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Abstract

One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell.
Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the
intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been
extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as
well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an
infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein,
not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method
requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally
annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be
used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate,
which is higher than the state-of-the-art methods.
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Introduction

A cell is deemed to be the most basic construction unit of every

living creature on this planet. Every living cell is composed of even

more basic components, which are known as the subcellular

compartments or subcellular organelles [1]. In general, there are

two types of subcellular organelles, the membrane bounded

subcellular compartments and the non-membrane bounded

subcellular structures. The membrane bounded subcellular

compartments can be roughly considered as isolated spaces

surrounded by bio-membranes. For example, the mitochondria,

the cell nucleus and the chloroplasts in green plants are all

membrane bounded subcellular organelles. Some other subcellular

structures, such as the ribosomes, the cytoskeleton and the

centriole, which are non-membrane bounded, may also be

recognized as subcellular organelles [2]. All these subcellular

structures form a large dynamic system within a cell. The proteins

and other macromolecules are synthesized, transferred and

activated for their function within this system [3].

Changes in protein location are associated with a host of genetic

disorders [4]. For example, the STAT3 (Signal Transducer and

Activator of Transcription 3) should be directed to the nucleus in

normal cells, while inappropriate nuclear relocation of STAT3

promotes oncogenesis through abnormal cell cycle progression,

angiogenesis, and invasion of tissue [5]. Another example was in

Zellweger syndrome. The mis-location of some peroxisomal

proteins leads to dysfunctional fatty acid oxidation [6]. A third

example was in glioma. A recent study showed that the GFRA4

(GDNF Family Receptor Alpha 4) are mis-located in the glioma.

The artificial redirection of GFRA4 to the correct target results in

a dramatic decrease in proliferation of glioma cells [7]. Therefore,

the knowledge of accurate protein subcellular locations is of

fundamental importance to both the life science and the drug

industry.

There are several experimental methods that can determine the

protein subcellular locations. For example, in yeast, the subcellular

location of proteins can be visualized systematically by fusion of

each ORF (Open Reading Frame) to the gene encoding GFP

(Green Fluorescent Protein), either through transposon mutagen-

esis or PCR (Polymerase Chain Reaction) tagging [8,9]. This

technology requires the analysis of images, where a fully

automated procedure is still not readily available [10]. Moreover,

this technology is hardly feasible in humans and other mammals.

In these organisms, immunolabeling and cell fractionation

followed by tandem mass spectrometry were commonly applied

[11,12].

Unfortunately, all these experiments are costly and time

consuming [13]. With the progress of proteome projects of many

organisms, the number of known protein sequences has increased

exponentially in the last two decades [14]. Experimental

annotation of protein subcellular locations is too slow to catch

up with the increment of protein sequences. A huge information
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gap between the protein sequences and their annotations has been

created. Moreover, this gap is becoming wider with each passing

day. To bridge this gap, many computational methods have been

developed in the past few years to predict the protein subcellular

locations from the primary sequences. These sequence-based

methods generally fall into two categories: the signaling peptides

based methods and the pseudo-amino acid composition based

methods.

According to the cell biology, the proteins are usually

synthesized in the cytosol and are transported to other subcellular

compartments either during or after the translation [15]. The

targets of the transportation are determined by the signaling

peptides, which are short peptides that mostly reside in the N-

terminus of protein sequences [15]. In some cases, these signals

can also reside in the other parts of protein sequences. For

example, the PTS1 (Peroxisomal Targeting Signal 1) peptides,

which direct proteins to peroxisome, reside in the C-terminus of

protein sequences [16]. If the signaling peptides can be found in

the protein sequences, they can be used to predict their subcellular

locations. Many impressive achievements have been made by

finding the signaling peptide on the protein sequences [17–21].

However, due to the limitation of protein sequencing technol-

ogy, the accuracy of the N-terminus of a protein sequence is not

ideal, which restricted the application of signaling peptides based

methods [22]. On the other hand, the subcellular location of a

protein actually provides a micro physicochemical environment

that should be compatible with the average physicochemical

properties of a proteins surface [23], which was found to be related

to the amino acid composition of a protein sequence [24].

Therefore, a large number of efforts have been made to predict the

protein subcellular locations by using the pseudo-amino acid

composition, which can be recognized as a universal numerical

representation of the entire protein sequence [25,26]. Several

recent reviews have summarized the representative studies of this

kind [27–29].

