.244 and its F1 score at a

threshold equal to 0.5 is 0.219, while the second strategy has obtained the Fmax score 0.311 and

0.292 for its F1 score at threshold equal to 0.5. The results indicate that the strategy using bal-

anced batch training and penalized inferring produced better results. Therefore, the results

reported in the Results section were obtained using the balanced training strategy.

The training procedure consisted of 100 epochs and was divided into two stages: during the

first 50 epochs both the shared and the specific layers were updated, while only the specific lay-

ers were modified during the last 50 epochs. This measure was aimed at reducing the degrees

of freedom when task-specific layers were trained and at exploiting general feature representa-

tions of biological function to learn finer details. During each epoch, the GO terms were

trained consecutively, and their order was randomly shuffled every time to minimise the risk

of biasing the shared parameters towards more recently observed training examples.

Each MTDNN branch was independently optimised by searching a set of hyperparameters,

including the number of shared layers, the number of hidden units in each shared layer, the

number of specific layers, the number of hidden units in each shared layer, dropout rate, and

learning rate—see supplementary material S2 Table for more details. We employed the

HYPEROPT package [36] to search the hyperparameter space randomly in 100 trials. The final
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models are taken from the parameters that maximize the average F1 score with threshold equal

to 0.5 on the holdout test set.

Multi-label deep neural networks (MLDNN)

MLDNN implements a straightforward solution to multi-label problems and consists of a feed-

forward multi-layer architecture with 258 input nodes (one for each sequence-derived feature),

followed by several fully connected layers that are shared by one output layer—see Fig 1(B).

Each hidden layer has batch-normalized inputs combined through rectified linear units and is

subject to dropout during training. The output layer is fully connected to the previous one,

and consists of as many output neurons as the GO terms in the selected vocabulary activated

by sigmoid functions, the output of which is returned as a confidence score.

To train theMLDNNmethod, the protein sequences were first clustered at 50% sequence

identity with kClust [35], and for each GO domain such clusters were assigned to the training or

test set. Approximately 80% of the data were used for training and the remaining 20% for testing.

To optimise the MLDNNmethod, the set of hyperparameters in supplementary material S3

Table was randomly sampled 100 times with the HYPEROPT package. For each trial, 100

epochs of training were carried out. The final models are taken from the parameters that maxi-

mize the average F1 score with threshold equal to 0.5 on the holdout test set.

Single-task deep neural networks (STDNN)

STDNN is a traditional divide-and-conquer solution of the multi-label learning problem,

which employs a single fully connected feedforward deep neural network for an individual GO

term, therefore, there are totally 868 binary DNNs optimised and trained independently. Like

multi-task and multi-label implementations, the protein sequences were initially clustered at

50% sequence identity with kClust [35], and for each task the resulting clusters were assigned

to either the training or test set. Approximately 70–80% were used for training and the remain-

ing 20–30% for testing–depending on the number of positive annotations in each GO term

and making sure there are at least 35 positive test examples for each GO term.

To optimise the STDNN, the set of hyperparameters in S3 Table was randomly sampled

100 times with the HYPEROPT package. For each trial, 100 epochs of training were carried

out. The final models are taken from the parameters that maximize the average F1 score with

threshold equal to 0.5 on the holdout test set.

Baseline methods

FFPred3 [9] was used to predict GO terms for the sequences in the benchmark set starting

from the same 258 input features fed to both the MTDNN and MLDNN. Unlike the multi-task

and multi-label deep learning approaches, however, FFPred3 examines the input values

through a library of 868 Support Vector Machines independently trained to classify as many

functional categories.

Naive predictions were generated based on the frequency of the GO term annotations for

human sequences in UniProt-GOA released on 2015-02-02. The initial counts were obtained

for all GO terms supported by the evidence codes EXP, IDA, IPI, IMP, IGI, IEP, IC and TAS.

The data were then propagated following “is a” links in the GO released on 2015-02-03, and

scaled between 0 and 1 for each domain separately, by dividing the final counts by the number

of occurrences of the root node.

BLAST predictions were obtained by collecting all BLAST hits in the UniRef90 sequence

database released on 2015–02 with an E-value greater than 1e-03. Then the annotations in

UniProtKB released on 2015-02-03 supported by evidence codes EXP, IDA, IPI, IMP, IGI,

Predicting human protein function with MTDNN
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IEP, IC and TAS were transferred to the target sequences. The confidence scores of GO terms

were calculated by dividing the local alignment sequence identity by 100. When multiple

BLAST hits were annotated with the same GO term, the highest score was retained.

