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Abstract Global homogenization of biota is underway through worldwide introduction and establishment of 
nonindigenous (exotic) species. Freshwater ecologists should devote more attention to exotic species for two 
reasons. First, exotics provide an opportunity to test hypotheses about what characteristics of species or habitats are 
related to successful establishment or invasibility, respectively. Second, predicting which species will cause large 
ecological change is an important challenge for natural resource managers. Rigorous statistical relationships linking 
species characteristics to probability of establishment or of causing ecological impacts are needed. In addition, it is 
important to know how reliable different sorts of experiments are in guiding predictions. We address this issue with 
different spatial scales of experiments testing the impact of two predators on native snail assemblages in northern 
Wisconsin USA lakes: an exotic crayfish, the rusty crayfish (Orconectes rusticus); and a native fish predator, the 
pumpkinseed sunfish (Lepomis gibossus). For the crayfish, laboratory experiments, a field cage experiment, and a 
snapshot survey of 21 lakes gave consistent results: the crayfish reduced abundance and species richness of native 
snails. Laboratory and field experiments suggested that pumpkinseed sunfish should have a similar impact, but the 
lake survey suggested little impact. Unfortunately, no algorithms exist to guide scaling up from small-scale 
experiments to the whole-lake, long-term management scale. To protect native biodiversity, management of 
freshwater exotic species should be targeted on lakes or drainages that are both vulnerable to colonization by an 
exotic, and that harbour endemic species. Management should focus on preventing introduction because eradication 
after establishment is usually not possible. 
 
INTRODUCTION 

Establishment of non-indigenous (or exotic) species has been increasing worldwide since 
data collection began (US Congress 1993; Ruesink et al. 1995; Vitousek et al. 1996). Many 
exotics go unnoticed for long periods; most cause no obvious ecological change or economic 
damage (Williamson & Fitter 1996). However, a small percentage of exotics cause enormous 
ecological change, including extinction of native species and changes in community structure 
and ecosystem function (Nesler & Bergersen 1991; Pimm 1991; Allan & Flecker 1993; Lodge 
1993a,b; Flecker & Townsend 1994; Pimm et al. 1995). One of several dramatic examples is the 
Nile perch (Lates niloticus), which has caused the extinction of many endemic cichlid fishes in 
Lake Victoria (Cohen 1994; Pitcher & Hart 1995). Global ecological homogenization, with 
commensurate loss of species, is the logical endpoint of the anthropogenic spread of exotics 
(Vitousek et al. 1996). 

Compared with terrestrial ecosystems, aquatic ecosystems are particularly vulnerable to 
exotics for two reasons, both of which result from the strong affinity people have for water for 
aesthetic reasons, recreation, and transportation. First, relatively intact communities containing 
100s-10 000s of individuals of 10s-1000s of pelagic and benthic aquatic species are often trans-



ported outside the range of many of the constituent species. Vectors include ballast water 
(Pollard & Hutchings 1990a,b; Hutchings 1992; Carlton & Geller 1993), fish bait buckets and 
live wells of boats (Ludwig & Leitch 1996), boat trailers and hulls (on which macrophytes and 
entire epiphytic communities are transported), and shipments of fishes, invertebrates, and 
macrophytes for aquarium hobbyists, aquaculturists, and water gardens (Arthington 1986; 
Fletcher 1986; Mitchell 1986; Courtenay & Stauffer 1990; Schmitz et al. 1991; Carlton 1992). 
No comparable vectors exist for terrestrial communities, and in the United States, at least, more 
modest vectors (nursery plants with root balls of soil, agricultural produce, timber) are more 
tightly controlled and inspected than are aquatic shipments (US Congress 1993). 

Second, once introduced into an ecosystem, dispersal may be easier for freshwater than 
terrestrial species (cf Grosholz 1996 on terrestrial-marine comparisons). This hypothesis has not 
been rigorously evaluated, but linked systems of lakes and streams, and water movement 
facilitate dispersal. In addition, fewer dispersal barriers exist in freshwater. One striking example 
is the rapid establishment of zebra mussel (Dreissena polymorphd) in all the North American 
Great Lakes and the major river systems of the eastern USA following their accidental 
establishment via ballast water in Lake St Clair in about 1986 (Johnson & Carlton 1996). 
Although the North American Great Lakes ecosystem had already been dramatically transformed 
by many exotic species beginning in the 19th century (Mills et al. 1993, 1994), the impact of this 
single exotic finally prompted passage in 1990 of USA federal legislation that began regulation 
of ballast water discharge in the Great Lakes (Cangelosi 1996). This legislation was a positive 
step, but policy, research, and management attention should not be fixed on one species. Rather, 
systematic attention is required on assessments of the dispersal and impact of the full spectrum 
of actual and potential exotic species. 

The study of exotic species is important both for its potentially great contribution to 
understanding structure of ecological communities, and for natural resource management. In this 
paper, we argue that existing data sets of introduction of exotic species could be used to test 
questions central to community ecology, especially with additional monitoring. It would be 
useful to identify those exotic species most likely to cause ecological change or economic 
damage in order to efficiently use limited management resources. With a case study of two 
aquatic predators studied at a range of spatial scales, we assess whether natural resource 
managers can rely on short-term, small-scale experiments and observations to identify species 
that may cause ecological disruption. Finally, we conclude with an assessment of the threat of 
exotic species to global freshwater biodiversity. To focus this paper, we deal primarily with the 
species richness component of biodiversity. We recognize the importance of other dimensions of 
biodiversity, e.g. from genetic to landscape diversity (Angermeier & Karr 1994), and the 
important links between biodiversity and ecosystem function (Schulze & Mooney 1993; Jones & 
Lawton 1995; Tilman et al. 1996), but focus our attention in this paper at the population and 
community level. 
 