Rather than the above two sequence-based categories of

methods, a number of sequence-based meta-predictors have been

developed in the last few years. These works focused on developing

voting schemes to combine the results of existing sequence-based

predictors. Liu et al. proposed a weighted and adaptive voting

scheme to integrate the prediction results of twelve independent

predictors [30]. Laurila and Vihinen proposed the PROLocalizer

method to combine over a dozen predictors based on signaling

peptides analysis [31]. Park et al. developed an LDA (Linear

Discriminative Analysis) based voting scheme to combine thirteen

predictors [32]. Lin et al. proposed a minimalist ensemble

algorithm that combined four predictors [33]. Magnus et al.

proposed a voting scheme to combine four predictors for

predicting protein subcellular locations in gram-negative bacteria

[34]. By making use of the prediction results of existing predictors,

these methods are different to the traditional ensemble classifiers,

which create every module classifier in the ensemble [35–39].

From the system biology point of view, the proteins within a cell

do not work independently. They interact with different proteins

under different conditions. Because the physical interactions

between a couple of proteins actually implied that the physical

distance between interacting proteins is very close, the interacting

proteins tend to localize within the same subcellular compartments

[40,41]. Furthermore, some proteins that lack of proper signaling

peptides may be directed to its destination by a piggy-back

mechanism, in which the signaling peptide is contained by the

interacting partners of the protein instead of the protein itself

[42,43]. These facts implied that the protein-protein interaction

information should be useful in predicting protein subcellular

locations.

Several methods have been developed based on the protein-

protein interactions in predicting protein subcellular locations.

Scott et al. integrated protein-protein interaction as a module in

their PSLT2 method to analyze the subcellular location in

proteome-wide in yeast [44]. Lee et al. hybridized a group of

network based features with pseudo-amino acid compositions in

predicting protein subcellular locations [45]. Shin et al. developed

a method to predict the protein subcellular locations from its

interacting partners [46]. Mintz-Oron et al. used metabolic

networks for enzyme localization prediction using constraint-

based models [47]. Kumar and Ranganathan used statistical tests

to analyze whether the interacting proteins would co-localize in

both protein-protein interaction network and the metabolite-

linked protein interaction network [48]. Jiang and Wu compared

the performances of several different methods using protein-

protein interaction networks and developed an ensemble classifier

that can better identify subcellular locations on yeast protein-

protein interaction network [49]. Mondal and Hu proposed the

NetLoc method that can predict protein subcellular locations using

four different types of protein networks [50]. In [45,49], statistical

inference based methods were employed to define a parameter for

every interaction.

For almost all the existing methods, the protein-protein

interaction network was used either as an independent predictor

[44–46] or as a module classifier, whose results were further

utilized in an ensemble [33]. Most of the existing studies require a

complete and accurate protein-protein interaction network as the

foundation of their method, and the experimental subcellular

location annotations of most proteins in the protein-protein

interaction network were usually required to improve the

prediction performance.

In this paper, we propose to use the protein-protein interaction

network as an infrastructure to integrate other sequence based

predictors. The results of sequence-based predictors were com-

bined on the protein-protein interaction network. When predicting

the subcellular locations of a given protein, not only the protein

itself, but also all its interacting partners were considered. These

interacting partners were not treated equally, as a weight

parameter was given to every interaction between the given

protein and each partner. Unlike existing methods, our method

does not require the comprehensive knowledge of the protein-

protein interaction network. Moreover, given a protein, our

method does not require the experimentally annotated subcellular

locations of all its neighbors to predict its subcellular locations.

These characteristics of our method makes it possible to work

on an incomplete and inaccurate protein-protein interaction

network with only limited number of proteins annotated with

subcellular locations. Besides, our method can be used as a

framework to integrate multiple predictors. We demonstrate that,

in human proteome, even with only one sequence based predictor,

our method can improve its prediction performance with the help

of protein-protein interaction data. Therefore, we can expect that

our method can improve the prediction performance of most

existing sequence-based predictors.

Materials and Methods

1 Protein-protein interactions dataset
The protein-protein interaction data were retrieved from

BioGRID database version 3.2.96. The following filtering steps

were carried out. (1) Only interactions between two human

proteins were kept. (2) The interactions between two identical

Predicting Protein Subcellular Locations with PPI
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proteins were removed. (3) If some interactions appeared more

than once in the dataset, only one interaction was kept. (4) The

non-physical interactions were removed. After these filtering steps,

there were 96967 interactions covering 13942 proteins remaining

in the dataset. The dataset of this study can be obtained from the

authors by email.

