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ABSTRACT

While many RNA-binding proteins (RBPs) bind RNA in a sequence-specific manner, their sequence preferences alone do not
distinguish known target RNAs from other potential targets that are coexpressed and contain the same sequence motifs.
Recently, the mRNA targets of dozens of RNA-binding proteins have been identified, facilitating a systematic study of the
features of target transcripts. Using these data, we demonstrate that calculating the predicted structural accessibility of
a putative RBP binding site allows one to significantly improve the accuracy of predicting in vivo binding for the majority of
sequence-specific RBPs. In our new in silico approach, accessibility is predicted based solely on the mRNA sequence without
consideration of the locations of bound trans-factors; as such, our results suggest a greater than previously anticipated role for
intrinsic mRNA secondary structure in determining RBP binding target preference. Target site accessibility aids in predicting
target transcripts and the binding sites for RBPs with a range of RNA-binding domains and subcellular functions. Based on this
work, we introduce a new motif-finding algorithm that identifies accessible sequence-specific RBP motifs from in vivo binding
data.
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INTRODUCTION

In eukaryotic cells, post-transcriptional regulation of

mRNA stability (Grigull et al. 2004; Tadros et al. 2007),
translation (Wharton et al. 1998), localization (Lecuyer

et al. 2007), and splicing (Blencowe 2006) involve the

targeting of transcripts by various RNA-binding proteins

(RBPs) that recognize cis-elements in the transcript se-

quence. To map out post-transcriptional networks (Keene

2007), transcripts associated with RBPs have been identi-

fied in genome-wide assays (Overall et al. 2004; Keene et al.

2006). In many cases, these target sets are enriched for short
RNA sequence motifs (Gerber et al. 2004, 2006; Hogan

et al. 2008; Ray et al. 2009) that reflect the sequence-

binding preferences of the assayed RBPs. However, these

sequence preferences do not provide sufficient specificity to

distinguish the RBP-associated transcripts from unbound

transcripts containing the same short sequence motifs.

While some RBPs recognize their binding sites within a

hairpin loop (e.g., Vts1p [Aviv et al. 2006]), most mRNA-

binding RBPs bind unstructured single-stranded RNA

(ssRNA) (Ellis et al. 2007), so specific RNA secondary
structures are unlikely to provide the required specificity

for many RBPs, thus limiting the applicability of recent

algorithms developed to identify secondary structures

bound by RBPs (Rabani et al. 2008; Foat and Stormo 2009).

mRNA secondary structure may instead provide speci-

ficity by sequestering potential RBP target sites within

regions of double-stranded RNA (dsRNA), thus rendering

them nonfunctional. This is an extension of the long-held
view that sequence-specific RBPs, unlike DNA-binding

proteins, require at least some of their binding site to be

single-stranded (Mattaj and Nagai 1994). This belief stems

from the fact that the A-form helical structure typically

adopted by dsRNA has a major groove that is narrower

than that of the B-form helix of dsDNA, thus preventing

amino acid side chains from accessing and recognizing the
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bases within dsRNA. This belief is supported by recent

surveys (Draper 1999; Allers and Shamoo 2001; Jones et al.

2001) of structures of RBP–RNA complexes deposited in

the PDB (Berman et al. 2000) that report that base-specific

interactions between RBPs and RNA only occur in regions

of ssRNA or near irregularities in the RNA helix. These

irregularities result from unpaired bases (i.e., bulges and

internal loops) and have the effect of widening the major
groove.

This bias toward structurally accessible binding sites can

be exploited to improve in vitro predictions of binding of

RBPs to RNAs. A role for accessibility in RBP binding has

long been supported by in vitro selection (Levine et al.

1993; Gao et al. 1994) and measurements of in vitro bind-

ing affinity (Hackermuller et al. 2005). More recently, motif-

finding algorithms have been developed that use measures of
RNA single-strandedness to more accurately recover some

RBP motifs from in vitro selection binding data (Hiller et al.

2006). In all cases, computational models of RNA folding

were used to predict RNA secondary structure.