 
 
USE OF EXOTIC INTRODUCTIONS TO TEST CENTRAL QUESTIONS IN 
COMMUNITY ECOLOGY 

Central questions in community ecology revolve around what characteristics of a 
community allow it to be susceptible to species additions and, in turn, what characterizes species 
as good invaders (Pimm 1991). To provide insight into these questions, information is required 



on the number and types of species introduced, their rate of successful establishment, and their 
impact on the ecosystem. Yet, based on a sampling of the literature, few studies of exotic species 
incorporate these data (Table 1). As just one example, comparing characteristics of established 
species with all species introduced (including those that did not survive) would identify species 
features that permit invasion success. Many characteristics have been championed in the 
extensive literature on invasions, e.g. body size, diet breadth, r, size of native range (reviewed in 
Lodge 1993a,b; Moyle & Light 1996), but few have been rigorously tested. Such analyses have 
been productive for marine palaeoecological communities (Vermeij 1991), for birds introduced 
to New Zealand (Veltman et al. 1996), and for pines introduced worldwide (Rejmanek & 
Richardson 1996). 

Most published documentations of introduced aquatic species pools derive from marine 
and estuarine sampling of ballast waters (e.g. Carlton & Geller 1993). Ironically, in many of 
those cases, which of the introduced species became established has not been documented (Table 
1). The converse applies for most freshwater situations: ample documentation exists on 
established exotic species, but the original pool of introduced species has rarely been identified 
(Table 1). Thus, the statistical comparisons that could address central questions in community 
ecology are impossible to conduct because the appropriate data are either not being collected or 
(in the case of government inspection and regulatory agency records) are not readily available.  

Likewise, a comparison of the characteristics of the subset of established species that 
have a major ecological impact with the pool of all established exotics (including those with 
imperceptible ecological impact) could identify features associated with major ecological or 
economic impact. If strong statistical associations exist for these and similar comparisons, they 
would constitute a major advance in research on community assembly and a giant step forward 
over the conceptual and verbal models of species establishment and impact now promulgated 
(Vitousek 1990; Lodge 1993a,b; Ruesink et al. 1995). 
 
MULTI-SCALE TESTS OF THE IMPACT OF TWO AQUATIC PREDATORS ON 
PREY COMMUNITIES 

Identification of potentially high-impact exotic species should be explored first by 
conceptual models (Lodge 1993a,b; Ruesink et al. 1995) and statistical analyses as described in 
the previous section, and second by experimental evaluation of species that initial screening 
suggests may cause ecological change. Finally, species so identified should become the target of 
measures to prevent introduction, eradication efforts if they are only locally established, or steps 
to limit spread and impact if they are already widely established. 

Most often, species are already established, at least locally, before they are even 
recognized. Thus, eradication is often not feasible. Thus, die challenge is to establish 
management priorities based on die best scientific assessment of current impact and prediction of 
future impact. The crucial question for ecologists is how to conduct an experimental assessment 
of the potential impact of successful invaders. 

Two very difficult components of this challenge exist. First, the spatial and temporal 
scales of management concern are large and long; frequently they encompass whole lakes and 
landscapes over time periods of years to decades (Carpenter et al. 1995; Lodge et al. 1997). 
Experimental work at this scale is difficult and often prohibitively expensive. Even where such 
research is possible, answers come too slowly to shape management decisions early in an 
ongoing invasion. Second, it is untenable (and often illegal) to introduce an exotic species for 
research purposes. Effective conversion of small-scale, short-term results up to large-area, long-



term patterns (Frost et al. 1988; Karieva & Andersen 1988; Tilman 1989; Cullen 1990; Giller et 
al. 1994; Lodge et al. 1997) has immense practical significance, but is not readily and reliably 
achieved. 

We present experimental work on the impact of two predators, one exotic (the rusty 
crayfish Orconectes rusticus) and one native (the pumpkinseed sunfish Lepomis gibossus), at 
scales from short-term, small-scale laboratory experiments to a natural snapshot experiment 
(sensu Diamond 1986). At the whole-lake scale, observed patterns presumably developed over 
years to decades. Our case study is unusual in that it allows a multi-scale comparison between 
two species. Because these different scales were pursued in parallel ways by the same group of 
researchers, we have a rigorous comparison across scales. 

For the purpose of exploring how experimental scale affects conclusions about the 
outcome of biotic interactions, we suggest that it is largely irrelevant that one of our 
experimental species is a native and the other exotic. To the extent that coevolution or at least 
long-term coexistence has occurred, a native predator might reasonably be expected to have less 
of an impact on a prey community than an exotic one (Thorp 1986). Even so, we have no 
expectation that the results of caging experiments and whole-lake scale experiments 
 
Table 1. Ten data sets on aquatic exotic species, emphasizing the paucity of information on the pool of introduced 
species 
 
 

 
 
 
 
would be more consistent for a native predator than for an exotic or vice-versa. 

Reasons for studying snails, crayfish, and pumpkin-seed sunfish were as follows. Snails 
often dominate aquatic invertebrate assemblages by numbers and bio-mass, and they often have 
large direct and indirect effects as herbivores on periphyton (Weber & Lodge 1990; Brönmark et 
al.. 1992; Lodge et al. 1994; Vermaat 1994; Feminella & Hawkins 1995). 