2 Experimental subcellular location annotations
The 13942 proteins were mapped to the UniProt database

version 2013_07. These proteins in the protein-protein interaction

network can be mapped to 18036 proteins in the UniProt

database. The subcellular location annotations of these 18036

proteins were collected. If an annotation was marked as

‘‘Probable’’, ‘‘By Similarity’’ or ‘‘Potential’’, this annotation was

discarded. The remaining subcellular location annotations were

mapped to 11 different terms, including ‘‘Cell membrane’’,

‘‘Cytoplasm’’, ‘‘ER’’, ‘‘Extracell’’, ‘‘Golgi’’, ‘‘Mitochondrion’’,

‘‘Nucleus’’, ‘‘Peroxisome’’, ‘‘Lysosome’’, ‘‘Endosome’’ and ‘‘Mi-

crosome’’. The mapping was carried out following the keyword

searching strategy as the state-of-the-art studies [51,52]. Any

subcellular location annotations that cannot be mapped to these

terms were discarded.

To avoid ambiguous descriptions, we termed the 13942 proteins

as the ‘‘BioGRID proteins’’ and the 18036 proteins as the

‘‘UniProt proteins’’. If a BioGRID protein can be mapped to one

or more than one UniProt proteins, the subcellular location of this

BioGRID protein is the collection of all subcellular locations of all

mapped UniProt proteins. Otherwise, the subcellular location of

this BioGRID protein is ‘‘Unknown’’. There were 6951 BioGRID

proteins that can be annotated from the above procedure. Among

6951 proteins, there were 4879 proteins with only one subcellular

location, 1709 proteins with two locations, 286 proteins with three

locations, 50 proteins with four locations, 24 proteins with five

locations and 3 proteins with six locations. According to the

locative protein concept [52], this created 9493 locative proteins.

The average multiplicity degree of the dataset was 1.37 [53]. The

breakdown of the dataset in both the subcellular location

multiplicity and the subcellular locations types can be found in

Figure 1. According to these data, only about half proteins in the

protein-protein interaction network have experimentally annotat-

ed subcellular locations. We used the results of sequence based

predictors as the complementary and enhancements to the

experimental annotations.

3 Sequence based subcellular location predictions
There are a number of existing methods that can predict protein

subcellular locations based on primary sequences. We find that the

Hum-mPLoc 2.0 [36] and Y-Loc [54] predictors provided the

most convenient and reliable services that are suitable for our

work. Therefore, two sequence based predictors were integrated in

this work, Hum-mPLoc 2.0 [36] and Y-Loc [54]. According to Lin

et al. [33], the integrated predictors should cover as many types of

features as possible to improve the prediction performance in a

meta-predictor [33]. These two predictors covered the pseudo-

amino acid compositions, gene ontology annotations, evolutionary

features and the signaling peptides features. Both predictors

provided prediction results on the UniProt proteins, regardless to

whether they have been experimentally annotated in the database.

The subcellular location predictions of the BioGRID proteins were

generated based on the results of these two predictors, respectively,

as if they provided experimental annotations. If a predictor did not

provide any prediction result for a protein, the result of this protein

was recorded as ‘‘Unknown’’. As the subcellular location terms in

the two predictors are not identical to the 11 subcellular locations

in this study, their location terms were mapped to the 11

subcellular location terms according to the biological definitions

and the UniProt-GOA mapping [55].

4 Edge clustering coefficients
As indicated by existing studies, the reason why physical

protein-protein interactions can be used to predict protein

subcellular locations is that the physical locations of two

interacting proteins are very close, which make them tend to

localize within the same subcellular organelle [45,46]. However,

given two interacting proteins, it is difficult to infer that whether

two proteins would have common subcellular locations directly

from the protein-protein interaction network without knowing the

subcellular locations of either protein. Fortunately, we find that

ECC (Edge Clustering Coefficient) can be used as an indicator of

whether two interacting proteins tend to have common subcellular

locations.

ECC, which was originally proposed in the analysis of social

networks [56], was employed in this study as an indicator of

whether two interacting proteins tend to have common subcellular

locations. According to Wang et al. [57], ECC can be used to

describe the importance of an protein-protein interaction, as well

as how close two interacting proteins are [57]. It had achieved

many success in identifying essential proteins and protein

complexes [57–59]. The definition of ECC can be described as

follows.

For an interaction between two proteins pi and pj, the ECC of

this interaction can be defined as follows:

ECC(pi,pj)~
zi,j

min(di{1,dj{1)
, ð1Þ

where zi,j is the number of triangles that actually involve the edge

connecting pi and pj in the network, di and dj the degrees of protein

pi and pj in the network, respectively. The denominator means the

number of triangles in which the edge connecting pi and pj may

possibly participate at most.