Performance evaluation

Prediction accuracy was measured by protein-centric precision-recall analysis separately for

each GO domain. For each protein x in the benchmark set and decision threshold t, the set of

predicted GO terms Gx,t was built by collecting all terms with confidence scores greater than

or equal to t, and their ancestors in GO linked by “is_a” relationships and different from the

root. The precision px,t and recall rx,t can be respectively written as

px;t ¼
TPx;t

TPx;t þ FPx:t

ð1Þ

rx;t ¼
TPx;t

TPx;t þ FNx:t

ð2Þ

where TPx,t is the number of true positives, FPx,t is the number of false positives, and FNx,t is

the number of false negatives for the benchmark protein x at threshold t. Then the average

across the test set are taken as

pt ¼
1

nt

P
xpx;t ð3Þ

rt ¼
1

n
0

P
xrx;t ð4Þ

where nt is the number of target proteins with at least one prediction scoring above threshold

t, and n0 is the number of target proteins in the GO domain in the benchmark set. Therefore,

the average F1 for the threshold t and Fmax were calculated as

F
1
tð Þ ¼ 2 �

ptrt
ptþrt

ð5Þ

F
max

¼ maxt F1
ðtÞ ð6Þ

We also employed term-centric evaluation to measure F1 scores for individual GO terms

covered by the benchmark set.

Results and discussions

We are interested in knowing whether, how and why multitask deep neural networks improve

the performance of protein function prediction. In this section, we will show both holdout and

benchmark evaluation results of our optimised MTDNNmodels, and discuss the lesson we

learned from our experiments.

Optimised models

As detailed in Methods section, the hyperparameter optimisation procedure was carried out

by using the Python HYPEROPT package, which randomly samples from pre-defined hyper-

parameter space. Each branch has a set of optimised hyperparameters including the network

architectures like the depths of shared layers and specific layers, the numbers of hidden units
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in each layer etc., and the other non-architecture hyperparameters like the learning rates and

regularisation options. The question that interests us most is what network architecture each

branch chose in the optimisation procedure. We show the depths of both the shared layers and

the specific layers for all branches of three domains as stacked bar charts in Fig 2. The branches

are presented in a descending order from the top to the bottom. The red number on the right-

hand side of each bar is the number of GO terms in the branch. We notice that the larger

branch tends to choose deeper models in general, however, we are unable to observe any corre-

lation between the depths and the branch sizes.

We also show the summary of the numbers of hidden units in each layer of all optimised

models as pie charts in Fig 3. Less than half branches chose three shared layers and 5%models

have only one shared hidden layer. 47% of the models chose 800 hidden units in their first

shared layer and 79% chose 500 hidden units in their second shared layer. 79% of the models

chose 500 hidden units in their first specific layers and the same percentage of models chose

300 hidden units in their second specific layers. This result tells us that larger and deeper mod-

els are favourable in many branches according to our experiments.

Holdout set evaluation

We only compare the performance of MTDNN with FFPred rather than MLDNN in the hold-

out evaluation as a consequence of the different architectures of the two predictors. MLDNN

Fig 2. The numbers of layers of the optimisedMTDNNmodels in BP, MF and CC domains. The red numbers on the right-hand side of bars represent
the numbers of GO terms in individual branches.

https://doi.org/10.1371/journal.pone.0198216.g002
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is made up of one shared multi-layer feedforward neural network followed by an output layer

with N outputs, where N is the number of GO terms considered. In this case each protein and

its known annotations can only be used once, and the make-up of the training, validation and

holdout sets depends only on the sequence clustering results. MTDNN includes shared

upstream layers to learn general latent representations of the data, while different classification

patterns are modelled through the downstream GO term-specific layers. In this case, different

GO terms will have different training, validation and holdout sets because of the different pro-

tein sets they annotate. We evaluated term-centric F1 scores for both MTDNN and FFPred

and considered the average F1 score differences between MTDNN and FFPred. In particular,

we define term-centric F1 score the difference as:

DF
1
¼ FMTDNN

1
� FFFPred

1

In Fig 4, we show the average F1 score differences for two groups of GO terms–all terms in

our vocabulary and specific terms—in BP, MF, and CC domains. The definition of specific

terms in our case are those terms in our vocabulary which either have not child term at all or

have children terms but they are not in our vocabulary. There are mainly two observations

from this figure: firstly, generally speaking, MTDNN has better performance than FFPred,

especially a considerable improvement in BP; secondly, though MTDNN overall improves the

performance, specific terms improved less than general terms.