Like snails, crayfish are often abundant and have high standing biomass; they also are 
one of the largest freshwater invertebrates (Lodge & Hill 1994). Abundant evidence has 
accumulated in recent years that crayfish are quite omnivorous and play an important role in lake 
and stream food webs (Lodge & Lorman 1987; Feminella & Resh 1989; Chambers et al. 1990; 
Crowl & Schnell 1990; Hanson et al. 1990; Matthews & Reynolds 1992; Lodge et al. 1994). In 
addition, crayfish seem to be one of the few predators that can consume large snails, and 
behavioural responses of snails suggests that their evolution has been partly shaped by crayfish 



predation (Crowl & Covich 1990; Alexander & Covich 1991; Covich et al. 1994). 
Among crayfishes, the rusty crayfish has been well studied because of its establishment 

in many North American locations outside its native range in Indiana, Kentucky, and Ohio 
(USA) (Hobbs et al. 1989). Newspaper reports of subsequent declines in submersed macrophytes 
(and fishes, although this has not been well documented) are common in Michigan, Ohio, and 
Wisconsin (USA) and southern Ontario (Canada). Early in the invasion of Wisconsin lakes 
(1970s), state regulatory agencies banned the use of live crayfish as fish bait, because fishermen 
appear to be a major vector of introduction (Ludwig & Leitch 1996). The environmental 
constraints on rusty crayfish and congeners (Capelli & Magnuson 1983; Kershner& Lodge 
1995), the spread of rusty crayfish and its displacement of congeneric crayfishes (Lodge et al. 
1986; Olsen et al. 1991; Hill et al. 1993; Hill & Lodge 1994), and its impact on lake food webs 
(see citations in sections below) have all been well documented (Lodge & Hill 1994). 

We focused on pumpkinseed sunfish because of their specialized molluscivory 
(Mittelbach 1984; Osenberg & Mittelbach 1989; Klosiewski 1991). Earlier work on the strong 
diet selection by pumpkinseeds among snails (Osenberg & Mittelbach 1989) supported the 
expectation that they affect snail species composition in predictable ways. Generalist predators 
should depress prey populations more than specialists (Murdoch & Bence 1987). Specialization 
of the pumpkinseed sunfish diet, then, suggests that pumpkinseed sunfish might depress snails 
less than the generalist crayfish (Murdoch & Bence 1987). 

Expectations for this case study might then include the following. As both a native 
species and a specialized predator, pumpkinseed sunfish would be expected 
to depress snail populations less than crayfish. However, no clear predictions are possible 
regarding how results might differ between the two predators in small-scale vs large-scale 
experiments. 
 
Laboratory aquaria 
Methods: crayfish and pumpkinseed sunfish 
 

Laboratory experiments were conducted primarily to assess how the two predators might 
affect snail species and size composition, but they also measured feeding rates. Crayfish 
experiments, in particular, were designed to provide a simple basis for predicting impact in nat-
ural lakes; they provided average-sized adult crayfish a choice among the natural summertime 
assemblage of snail species (at natural size range). In June-July 1990, individual male rusty 
crayfish (28-30 mm carapace length) were offered four snail species in sizes and relative 
abundances that were representative of Carrol Lake, WI, as determined by field sampling. In 40 
L aquaria with 3 cm of sand on the bottom, these snail species and sizes were offered during 20 h 
overnight trials (n = 3): Amnicola sp. (3.0-1.5 mm shell length); Gyraulus parvus (1.5-5.0 mm); 
Physella gyrina (4-7 mm); and Campeloma decisa (7 mm). 

For pumpkinseed sunfish of two sizes (120 mm and 150 mm total length), we tested 
preference in 120L laboratory aquaria among three species of snails (Lymnaea ewarginata, 
Helisotua anceps, and Campeloma decisum), with all snails of 6 mm shell length. Detailed 
methods are available in Klosiewski (1991). For both crayfish and pumpkinseed, our methods 
and data satisfied the assumptions of Manly's alpha preference index for non-replacement of prey 
(Krebs 1989). 
 
Results and Discussion: crayfish 



Crayfish had high feeding rates on snails (Fig. 1), suggesting their potential to reduce 
snail abundance in natural lakes, depending of course on abundance of the predators in lakes. Of 
more relevance to field predictions, crayfish were also selective among these species (which also 
differed in size). Figure 1 is illustrative of the selectivity exhibited by crayfish in a series of such 
laboratory experiments (K. M. Brown unpubl. data). By chipping away at crushable shells, 
crayfish can consume even very large-shelled molluscs (Perry et al. in press); they are not gape-
limited on these shells. For thick-shelled mollusca such as Corbicula, crayfish can penetrate and 
enlarge weak sections of shells, but for strong, intact shells, they are limited to consuming shells 
smaller than 4 mm in shell length (Covich et al. 1981). 

The conclusion from these experiments was that crayfish selected strongly against 
Campeloma (Fig. 1) and Helisoma (K. M. Brown unpubl. data), probably because the shells of 
these species are extremely strong (see Fig. 1 in Klosiewski 1991). Whereas selection among 
other species may have existed in this experiment (Fig. 1), crayfish ate most species at high rates. 

 
 

 

 
 
 

Fig. 1. Prey preference by crayfish among four snail species (which differed in size), relative to the null model of no 
preference (------). Mean number of snails (69) consumed per crayfish per night provided an index of potential 
predation rate. 
 



 
 
 
Fig. 2. Species preference by two sizes (total length) of pumpkinseed sunfish (Lepomis) among three species of 
snails, with all snails of 6 mm shell length, (a) 120 mm Lepomis consumed > 68 snails per fish per hour, (b) 150 
Lepomis consumed > 114 snails per fish per hour. (---) the null model of no preference. 
 
Other laboratory experiments testing size and species selection separately consistently indicated 
weak size and species selection except for large, thick-shelled species that the crayfish could not 
chip (A. P. Covich unpubl. data). 

On the basis of laboratory results and the observation that crayfish are often abundant in 
lakes (Hill & Lodge 1994), we predicted that crayfish should reduce overall snail abundance in 
more natural settings, thus increasing the proportional representation of Campeloma and 
Helisoma in natural snail assemblages. 
 