5 Network based meta-predictor
Before we describe our network based method, we define some

notations as follows. Let G = (V, E) be a PPI network, where V is

the set of n vertices and E is the set of edges. Each vertex represents

a protein (i.e. V = {p1, p2, …, pn}) and an edge Ei,j indicates that

protein pi and protein pj has a physical interaction.

For every protein piMV (i = 1, 2, …, n), there are m possible

subcellular locations (i.e. L = {l1, l2, …, lm}). In the current study,

m = 11. Every protein can have one or more subcellular locations.

The set of experimentally determined subcellular location of pi was

denoted as SCL(pi). The set of Hum-mPLoc 2.0 predicted

subcellular locations of pi was denoted as MP(pi). The set of

Y-Loc predicted subcellular locations of pi was denoted as YC(pi).

They are all subsets of L (i.e. SCL(pi) # L, MP(pi) # L and YC(pi) #
L). If the experimental subcellular location does not exists,

SCL(pi) = . If the Hum-mPLoc 2.0 or Y-Loc cannot provide

subcellular locations for protein pi, MP(pi) = or YC(pi) = .

We defined the set of proteins with subcellular location lk (k = 1,

2, …, m) in experimental annotations (Sk(SCL)), Hum-mPLoc 2.0

predictions (Sk(MP)) or Y-Loc predictions Sk(YC) as:

Sk srcð Þ~ p[V jlk[src pð Þf g, 1ƒkƒmð Þ , ð2Þ

where src M {SCL, MP, YC}.

Predicting Protein Subcellular Locations with PPI
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Figure 1. The summary of dataset. (A) The number of locative proteins in different subcellular locations. There are 6951 proteins with
experimentally annotated subcellular locations in the dataset. Because one protein may have more than one subcellular location, the number of
locative proteins is 9493. (B) The number of proteins with different number of subcellular locations.
doi:10.1371/journal.pone.0086879.g001
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With all the above definitions, we now describe the network

based method for predicting protein subcellular locations. Given a

protein, its subcellular locations will be predicted based on the

experimental and predicted subcellular locations of its interacting

partners as well as the interactions between them. The sequence-

based predictors can also provide predictions directly to the given

protein. Our method considered all the above information to

make the final predictions.

For every protein puMV, which has no experimental subcellular

locations, we use the following steps to predict its subcellular

locations.

Step 1: we find its neighbors in the PPI network. The set of the

neighbors was denoted as NE(pu). We calculate the probability that

observing any member of Sk(src) in NE(pu) as follows:

psrc(lkjpu)~
psrc(pujlk)psrc(lk)Pm

k~1

psrc(pujlk)psrc(lk)

, ð3Þ

where

psrc(lk)~
jSk(src)jPm

k~1

jSk(src)j
, ð4Þ

psrc(pujlk)~
jSk(src)\NE(pu)j

jSk(src)j , ð5Þ

src M {SCL, MP, YC}, and |.| the cardinal of a set.

Step 2: the membership degree of a protein pu to a subcellular

locations lk can be computed as

msrc pu,lkð Þ~

psrc lkjpuð Þ
psrc lkð Þ

X
pv[NE puð Þ\Sk srcð Þ

1

src pvð Þj jECCN pu,pvð Þ

2
4

3
5 ,

ð6Þ

where

ECCN (pu,pv)~
exp(ECC(pu,pv))P

pw[NE(pu)

exp(ECC(pu,pw))
, ð7Þ

exp(.) the exponential function, and src M {SCL, MP, YC}. Here

ECCN(pu, pv) ? ECCN(pv, pu), as we found that ECCN(pu, pv) can

achieve better performance than ECC(pu, pv).

Step 3: for every src M {SCL, MP, YC}, a set of subcellular

locations can be predicted for protein pu, as follows:

NETsrc puð Þ~ lk[Ljmsrc pu,lkð Þ§uppersrc puð Þ{f

C uppersrc puð Þ{lowersrc puð Þ½ �g ,
ð8Þ

where

uppersrc(pu)~maxk½msrc(pu,lk)�
lowersrc(pu)~mink½msrc(pu,lk)�

�
, ð9Þ

NETsrc(pu) the set of predicted subcellular locations and C a

parameter between 0 and 1.

In addition, if the following condition cannot be satisfied, we

forced that NETsrc(pu) = .

X
pv[NE(pu)

jsrc(pv)j§hsrc , ð10Þ

where hsrc is an integral parameter for every srcM{SCL, MP, YC}.