Fig 3. The summary of the numbers of hidden units in individual shared and specific layers of the optimisedMTDNNmodels in pie charts. The upper row
presents the choices of numbers of hidden units in the three shared layers; the lower row presents the choices of numbers of hidden units in the two specific layers. The
colours represent numbers of hidden units which are shown around the Pie Charts.

https://doi.org/10.1371/journal.pone.0198216.g003
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Another question we should like to address is whether larger branches improve more than

smaller branches, i.e. a model with more tasks gains more improvement from using MTDNN

than a model with fewer tasks. This would be expected if MTDNN can effectively exploit both

the shared and task-specific representations that are learnt from the different training sets. To

address this question, we show the average F1 score differences for individual branches in Fig

5. The branches are ordered ascendingly from the left to the right in terms of their sizes and

the red numbers on the top of bars are the numbers of GO terms in individual branches. In

general, on one hand, small branches perform poorly, on the other hand, it does not seem to

be true that the larger the branch is, the better it performs. There is no clear pattern that the

performance improvement correlates with the size of the branch overall. In BP, there indeed is

a weak pattern that branches with larger size tend to perform better, but there is no such pat-

tern in MF and CC. The Spearman’s rank correlation coefficients between the branch size and

performance improvement for three GO domains are shown in supplementary material S4

Table. We believe that it is a complex question combining other factors like the numbers of

positive and negative examples in each GO term of each branch. The performance measures of

all branches for the holdout set evaluation are shown in S5 Table.

Fig 4. Average F1 score differences between MTDNN and FFPred in BP, MF and CC domains. The red bars represent the performance of all GO terms in our
vocabulary and the blue bars represent the performance of specific terms.

https://doi.org/10.1371/journal.pone.0198216.g004
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Benchmark set evaluation

Here, one important question we need to address is, whether the MTDNNmethod is better

than other methods in the benchmark set. To answer this question, we firstly evaluated the

Fmax performance of all compared methods following the practice in CAFA [20,21]. We report

the results of five methods at the decision thresholds that maximize the F1 scores for each GO

domain using the benchmark set in Table 1. The BLAST and naive methods are the two pro-

viding the worst Fmax performance. Note that naive method has a good Fmax performance in

CC only because of the fact that the majority of proteins locate in the cytoplasm is biased

towards the naive frequency counting method. More interestingly, the results indicate that the

Fmax performance of MTDNN is better than the other methods in BP and CC, but worse than

Fig 5. Average F1 score difference betweenMTDNN and FFPred for all branches in BP, MF and CC domains. The red numbers on the top of bars
represent the numbers of GO terms in individual branches.

https://doi.org/10.1371/journal.pone.0198216.g005
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FFPred, MLDNN and STDNN in MF. We notice that the thresholds at which other methods

produce the Fmax scores are farther away from 0.5 than MTDNN. Although Fmax is commonly

used to evaluate classification algorithms, it arguably is a paradox because in the reality the

threshold to produce the maximum F1 score would never be known without knowing true

labels of all predictions.

A more realistic evaluation is based on standard measure of binary classification accuracy–

i.e. interpreting the scores as probability estimates and therefore setting the decision threshold

equal to 0.5. The results under these evaluation settings in Table 2. Three metrics, namely the

average precision, average recall, and average F1 scores are presented for the three GO do-

mains. In terms of the F1 score, the best performing method out of five methods is MTDNN.

Its F1 scores are better than other methods across all three domains. The results reveal that

naive method and BLAST are still the two poorest methods. The results also show that FFPred

and STDNN have the highest recall scores in all three domains, but with lower precision

scores; on the contrary, MLDNN offers higher precision scores, but lower recall scores, in

turn, lower F1 scores. This observation reveals that FFPred and STDNNmade more predic-

tions which on the one hand increases true positives, but on the other hand also increases

false positives; while MLDNNmakes fewer mistakes by reducing the number of predictions.

MTDNN provides a balance between precision and recall keeping higher F1 in all three do-

mains, i.e. MTDNN is able to reach a trade-off between predicting accurately and making

more predictions.