Results and Discussion: pumpkinseed sunfish 

Individual pumpkinseed sunfish had very high feeding rates, perhaps an order of 
magnitude higher than crayfish on a daily individual basis (compare units on Figs 1, 2). The 
nature of selective predation by pumpkinseeds has been explored in detail by Klosiewski (1991), 
and results presented here are only one example from an extensive series of laboratory 
experiments in which size and species selection of different-sized pumpkinseed were tested 
independently. In contrast to crayfish which are largely tactile feeders, pumpkinseed feed 
visually and have precise powers of discrimination. Both species selection (Fig. 2) and size 
selection (Klosiewski 1991) were stronger than for crayfish, and differed among sizes of 
pumpkinseed (Fig. 2) on the basis of shell crushability and gape-limitation (Klosiewski 1991). 

Based on these results, Klosiewski (1991) concluded that lakes with high abundance of 
pumpkinseeds should have snail assemblages dominated by small and/or thick-shelled species. In 
particular, small thick-shelled species like Amnicola should be least vulnerable regardless of 



pumpkinseed size: small fish select against strong-shelled snails and large fish select for large 
snails. In the absence of pumpkinseeds, large, weak-shelled snail species should be more 
abundant (Klosiewski 1991). 
 
Field cages 
Methods: crayfish and pumpkinseed sunfish 
 

We tested the laboratory-generated predictions of the impacts of crayfish and 
pumpkinseeds in the more realistic setting of 9 m2 cages within natural Wisconsin lakes. Lakes 
were chosen that contained only a low abundance of the test predator, to minimize past impact of 
the predator on prey. For crayfish, we installed enclosures and exclosures in Plum Lake, 
Wisconsin (n = 4); for pumpkinseed, we installed enclosures and exclosures in Round Lake, 
Wisconsin (n = 5). In their respective experiments, the density of the predator in enclosures (8 
crayfish per m2; 0.33 pumpkinseed sunfish per m2) was within the range of natural densities in 
northern Wisconsin lakes. The duration of experiments was 11 weeks for crayfish and 15 months 
for pumpkinseed sunfish. Details of methods are provided in Lodge et al. (1994) for crayfish, 
and in Klosiewski (1991) and Brönmark et al. (1992) for pumpkinseed sunfish. 

 
Results and Discussion: crayfish and pumpkinseed sunfish 

Both crayfish (Lodge et al. 1994) and pumpkinseed sunfish (Brönmark et al. 1992) 
reduced overall snail abundance by 99% and 82%, respectively. Also, as expected, both 
predators reduced species number: crayfish by 50% and pumpkinseed by 33% (Fig. 3). 
Campeloma, as predicted, was one of only three species remaining in the presence of crayfish at 
the conclusion of the experiment, but much of the reduction of species number by crayfish is 
attributable to rarefaction (Lodge et al. 1994). Although the total reduction of species number by 
pumpkinseed sunfish was more modest than that of crayfish, their impact on the relative 
abundance of species was greater than that of crayfish, consistent with the results of laboratory 
experiments. Large, weak-shelled species, e.g. Physella, increased greatly in the absence of 
pumpkinseed sunfish (Klosiewski 1991). 

Overall, then, results of field caging experiments were consistent with expectations. 
Pumpkinseed sunfish, the specialized native predator, reduced snail abundance less than crayfish, 
the generalized exotic predator. Laboratory results on prey selection accurately predicted the 
impact of both predators on snail species composition in small enclosures. The general patterns 
observed in field cages, lower snail abundance and shifted species composition in the presence of 
crayfish or pumpkinseed sunfish, were then predicted to occur in whole lakes on an even more 
realistic spatial scale. 

 
Natural lakes 

Given the results of laboratory and field cage experiments reviewed above,  in which  
 



 
 
 
Fig. 3. Impact of rusty crayfish (Orconectes; from Lodge et al. 1994) and pumpkinseed sunfish (Lepomis; from 
Klosiewski 1991) on mean snail species number in independent field cage experiments. (□) exclosure; (■) enclosure. 
 
both crayfish and pumpkinseed predators had strong negative effects on snail abundance and 
species number, we predicted that both snail abundance and species number would be negatively 
related to predator abundance in natural lakes. To test this prediction, we conducted a snapshot 
natural experiment (sensu Diamond 1986). Whereas natural experiments have obvious 
weaknesses relative to smaller scale and more tightly controlled experiments (little regulation of 
independent variables, difficult site matching, assumption of at least quasi-equilibrium, etc.), 
their strengths, especially with respect to management concerns cannot be matched by smaller 
experiments (Lodge et al. 1997). These include greater spatial scale, greater temporal scale 
(under the assumption that the observed pattern is an equilibrium resulting from long-term 
processes), greater realism, and greater generality (Diamond 1986). In addition, natural 
experiments are usually the only ethically acceptable method to assess the impact of exotics at a 
large scale. Given the weaknesses of natural experiments, however, confidence in their 
interpretation is enhanced by results of more mechanistic laboratory and field experiments simi-
lar to those reviewed above (Diamond 1986). 
 
Methods 

In summer 1987, after preliminary sampling of crayfish and pumpkinseed sunfish (but 
not snails), 21 northern Wisconsin lakes (45°-46°N, 89°-90°W) were selected for more intensive 
sampling of crayfish, pumpkinseed sunfish, and snails. The final choice included 5 lakes with 
high abundance of crayfish, 5 lakes with high abundance of pumpkinseed sunfish, and 11 lakes 
with low abundance of both. No lake had both abundant pumpkinseed sunfish and abundant 
crayfish, because lakes with abundant pumpkinseed sunfish tended to be dominated by soft 
organic sediments (and therefore had abundant macrophytes), conditions unfavourable for 
crayfish (Lodge & Hill 1994). The abundance of Orconectes is positively related to substrate 
firmness (Hill & Lodge 1994; Lodge & Hill 1994; Kershner & Lodge 1995). 