However, despite its predictive value in vitro, structural

accessibility has not been used to aid in the prediction of in

vivo binding of RBPs to mRNA, in part because of the

perceived difficulty of accurately predicting mRNA second-
ary structure computationally. Popular RNA secondary

structure prediction methods use simplified energy models

and largely ignore the effect of cotranscriptional folding of

mRNA on its secondary structure (see Geis et al. 2008,

Kinwalker program). These approximations are thought to

have a large impact on the accuracy of their predictions for

longer RNAs such as mRNAs. However, despite these

deficiencies, structural accessibility calculated by these pro-
grams does predict the in vivo binding sites of microRNAs

(miRNAs) (Robins et al. 2005; Kertesz et al. 2007; Long

et al. 2007) and small interfering RNAs (siRNAs) (Tafer

et al. 2008), thus demonstrating that these methods do

predict single-strandedness with some degree of accuracy.

Nonetheless, using target-site accessibility to predict in

vivo RBP binding has remained largely untested because of

obvious differences in RNA binding by RBPs versus
miRNAs/siRNAs. Unlike these noncoding RNAs (ncRNAs),

many RBPs function in the nucleus where mRNA second-

ary structure may be much more constrained by large

heterogeneous ribonucleoprotein complexes (hnRNPs) as-

sociated with the transcript that are displaced during the

export of the mRNA to the cytoplasm or during the first

round of translation. It has also been suggested, based on

the presence of RNA helicases and potential RNA chaper-
ones within hnRNPs, that mRNA secondary structure

undergoes extensive remodeling to facilitate RBP binding

(Rajkowitsch et al. 2007). Furthermore, although miRNAs

and siRNAs compete for the same binding interface as

mRNA secondary structure, RBPs can bind RNA through

a variety of interfaces, some of which may require only

small disruptions in A-form helical structure to expand the

major groove, thereby permitting recognition of bases

flanking the disrupted region. Under this circumstance,

only a subset of the bases within the sequence-specific

binding site need be unpaired.

The recent availability of mRNA target sets for a large

number of RBPs from yeast, flies, and humans has allowed

us to assess the impact of structural accessibility on

sequence-specific binding of a diverse set of RBPs that
carry a variety of RNA-binding domains and participate in

a number of subcellular functions. Through a systematic

analysis, we demonstrate that target site accessibility,

predicted based on intrinsic mRNA secondary structure,

plays a general role in RBP binding. Incorporating target

site accessibility into computational models of sequence-

specific RBP binding yields a statistically significant overall

improvement in their ability to predict the outcome of
large-scale assays of in vivo RBP–mRNA interactions for

the majority of sequence-specific RBPs.

RESULTS

To investigate the role of mRNA secondary structure on

RBP binding, we compiled data on the in vivo mRNA

targets of a set of 30 eukaryotic RBPs from Saccharomyces

cerevisiae, Drosophila melanogaster, and humans derived

from RNP immunoprecipitation microarray (RIP-chip)

copurification assays. Details of each data set are available

in the Materials and Methods and Supplemental File 1.

We assessed the impact of mRNA secondary structure

on putative RBP binding sites by scoring their accessibility

and determining whether more accessible target sites were

more likely to be bound. We define ‘‘target site accessibility’’
as the probability that the entire target site is unpaired as

estimated by a computational method, RNAplfold (Bernhart

et al. 2006), which considers the relative stabilities of all

possible secondary structures containing the site and its

flanking sequence (see Materials and Methods for details).

Target site accessibility predicts mRNA targets
of Pumilio and Puf3p

We began our investigation by examining RIP-chip-derived

target sets for Drosophila Pumilio (Gerber et al. 2006),

a well-studied protein with conserved RNA binding spec-

ificity, and S. cerevisiae Puf3p (Gerber et al. 2004), the likely

yeast ortholog of Pumilio. These two proteins, along with

the Fem-3-binding factor in Caenorhabditis elegans, share a

conserved RNA-binding domain consisting of eight repeats
of the Pum-homology domain (PumHD). To date, all

known Puf proteins bind their targets through this domain

and subsequently regulate the stability and/or translation of

these targets (Wharton et al. 1998; Olivas and Parker 2000;

Goldstrohm et al. 2006; Hook et al. 2007). Structural

(Wang et al. 2002; Miller et al. 2008; Zhu et al. 2009),

small-scale (Dalby and Glover 1993; Jackson et al. 2004),
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and large-scale (Gerber et al. 2004,

2006) studies are consistent with a con-

served single-stranded consensus bind-

ing sequence, UGUAHAUA, for Pumilio

and Puf3p (H indicates that A, C, or U is

permitted).