Step 4: the previous step provided three predictions: NETSCL(pu),

NETMP(pu) and NETYC(pu). The sequence based predictors can also

provide direct predictions on pu, as MP(pu) and YC(pu). We defined

the following three sets SEQ(pu), NETSEQ(pu) and NET(pu):

SEQ puð Þ~MP puð Þ|YC puð Þ ð11Þ

NETSEQ puð Þ~NETMP puð Þ|NETYC puð Þ ð12Þ

NET puð Þ~NETSCL puð Þ|NETSEQ puð Þ ð13Þ

The meaning of these definitions can be explained as follows. The

SEQ(pu) is the prediction results from sequence information

directly. The NETSEQ(pu) is the prediction results from network

information with only the predicted subcellular location of the

neighborhood proteins. The NET(pu) is also the prediction results

from network but with both the predicted subcellular locations and

the experimental subcellular locations of the neighborhood

proteins.

For every lkML, lk belongs to the final predictions if and only if it

satisfy either of the following two conditions: (1) lkMNET(pu)>
SEQ(pu); (2) msrc(pu, lk) = uppersrc(pu, lk) for all srcM {SCL, MP, YC}.

This can be represented as follows:

PRED puð Þ~NET puð Þ\SEQ puð Þ|

\
src[ SCL,MP,YCf g

lk[Ljmsrc pu,lkð Þ~uppersrc puð Þf g

8<
:

9=
; ,

ð14Þ

where PRED(pu) is the final prediction results. When PRED(pu) =

, we used MP(pu) as PRED(pu), as Hum-mPLoc 2.0 performs

better than Y-Loc.

6 Parameter calibrations
In eqn (8) and eqn (10), there are several parameters. We used a

grid search method to find the best combination of these

parameters. The parameter C in eqn (8) was searched from 0.5

to 0.95 with step 0.05. The parameter hSCL was searched from 1 to

20 with step 1. The parameter hMP and hYC was searched from 10

to 100 with step 10. Altogether 2000 trials were carried out. We

finally achieved an optimized combination when C = 0.75,

hSCL = 1 and hMP = hYC = 60.

7 Performance evaluations
Jackknife test has been widely used by many investigators to

examine the quality of various predictors, as summarized in a

recent review [27]. In this study, we also used jackknife test to

evaluate the performance of our method. Because every protein

may have one or more subcellular locations, using the traditional

performance measures is difficult [53]. To measure the perfor-

mance of a multi-label predictor, a set of statistical measures was

established [53,60,61]. These statistical measures include aiming

(AIM), coverage (CVR), accuracy (ACC), absolute-true rate (ATR)

Predicting Protein Subcellular Locations with PPI
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and absolute-false rate (AFR). They can be formulated as follows:

AIM~
1

n

Xn

u~1

jPRED(pu)\SCL(pu)j
jPRED(pu)j , ð15Þ

CVR~
1

n

Xn

u~1

jPRED(pu)\SCL(pu)j
jSCL(pu)j , ð16Þ

ACC~
1

n

Xn

u~1

jPRED(pu)\SCL(pu)j
jPRED(pu)|SCL(pu)j , ð17Þ

ATR~
1

n

Xn

u~1

d½PRED(pu), SCL(pu)� , and ð18Þ

AFR~

1

nm

Xn

u~1

jPRED(pu)|SCL(pu)j{jPRED(pu)\SCL(pu)j½ � ,
ð19Þ

where n and m are the total number of proteins and subcellular

locations respectively, and

d½PRED(pu), SCL(pu)�~
1, PRED(pu)~SCL(pu)

0, otherwise

�
ð20Þ

.

These measures can be interpreted briefly here. The AIM [53],

which is also called ‘‘Precision’’[60] or ‘‘Positive Predictive

Value’’[61], reflects the average ratio of correctly predicted

subcellular locations over all predicted locations. The CVR [53],

which is also termed as ‘‘Recall’’ [60] or ‘‘Sensitivity’’[61], reflects

the average ratio of the correctly predicted subcellular locations

over the real locations. The ACC reflects the average ratio of

correctly predicted subcellular locations over the total locations

including the predicted and the real ones [53,60,61]. The ATR

[53,61], which is also called ‘‘Subset-accuracy’’[60], reflects the

ratio of proteins without either over-predicted locations or under-

predicted locations. The AFR [53], which is also termed as

‘‘Hamming-Loss’’[60,61], is the average ratio of over-predicted

locations and under-predicted locations over the total number of

possible locations. Unlike the previous four measures, which are all

the higher the better, a lower AFR value indicates a better

prediction performance. A more comprehensive discussion of

these measures can be found in several reviews [53,60,61].