The lakes ranged in area from 21 to 518 ha and had maximum depths of 2-27 m. All were 
circumneutral lakes with adequate calcium for snails (Lodge et al. 1987) and crayfish (Lodge & 
Hill 1994). Before intensive sampling, maps of habitat type in the littoral zone were prepared, 
with habitat categorized as either unvegetated sediments, vegetated, or rocky. For every habitat 
type present, we divided the entire lake littoral zone into 12 equal-shoreline length sectors. Thus, 
in lakes with three habitats, we divided the lake perimeter into 36 sectors; with two habitats, 24 
sectors; and with one habitat, we sampled 12 sectors. Thus, sector number (and consequently 



sampling effort) increased as habitat heterogeneity increased. Because lakes were different sizes, 
sector size differed among lakes. This sampling strategy did not result in biased estimation of 
snail species number; no relationship existed between snail species number per lake and the 
number of sectors sampled per lake (r2 = 0.02, P= 0.52). In each lake, sample position was 
randomized within the first sector; this relative position was then sampled within every sector of 
that lake. 

Snails were collected during June. SCUBA divers collected one circular core (0.018 m2, 
≥ 5 cm depth in sediments) within each sector of each lake to determine snail abundance. In 
rocky habitats, where cores were unusable, different-sized rings were used (depending on snail 
abundance) to delineate one area per sector (0.1-0.5 m2), from which all surficial rocks were col-
lected by a diver and transferred to a boat for removal of all snails. In the laboratory, snails were 
separated from sediments and other debris by sieving (1 mm). Crayfish were sampled during 22 
July to 26 August 1987, by setting one trap in each sector using standard trap opening size and 
bait, as described by Lodge et al. (1986). Only male catches are analysed because they provide 
the best index of crayfish abundance (Lodge et al. 1986). The abundances of pumpkinseed 
sunfish were estimated along 50 m transects, using an electrofishing boat at night (1 June to 31 
August) in 5-11 sectors per lake. Sampling effort was disproportionately concentrated in 
macrophyte habitats because this is where pumpkinseed sunfish were most abundant. In addition, 
at least one sector of each habitat type present was sampled. Time precluded electrofishing every 
sector. 

We conducted a two-dimensional Kolmogorov-Smirnov test to compare the joint 
distribution of predator and prey to the distribution expected if predator and prey abundances 
were independent (Fasano & Franceschini 1987; Press et al. 1992; Garvey et al. in press). Each 
test generated a test statistic, D, representing the maximum point of departure between the ob-
served and expected distributions. To determine the significance for each test, we randomized 
the observed X,Y pairs 5000 times (Manly 1991), determining the proportion of randomly 
generated D's exceeding the actual test statistic. If this proportion exceeded 0.05, we concluded 
that the observed pattern may have been generated by chance. 

We analysed the lake survey data at two spatial scales. At the smallest spatial scale, we 
plotted the predator and prey abundance from each sector of each lake. Because pumpkinseed 
sunfish were sampled in fewer sectors than crayfish, this sector-scale analysis for pumpkinseed 
sunfish was based on fewer data than for crayfish. Our sector-scale analyses essentially address 
the within-lake pattern of co-occurrence of predator and prey; however, we could not effectively 
conduct this test for each lake independently because many lakes lacked a broad range of 
predator densities across sectors. Therefore, we pooled the data across all lakes to test the sector-
scale pattern. Because data from multiple sectors within one lake may not be independent, our 
sector-scale analyses must be interpreted with caution. 

To be conservative in our sector-scale analyses, we eliminated 0,0 coordinates from the 
data sets because the mutual absence of predator and prey may indicate a habitat that is simply 
unsuitable for both and therefore not a habitat appropriate to test the impact of predator on prey. 
In addition, large numbers of 0,0 data points biased the Kolmogorov-Smimov test toward 
significance. 

At the largest spatial scale, we plotted the mean lake-wide abundance of predator against 
the mean lake-wide abundance of prey. Thus, each datum on these plots represents a lake. Lake-
wide number of snail species was the total number of snail species sampled in each lake 
(regardless of abundance). For snail abundance and crayfish abundance, the lake-wide means for 



each of the 21 lakes was based on 12-36 sectors, depending on how many of the three habitat 
categories (unvegetated sediments, vegetated, or rocky) were present in each lake. Visual 
inspection of scatterplots done separately for each of the three habitat types showed that snail 
abundance was highest in macrophytes and lowest in rocky habitats, but the crayfish-snail 
pattern was similar to that based on lake-wide means; for simplicity, we present only the lake-
wide analyses here. 

Lake-wide abundance of pumpkinseed sunfish was the habitat-weighted mean of 
electroshocking transect catches for each lake. Unlike for snails and crayfish, weighting means 
by habitat type was necessary because habitats were not sampled in proportion to their abun-
dance in lakes. Thus, for a given lake, we calculated mean abundance of pumpkinseed sunfish 
across transects by weighting each transect-specific abundance estimate (number of 
pumpkinseed sunfish/transect) by the proportion for that lake of shoreline sectors in that habitat 
category. 
 