Next, we used the benchmark annotations to assess the difference in prediction accuracy

between MTDNN and FFPred, grouped the GO terms according to the size of the MTDNN

branches in which they locate, and calculated the mean value of ΔF1 of GO terms in each

branch. A graphical summary of this analysis is in Fig 6. Like the observations in holdout set

evaluation, the performance improvement is not always linearly correlated with the number of

Table 1. Fmax performance comparison betweenMTDNN and other prediction methods. For the five methods, the table reports Fmax and the threshold values that pro-
duce the Fmax in three GO domains, namely BP, MF, and CC. The best Fmax scores in respective domains are marked in bold font.

Methods BP MF CC

Threshold Fmax Threshold Fmax Threshold Fmax

MTDNN 0.52 0.298 0.58 0.311 0.54 0.484

MLDNN 0.26 0.287 0.30 0.343 0.23 0.449

STDNN 0.99 0.288 0.99 0.338 0.95 0.396

FFPred 0.80 0.293 0.85 0.355 0.86 0.477

BLAST 0.25 0.106 0.22 0.126 0.21 0.212

Naive 0.14 0.252 0.23 0.266 0.45 0.474

https://doi.org/10.1371/journal.pone.0198216.t001

Table 2. Performance comparison at threshold equal to 0.5 between MTDNN and other prediction methods. This table reports average F1, Precision, Recall scores of
five methods in three GO domains, namely BP, MF, and CC, with the threshold equal to 0.5. MLDNN� is the performance obtained at the thresholds that maximise the F1
scores for individual GO terms in the training set. The best F1 scores in respective domains are marked in bold font.

Methods BP MF CC

Precision Recall F1 Precision Recall F1 Precision Recall F1

MTDNN 0.282 0.312 0.296 0.283 0.303 0.292 0.389 0.626 0.48

MLDNN 0.353 0.103 0.160 0.335 0.170 0.267 0.402 0.308 0.349

STDNN 0.070 0.676 0.127 0.112 0.606 0.189 0.168 0.858 0.281

FFPred 0.161 0.492 0.242 0.141 0.558 0.225 0.248 0.820 0.380

BLAST 0.129 0.019 0.033 0.447 0.035 0.066 0.423 0.027 0.051

Naive 0.539 0.024 0.046 0.318 0.117 0.171 0.446 0.407 0.425

https://doi.org/10.1371/journal.pone.0198216.t002
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tasks. Arguably, selecting the best choice of the size of the model is a data-dependent question

and is not trivial. In our case, the range between 20 and 50 tasks in one model provides more

improvement. However, breaking larger branches into smaller branches with 20–50 tasks,

which sounds like a sensible solution, comes at the cost of reduced training sets, thus limiting

the viability of deep learning approaches. Future work will research the best way into to

develop a model using an expanded vocabulary and new datasets for our web service in the

future. Additionally, all correctly predicted proteins in Benchmark set evaluation are listed in

S6 Table.

Conclusions

In this paper, we developed a multi-task deep neural network (MTDNN) architecture to tackle

the multi-label problem in protein function prediction. MTDNN is able to learn both a shared

feature representation from all GO terms and specific feature characteristics from individual

specific terms by employing two stacked multi-layer structures, one shared by all tasks and

another one specific to each task on top of the shared one. Importantly, it is no requirement

for MTDNN to proceed a bootstrap feature selection as what many traditional machine learn-

ing algorithms usually do. We compared MTDNN with five baseline methods, namely naive

method, BLAST, FFPred, STDNN, and naive MLDNN. We then evaluated the accuracy of the

proposed MTDNN using both holdout set and benchmark set. The benchmark set is a set of

human proteins that had no experimentally verified annotations at that time, but received

some in the following 24 months. The results show that impressively MTDNN offers consider-

ably better performance in holdout set evaluation, and also considerably better performance

on the benchmark set at the decision threshold equal to 0.5 by balancing precision and recall,

Fig 6. The scatter plot of mean values of δF1 against the number of GO terms in a branch.

https://doi.org/10.1371/journal.pone.0198216.g006
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which makes MTDNNmore favourable in practical use than the other methods tested.

Another interesting result is that the performance improvement of MTDNN over the single-

task predictor is not always linearly correlated with the number of tasks in the model. In our

case, medium size models provided more improvement. Encouraged by the success in the cur-

rent study, which suggests that MTDNN is a better solution to tackle the multi-label problem,

we intend to improve the performance of predicting protein functions further by connecting

MTDNN with various heterogeneous data sources, such as graph embedding features from

protein-protein interaction networks, or gene expression data.

Software availability

All data and codes are available from http://bioinf.cs.ucl.ac.uk/downloads/mtdnn.
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