The performance measures, which were utilized by Hum-

mPLoc 2.0, were based on the locative protein concept [36].

However, according to a recent review [53], the prediction

performance for each subcellular location based on locative

protein concept is inconsistent with the ATR measure [53].

Therefore, we only use the multi-label performance measures,

such as AIM, CVR and ATR, as the performance measures in our

study.

Results and Discussion

1 Correlation between ECC and common subcellular
locations

Given two protein pi and pj, which are connected by an edge Eij

in the protein-protein interaction network, we defined the co-

localization score (Qij) as follows:

Qij~
jSCL(pi)\SCL(pj)j
jSCL(pi)|SCL(pj)j

, ð21Þ

where SCL, pi and pj have the same meanings as in the Method

section. The numerator of eqn (21) is the number of subcellular

locations that pi and pj both localized to. The denominator of eqn

(21) is the number of subcellular locations that at least one of pi and

pj localized to. When pi and pj have identical subcellular locations,

Qij = 1. When pi and pj have no common subcellular location,

Qij = 0. When pi and pj have some common subcellular locations,

but not identical subcellular locations, the value of Qij indicates the

fraction of the number of common subcellular locations over the

total number of subcellular locations of pi and pj (i.e. 0 , Qij , 1).

Therefore, Qij can indicate whether pi and pj tend to have the same

subcellular locations. When pi or pj have no subcellular location

annotations, Qij cannot be computed.

For every edge Eij that connects two proteins with subcellular

location annotations, a Qij, as well as an ECC(pi,pj), can be

computed. We plotted the average Qij as a function of the average

ECC(pi,pj) in different ranges, such as [0,0.1), [0.1,0.2), …,

[0.9,1.0). As shown in Figure 2, when 0#ECC(pi,pj),0.1, the

average Qij is about 0.41. When 0.1#ECC(pi,pj),0.2, the average

Qij is about 0.48. The average Qij continues to increase along with

the ECC. When 0.9#ECC(pi,pj),1, the average Qij reaches 0.77.

When ECC(pi,pj) varies in different ranges, the linear correlation

coefficient between the average Qij and the average ECC(pi,pj) is

0.96.

With the above observations, it is reasonable to use ECC as an

indicator to whether two interacting proteins tend to have

common subcellular locations.

2 Performance analysis
The prediction performance of our method was estimated using

jackknife test on our dataset. In order to compare prediction

performances, the performance of Hum-mPLoc 2.0 and Y-Loc

was also estimated on the same dataset.

As shown in Table 1, the ATR of our method achieves 56.0%,

while the ATR of Hum-mPLoc 2.0 is 51.4% and Y-Loc 47.4%.

The ACC of our method achieves 70.0%, while the ACC of Hum-

mPLoc 2.0 is 67.1% and Y-Loc 59.8%. The only measure that our

method is slightly lower than Hum-mPLoc 2.0 is the CVR. Our

method is 74.9% in CVR and Hum-mPLoc 2.0 is 75.4%. Since the

ATR is the most strict and harsh measure of a predictor that deals

with multi-label data [53,62], the prediction performance of our

method is better than both integrated methods.

3 Examples of better predictions
Here, we provide some examples that our method gives better

predictions than Hum-mPLoc 2.0. Because when our method

cannot make predictions based on network information, we used

the Hum-mPLoc 2.0 predictions as the final results, it is important

to look into the details that how our method use network

information to improve the prediction results of Hum-mPLoc 2.0.

The first example is the BioGRID protein 107454. It can be

mapped to UniProt protein P11802, which has two experimentally
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annotated subcellular locations, ‘‘Cytoplasm’’ and ‘‘Nucleus’’, in

the UniProt database. Hum-mPLoc 2.0 provided only one result

‘‘Nucleus’’ based on sequence information. Our method, based on

the network information, supplied the ‘‘Cytoplasm’’ location.

The second example is the BioGRID protein 107479. It can be

mapped to UniProt protein P49715, which has only one

experimentally annotated subcellular location, ‘‘Nucleus’’, in the

UniProt database. Hum-mPLoc 2.0 provided two subcellular

location predictions, including ‘‘Cytoplasm’’ and ‘‘Nucleus’’. Our

method, based on the network information, removed the

‘‘Cytoplasm’’ location.

The third example is the BioGRID protein 107693. It can be

mapped to UniProt protein P25067, which has only one

experimentally annotated subcellular location, ‘‘Extracell’’, in the

UniProt database. However, Hum-mPLoc 2.0 provided ‘‘Cyto-

plasm’’ as its prediction result. Our method, based on the network

information, corrected this result to ‘‘Extracell’’.