Results and Discussion 
Analysis by lake sector  
At the sector scale, the smallest spatial scale at which the lake sampling can be analysed, the 
predicted negative relationships existed between crayfish abundance and snail abundance (Fig. 
4a) and snail species number (Fig. 4b). The impact was so strong that a critical threshold was 
detected, such that both snail abundance and species number declined to very low levels when 
crayfish abundance was ≥ 5 per trap. Where crayfish abundance was < 5 per trap, snail 
abundance had very high variance. High variance in prey numbers at low predator abundance 
could easily have resulted from several factors other than crayfish that also affect snail 
abundance and species composition (Lodge et al. 1987). Similar, strong threshold patterns have 
been noted between urchins and kelp (see fig. 7 in Estes & Duggins 1995), and are interpreted as 
evidence for strong interaction between predator and prey. Thus, at the scale of variation within 
lakes, patterns are consistent with our laboratory and field cage results: the exotic crayfish 
dramatically depresses both snail abundance and snail species number. 

For pumpkinseed sunfish, patterns at the sector-scale were not as predicted. Rather, 
patterns for both snail abundance and species number did not differ from random (Fig. 5). 

Analysis by whole lake For crayfish at the whole-lake scale, both snail abundance (Fig. 
6a) and snail species number (Fig. 6b) seemed to be negatively related to crayfish abundance. 
With only 21 lakes, our ability to detect non-random patterns was low, and only the pattern for 
snail abundance departs from random according to the 2-dimensional Kolmogorov-Smirnov test 
(Fig. 6a). However, because these data were almost categorical with respect to crayfish 
abundance (low vs high crayfish), t-tests were used to compare the snail responses between lakes 
with low crayfish abundance (n = 16) and high crayfish abundance (n = 5), revealing that both 
snail abundance (P = 0.004, Fig. 6a) and snail species number (P= 0.001, Fig. 6b) were lower in 
high crayfish relative to low crayfish lakes. 

Patterns were not as clear at the whole-lake scale (Fig. 6) as at the sector-scale (Fig. 4). 
This may result in part from the fact that habitat patches with very low crayfish abundance 
within a lake with high mean crayfish abundance skewed the snail response (especially species 
number) to a high mean. Thus, the whole-lake scale, because it integrates heterogenous habitats 
including those not favoured by crayfish, was a scale larger than the one at which this predator-
prey relationship operates. This is further complicated by the fact that fish predators of crayfish 
(which do not include pumpkinseed sunfish) reduce crayfish abundance (DiDonato & Lodge 



1993; Garvey et al. 1994), feeding rates (Hill & Lodge 1995) and use of non-rocky habitats 
(Kershner & Lodge 1995), and may therefore contribute to the weaker signal of the crayfish-
snail interaction at the whole-lake scale. Nevertheless, the negative impact that crayfish have on 
snail abundance was manifest strongly across all scales, from 40 L aquaria to whole lakes. 

In contrast, the signal of the predatory impact of pumpkinseed sunfish on snails 
disappeared at the sector (Fig. 5) and whole-lake (Fig. 7) scales. For both snail abundance  

 
 

 
 
 
Fig. 4. Relationship of sector-specific snail abundance (a) and sector-specific number of snail species (b) to an index 
of crayfish (Orcoiiecres) abundance in shoreline sectors of 21 lakes. Zero-zero coordinates were eliminated 
(although because of some data points with very low values, the plot appears to include zero-zero data). Statistical 
results test departure of the observed pattern from a random pattern (2-dimensional Kolmogorov-Smirnov test). (a) 
D = 0.179, P = 0.0002, n = 375 sectors, (b) D = 0.178, P= 0.0002, n = 375 sectors. 
 



 
 
 
Fig. 5. Relationship of sector-specific snail abundance (a) and the sector-specific number of snail species (b) to an 
index of pumpkinseed sunfish (Lepomis) abundance in shoreline sectors of 21 lakes. Zero-zero coordinates were 
eliminated (although because of some data points with very low values, the plot appears to include zero-zero data). 
Statistical results test departure of the observed pattern from a random pattern (2-dimensional Kolmogorov-Smirnov 
test), (a) D = 0.039, P= 0.53,N= 128 sectors, (b) D = 0.049, P= 0.18, n = 128 sectors. 
 
(Figs 5a, 7a)  and snail species number  (Figs 5b, 7b), the predicted patterns of lower mean 
abundance of snails and lower snail species number at higher pumpkinseed sunfish abundance 
clearly did not exist. 

Thus, at the larger scales, other factors overshadow the negative impacts of pumpkinseed 
sunfish on snails that would be predicted by laboratory and field experiments. These factors 
probably include the positive association that both snails (Brönmark 1985; Lodge el al. 1987; 
Brown & Lodge 1993) and pumpkinseeds (R. A. Stein & S. P. Klosiewski unpubl. data) have 
with submersed vegetation. Most lakes with high pumpkin-seed sunfish abundance also have 
extensively vegetated littoral zones. Thus, patches of macrophytes sufficiently dense to provide a 
predation refuge for snails probably exist in most high pumpkinseed sunfish lakes. With 
pumpkinseed sunfish, an interaction modification may be at work mat contrasts sharply with the 
negative impact that crayfish have on both the snails and their macrophyte habitat (see below). 
Such an interaction modification would be manifest more strongly at the whole-lake scale than at 
the sector scale, i.e. the sector-scale should exhibit more of the predicted negative association of 
predator and prey than the whole lake scale.   However,  our  results  do  not  support  that 
prediction. Piscivorous fishes also may dampen the impact of pumpkinseed sunfish on prey, but 
preliminary analysis of data on all fishes in the 21 lake survey do not support this hypothesis (R. 
A. Stein & J. E. Garvey unpubl. data). 

There is evidence that the assumption of equilibrium was probably violated with 
pumpkinseed sunfish. In one of two lakes with more than one year of data, pumpkinseed sunfish 
abundance declined dramatically as a result of winterkill (Klosiewski 1991). Because lakes with 
high pumpkinseed sunfish abundance tend to have thick, organic-rich sediments and abundant 



macrophytes, a link between winterkill and pumpkinseed sunfish may often lead to 
disequilibrium between predator and prey that could only be detected with a natural trajectory 
experiment (sensu Diamond 1986). In contrast, crayfish abundance is relatively constant in long-
term data sets from several Wisconsin lakes (Olsen et al. 1991). 

The difference between population dynamics of the two predators, driven perhaps by 
winterkill on pumpkinseed sunfish, may contribute to the contrasting predatory signals at the 
whole-lake scale. In addition, the generalist diet of crayfish probably contributes to its stronger  

 
 

 

 
 
 

Fig. 6. Relationship of lake-wide snail abundance (a) and the lake-wide number of snail species (b) to an index of 
crayfish (Orcomctes) abundance in 21 lakes. Statistical results test departure of the observed pattern from a random 
pattern (2-dimensional Kolmogorov-Smirnov test). (a) D = 0.16, P = 0.012, n = 21 lakes, (b) D = 0.09, P = 0.26, n = 
21 lakes. 
 



 
 
 

Fig. 7. Relationship of lake-wide snail abundance (a) and the lake-wide number of snail species (b) to an index of 
pumpkinseed sunfish (Lepomis) abundance across 21 lakes. Statistical results test departure of the observed pattern 
from a random pattern (2-dimensional Kolmogorov-Smirnov test), (a) D = 0.12, P =0.091,n = 21 lakes, (b) D = 
0.12, P = 0.095, n = 21 lakes. 
 
negative impact on snails.  Crayfish not only eat the snails, but also consume and destroy the 
macrophyte habitats that typically harbour the highest densities of snails (Lodge et al. 1994).   
These hypotheses need further testing.   
 
Conclusions of multi-scale tests 

For the crayfish, results were consistent across the whole scale of experiments (Table 2), 
and hence laboratory experiments would have provided a reliable guide for management 
decisions. Clearly, the larger-scale and longer-term field experiments and lake surveys provide 
more insight, accuracy, and precision in predicting impact of the exotic species on native snail 
assemblages, but their cost and duration make them much less practical and useful for quick 
action in the face of an advancing exotic species. 

For pumpkinseed sunfish, laboratory experiments and field caging experiments provided 
a misleading picture of the impact of pumpkinseeds on snail assemblages at the sector and 
whole-lake scale (Table 2). Long-term population fluctuations that likely cause this discrepancy 
would have been difficult to predict, given the previous lack of study of this non-game fish 
species. Only long-term data on pumpkinseed sunfish populations would have led to the intuition 
mat population fluctuations would dampen pumpkinseed sunfish impact on prey. Thus, no 
substitute existed for large-scale, long-term studies to predict accurately the impact of 
pumpkinseed sunfish on snails in nature. 

Given these contrasting outcomes for crayfish and pumpkinseed sunfish, a further 
challenge for aquatic ecologists is to discover whether biological interactions involving certain 
classes of species or habitats are likely to require longer-term studies whereas interactions 
involving other classes of species or habitats are adequately understood and scaled-up from 



small-scale, short-term experiments. Making this distinction is an extremely vexing challenge for 
which we have no answer other than the informed biological intuition that we are now forced to 
rely on. This intuition often fails (as illustrated by the pumpkinseed sunfish example above). 
 
ENDEMISM AND THE IMPACT OF EXOTICS ON NATIVE BIODIVERSITY 
 

Since its anthropogenic dispersal from Indiana and Kentucky to northern Wisconsin, the 
rusty crayfish, O. rusticus, has not only reduced snail abundance and species richness (see 
previous section), but also has had impacts on many other ecosystem components, including 
macrophytes (Lodge el al. 1994) and congeneric crayfishes (Lodge el al 1986; Olsen et al. 
1991). Local extinction of congeners by O. rusiicus is an instructive vehicle for conceptualizing 
about the most extreme threat of exotics to native species, global extinction. 

Olsen et al. (1991) documented that in all of nine northern Wisconsin lakes invaded by 
O. rusiicus for which long-term data (13 years in this case) existed, abundance of O. rusticus 
increased, whereas the native congener O. virilis declined. We have continued this long-term 
data set and have observed that the native species is now extinct (as far as our routine sampling 
methods are able to detect) in four of the same nine lakes (D. M. Lodge and W. L. Perry unpubl. 
data). A number of mechanisms of this species replacement are now well documented, including 
competition for food and shelter, and differential vulnerability to predation driven by different 
sizes (growth rates) and behaviour (DiDonato & Lodge 1993; Hill et al. 1993; Hill & Lodge 
1994, 1995; Garvey et al. 1994; Willman et al. 1994). 

In wider recent surveys in the same region, we have documented current crayfish species 
composition in 107 lakes and 50 stream reaches (W L. Perry, D. M. Lodge & G. L. Lamberti 
unpubl. data). Given that early in this century the only crayfish species in lakes and streams of 
this region was O. virilis (Creaser 1932), we infer that where O. rusticus now occurs and O. 
virilis does not, that the native has been driven extinct by the exotic congener. Of 107 lakes with 
crayfish, O. virilis now occurs in only 47; presumably, it has been driven extinct in the other 60 
lakes during the last 25-50 years. Patterns are similar in streams. Of 50 reaches with crayfish, 
only 19 now contain O. virilis; presumably, it has been driven extinct in 31 stream reaches. 
Clearly, the range and abundance of O. virilis in northern Wisconsin is being severely reduced  
 
Table 2. Summary of effects of crayfish and pumpkinseed sunfish on snail assemblages in northern Wisconsin lakes 
 
 

 
 
 
by O. riisricus. However, O. virilis has one of the widest ranges of any North American crayfish 
(Hobbs & Jass 1988). Thus, it is not in imminent danger of global extinction. 