There are a number of examples like the above three that our

method actually provided better predictions than Hum-mPLoc

2.0. These better predictions can be achieved by supplying the

extra predictions, removing the redundant predictions or correct-

ing the wrong predictions.

4 Improving the prediction performance of single
sequence based predictor

In the above results, we integrated two sequence based

predictors. Actually, our method can work with only one sequence

based predictor. Without optimizing the parameters, we directly

applied our method with only Y-Loc predictor. The ATR is 48.6%,

which is higher than the 47.4% of Y-Loc predictor independently.

Again, without optimizing parameters, we directly applied our

Figure 2. The relationship between ECC and co-localization scores. For every pair of interacting proteins with experimentally annotated
subcellular locations, the ECC of their interactions and the co-localization score were computed. These interactions were divided into ten groups
according to their ECC values. The first group contained the interactions with ECC value between 0 and 0.1.The second group contained the
interactions with ECC value between 0.1 and 0.2. The third group contained the interactions with ECC value between 0.2 and 0.3, and so forth. The
average values of ECC and co-localization score were computed for every group. The horizontal axis of this figure is the average value of ECC. The
vertical axis of this figure is the average value of co-localization score. Ten dots were plotted on this figure to represent the ten groups of interactions.
A straight line was generated using simple linear regression method to represent the linear relationship between the average ECC and the average
co-localization score.
doi:10.1371/journal.pone.0086879.g002

Table 1. Comparison of prediction performances.

Predictor AIMa CVRb ACCc ATRd AFRe

Hum-mPLoc 2.0 75.7% 75.4% 67.1% 51.4% 7.4%

Y-Loc 72.4% 61.0% 59.8% 47.4% 8.4%

This method 79.8% 74.9% 70.0% 56.0% 6.5%

aAIM is Aiming, as defined in eqn (15);
bCVR is Coverage, as defined in eqn (16);
cACC is Accuracy, as defined in eqn (17);
dATR is Absolute-True-Rate, as defined in eqn (18);
eAFR is Absolute-False-Rate, as defined in eqn (19).
doi:10.1371/journal.pone.0086879.t001
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method with only Hum-mPLoc 2.0. Our method can achieve

54.9% in ATR, which is also higher than the 51.4% of Hum-

mPLoc 2.0 predictor. A comprehensive performance can be found

in Table 2. These results imply that our method can be used as a

common approach to improve most existing sequence based

predictors.

5 Iterative prediction
Given that our method can be applied on single sequence based

predictor and can improve its performance. It is interesting to

investigate a tricky case, whether our method can be iteratively

applied to further improve the prediction performance, as once a

sequence based predictor was integrated into our method, the

whole predictor can be integrated again as if it is another sequence

based predictor.

The iteration process was carried out as follows. In the first

round of iteration, the method was identical to all the above,

integrating two sequence based predictors. From the second round

of iteration, the output from the last round would be used as the

only integrated predictor in the method. Table 3 shows the

prediction performance of the first four rounds. From the second

round of iteration, the prediction performance would not change

anymore. The performance in the second round of iteration is

slightly better than the first round. This result is expected as the

protein-protein interaction network should not be able to improve

the prediction performance without a limitation. Because the

iterative predictions actually use the information of indirect

neighbors in the protein-protein interaction network, this result

also implies that it is unnecessary to consider the indirect

neighbors in our method.

6 Some remarks on the current method
Now, let us have a global view of the framework. We have

illustrated an information flow chart in Figure 3. The input of the

whole framework is only the protein sequences. There are three

phases of the whole process. In the first phase, several sequence-

based predictors, like Y-Loc and Hum-mPLoc 2.0, make

subcellular location predictions. In the second phase, these

prediction results are collected and then annotated on a protein-

protein interaction network. In the final phase, the annotated

protein-protein interaction network is analyzed to produce the

final prediction results. Our work focuses only on the second and

the third phase, but there is no restriction of what kind of

predictors are used in the first phase. Therefore, our method can

be used as a wrapper to combine and enhance every existing

Table 2. Performance improvements for every single
predictor.