Many species of crayfishes and other aquatic fauna do, however, have naturally small 
ranges (Fig. 8). The current conservation status of native North American mussels and crayfishes 



(Master 1990) shows clearly that the smaller the natural range size, the more vulnerable a species 
is to extinction (Fig. 8). For both native mussels (Mann-Whitney P< 0.001) and crayfishes (P< 
0.001), the mean range size of species perceived to be under threat (pooling the categories from 
'extinct' through 'special concern') is smaller than that of species that are 'currently stable.' 

Many examples exist of the role of exotic species in the global extinction of fishes 
(Miller et al. 1989; Aquatic Nuisance Species Task Force 1994; Cohen 1994; Pitcher & Hart 
1995). Over the next few years, several species of native unionid mussels will probably go 
extinct as the North American range of exotic zebra mussels encompasses the ranges of highly 
endemic unionids in the southeastern US (Bogan 1993; Cummings et al. 1993; Haag et al. 1993; 
Gillis & Mackie 1994). Protecting native biodiversity in the face of exotic species (or any other 
anthropogenic threat) thus requires identifying areas of high endemism (US Congress 1993, p. 
40; Cohen 1994). While the ancient great lakes of the world are well-known examples (Cohen 
1994), in many regions significant areas of aquatic endemism are unsurveyed and unrecognized. 

The currently high rates of species introductions to aquatic  ecosystems  and  subsequent  
high  dispersal within aquatic habitats (and across landscapes with high connectivity between 
lakes and streams) require that special research and management attention be devoted to 
preventing widespread global extinction of freshwater biota. The cookie-cutter model of 
terrestrial species extinctions (Pimm et al. 1995) may apply in extreme form for freshwater 
ecosystems, especially lakes. In the cookie-cutter model, species extinctions are based on 
species-area relationships and area of terrestrial habitat destroyed. The best predictions are for 
island endemics because of the tightly bounded distributions on islands (Pimm et al. 1995). 

The same concepts apply with special force to lakes as islands in an inhospitable 
terrestrial matrix. Once a lake is colonized, the entire lake may quickly be subject to whatever 
impact the exotic species exerts. Colonization of northern Wisconsin lakes by O. rusticus, and 
subsequent replacement of O. virilis, is just one of many examples. This pattern contrasts with 
typical terrestrial invasion dynamics. Terrestrial invasions, except on true islands, are less 
constrained because the habitats are less discrete than for aquatic habitats (lakes especially). 
Thus, identifying units of the aquatic landscape (e.g. number of lakes or watersheds) that are 
invasible and that harbour endemics would allow predictions of the impact of an exotic on native 
biodiversity. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 

Accidental and intentional transplantation of whole or partial aquatic communities is 
common, and has produced many significant changes in ecological 
 
Fig. 8. Historic range size in the USA (number of states in which species occurred) for native unionid mussels 
species [(a) data from Williams et al. 1993] and crayfish species [(b) data from Taylor et al. 1996] in different 
conservation categories. In a few cases, particularly for crayfishes (C. A. Taylor pers. comm. 1996), the ranges 
plotted may represent recent anthropogenic range expansions. 



 
 
community structure and ecosystem function in many parts of the world. Global homogenization 
of the world's aquatic biota is well underway, and steps should be taken to slow this 
dramatically. 

To test community theory about invasion-favouring characteristics of species and 
habitats, and to identify potentially harmful exotic species, we require simultaneous long-term 
surveys of species being introduced, species becoming established, and species having a sig-
nificant ecological impact. Without these data, some of which may exist but are not readily 
available to aquatic ecologists, 'best-guess' assessment of uncertainty based on conceptual 
models of invasions (Ruesink et al. 1995) is the best we can do, short of experimental work 
before or early during an invasion. 

As demonstrated for pumpkinseed sunfish, the community impact that a given species 
has cannot be predicted by small-scale experimentation. Large-scale, long-term experiments are 
most realistic, but are expensive, slow in producing conclusions, and often unacceptable (and 
often illegal) for not yet established exotics. Yet, they may be appropriate management tools for 
recently established and still-spreading important, exotic species. Otherwise, scaling algorithms 
for extrapolating small-scale, short-term experiments to the management scale await discovery. 

Because of high impact on native species and high rates of dispersal within a water body, 
aquatic exotic species may often extirpate native species. The extent to which global extinction 
occurs depends on the number of landscape units (lakes, stream reaches) in the native range 
relative to the number of landscape units colonized by the exotic species. Regions with high 
endemism should be identified and protected from exotic species. 
 
Recommendations for regulation and natural resource management 

Given the currently poor statistical basis for risk analysis and the unpredictably high 
ecological and economic cost of some exotic species, we concur with Ruesink el al. (1995) in 
recommending that regulatory agencies assume that any candidate species for introduction is 
guilty until proven innocent. The reactive mode of natural resource management, e.g. when faced 
with recently established exotics like zebra mussel and ruffe (Gymnocephalus cernuus) in the 
North American Great Lakes, has been expensive and unsuccessful. 

Clearly, until risk assessment of exotics is more refined, large dividends would be reaped 



by doing the obvious: preventing introduction in the first place with stringently enforced 
prohibitions on accidental (e.g. ballast water regulations, Chesapeake Bay Commission 1995; 
Glenn 1996) and intentional (e.g. restrictions and public education regarding the aquarium trade) 
importation of exotic species, and on rigorous screening and strict management of allowed 
species. Instead of lists of prohibited species (common practice in the USA and other countries), 
regulatory agencies should have (short) lists of acceptable species. 
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