Predictor AIMa CVRb ACCc ATRd AFRe

Hum-mPLoc 2.0 75.7% 75.4% 67.1% 51.4% 7.4%

Hum-mPLoc 2.0 + PPIf 79.1% 72.0% 68.4% 54.9% 6.8%

Y-Loc 72.4% 61.0% 59.8% 47.4% 8.4%

Y-Loc + PPIg 73.2% 61.1% 60.5% 48.6% 8.2%

aAIM is Aiming, as defined in eqn (15);
bCVR is Coverage, as defined in eqn (16);
cACC is Accuracy, as defined in eqn (17);
dATR is Absolute-True-Rate, as defined in eqn (18);
eAFR is Absolute-False-Rate, as defined in eqn (19);
fThese performance values were obtained without optimizing parameters.
‘‘+PPI’’ means using the current method with only Hum-mPLoc 2.0;
gThese performance values were obtained without optimizing parameters.
‘‘+PPI’’ means using the current method with only Y-Loc.
doi:10.1371/journal.pone.0086879.t002

Table 3. Performances of iterative prediction.

Iterations AIMa CVRb ACCc ATRd AFRe

1 79.8% 74.9% 70.0% 56.0% 6.5%

2 80.0% 74.8% 70.0% 56.2% 6.5%

3 80.0% 74.8% 70.0% 56.2% 6.5%

4 80.0% 74.8% 70.0% 56.2% 6.5%

aAIM is Aiming, as defined in eqn (15);
bCVR is Coverage, as defined in eqn (16);
cACC is Accuracy, as defined in eqn (17);
dATR is Absolute-True-Rate, as defined in eqn (18);
eAFR is Absolute-False-Rate, as defined in eqn (19).
doi:10.1371/journal.pone.0086879.t003

Figure 3. The information flow chart of the whole framework.
The input of the framework is only the protein sequences. There are
three phases in the whole process. (A) In the first phase, several existing
sequence-based predictors give prediction results using only protein
sequences. In the current study, these sequence-based predictors
include the Y-Loc predictor and the Hum-mPLoc 2.0 predictor. The
number n is 2. (B) In the second phase, the prediction results of the first
phase were collected and then annotated on a protein-protein
interaction network. (C) In the third phase, the annotated protein-
protein interaction network was analyzed and the network-based
prediction results were generated.
doi:10.1371/journal.pone.0086879.g003
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sequence-based predictor without modifying the predictors them-

selves. This is the main advantage of current framework.

Although we only treat these sequence-based predictors as

black-boxes, which require only protein sequences as input and

give subcellular locations as output, we need to remind the readers

that some characters of these sequence-based predictors should not

be ignored. Some existing sequence-based predictors may use the

input protein sequences to generate or to derive other types of

features by querying the public databases. For example, the GO

annotations, which were generated covertly in some predictors,

may cause some potential bias in the results.

In the second phase, there is a problem regarding the protein-

protein interaction network. It is well known that the protein

subcellular localizations were used as an approach to detect the

protein-protein interactions. Therefore, from a view of machine

learning, directly using these interactions may cause over-fitting

problem. However, this problem does not exist in the current

study. Among 96967 protein-protein interactions, there are only

255 interactions that are supported solely by co-localization

experiments. These interactions make less than 0.3% of the whole

dataset. After manually removing these interactions, there is no

observable difference in most of the performance measures. The

only observable difference is that the coverage (CVR) increased

from 74.9% to 75.0%. Therefore, the risk of over-fitting in the

current study can be eliminated.

The final thought regarding this framework is how to

characterize the protein-protein interactions. Theoretically, there

should be infinite number of measures that could characterize a

protein-protein interaction with a number. However, in the

current framework, a feasible measure must satisfy the following

conditions: (1) it can be calculated solely from the network, as

the other types of knowledge may be inconsistent or unavailable

to the protein-protein interaction network; (2) it must be

highly correlated with the probability that the interacting

proteins share subcellular locations; (3) the first two conditions

must be satisfied even only incomprehensive and inaccurate

protein-protein interaction networks are available, as the knowl-

edge of protein-protein interaction network is still not compre-

hensive or accurate. As far as we know, the ECC is the only choice

we have for this task. Therefore, we believe that, to some extent,

ECC is an optimal choice in characterizing the protein-protein

interactions in this study.

Conclusions

In this paper, we proposed a method that can predict protein

subcellular locations using protein-protein interaction network as

well as the results of existing sequence based predictors. Unlike

existing method using a voting scheme to integrate other existing

predictors or the other PPI network based methods, the protein-

protein interaction network does not provide predictions results all

by its own, it works as an infrastructure to coordinate the

prediction results of interacting proteins from sequence based

predictors.

We applied our method in the human proteome and protein-

protein interaction networks. The results shows that our method

can improve the sequence based predictions. Since our method

can integrate any number of sequence based predictors, this

method could serve as a common approach to combine the results

of existing methods and improve the prediction performance of

almost every existing sequence based methods.
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