To evaluate the role of accessibility in

Puf3p and Pumilio targeting in vivo, we
defined a set of mRNAs likely to be

bound by fly Pumilio and yeast Puf3p

based on their relative enrichment in

the bound fraction of mRNA using FDR

cutoffs established in the original stud-

ies (Gerber et al. 2004, 2006). As a neg-

ative control, we also defined a set of

mRNAs expressed under the queried
conditions, and thus available for bind-

ing, but that were not enriched in the

coimmunoprecipated fraction (see Sup-

plemental File 1 for details). We called

these transcripts ‘‘unbound.’’ All exper-

imentally validated target sites to date

for Pumilio and Puf3p occur in the

39 UTR, so we scanned the 39 UTRs of
mRNAs in the bound and unbound sets

and identified those that contained

a match to the UGUAHAUA consensus.

As expected, a larger proportion of

bound transcripts contained a 39 UTR

match to UGUAHAUA (Puf3p 75% vs.

9%, P < 3.0 3 10�94, Pumilio 51% vs.

12%, P < 1.0 3 10�81, Fisher’s Exact
Test). However, there were more un-

bound transcripts with matches than

bound ones (158 vs. 246 in yeast,

241 vs. 482 in fly) (Fig. 1A,B). As such,

target-site recognition for Pumilio and

Puf3p cannot be explained by RNA

sequence preference alone. To deter-

mine whether target site accessibility could distinguish
unbound transcripts from bound ones, we estimated the

probability that each match to UGUAHAUA was single-

stranded, using a computational method that predicts

target site accessibility based only on RNA sequence

flanking the target site (see Materials and Methods), and

compared the accessibility of matches in the 39 UTRs of

bound and unbound transcripts. Multiple consensus sites

within the same 39 UTR may increase the affinity of the
RBP for the mRNA; to control for this, we only compared

bound and unbound transcripts with the same number of

matches. Figure 1, C and D, contains the results for

transcripts with a single match in their 39 UTR, which

constitute the vast majority of transcripts. The results for

transcripts with multiple matches are similar (Supplemental

Table 1).

As Figure 1 shows, the median accessibility of sites in

bound mRNAs was almost twofold higher than in unbound
mRNA in both yeast (Fig. 1C, inset) and fly (Fig. 1D, inset).

Furthermore, receiver operating characteristic (ROC) anal-

ysis demonstrated that target-site accessibility is a statisti-

cally significant predictor of coimmunoprecipitation of

a transcript with Pumilio or Puf3p (Fig. 1C,D; Puf3p area

under ROC [AUROC] curve = 0.74, P = 3 3 10�14;

Pumilio AUROC = 0.65, P = 3 3 10�9, Wilcoxon–Mann–

Whitney test). These results demonstrate that target site
accessibility plays a role in RBP binding, and thus target

mRNA selection, by Pumilio and Puf3p.

We also performed a similar test for one of the hu-

man homologs of Pumilio, human Pum1, using RIP-chip-

derived target sets from Morris et al. (2008) (Supplemental

Fig. 1). Although in this case there are more bound than

FIGURE 1. Puf3p and Pumilio consensus binding sites have higher accessibility in the 39
UTRs of their bound mRNA targets. (A,B) While the consensus matches were significantly
enriched in the set of bound transcripts for yeast Puf3p and fly Pumilio, more unbound
transcripts contained consensus matches than bound ones (158 vs. 246 for yeast Puf3p [A],
241 vs. 482 for fly Pumilio [B]). (C,D) Comparison of site accessibility of transcripts coimmu-
noprecipitating (co-IPing) with Puf3p (C) and Pumilio (D) and those coexpressed but not co-
IPing. All compared transcripts have only a single copy of the Puf3p/Pumilio consensus
UGUAHAUA (H matches A, C, or U) in their 39 UTRs (132 bound and 235 unbound
transcripts for Puf3p; 201 bound and 414 unbound transcripts for Pumilio). The ROC curve
(solid line) plots the sensitivity (i.e., the proportion of bound transcripts recovered; vertical
axis) against [1 � specificity] (i.e., the proportion of unbound transcripts recovered;
horizontal axis) as the accessibility threshold is adjusted from the highest to the lowest.
(Inset) Median site accessibility for the bound set (dark gray bar) and the unbound set (light
gray bar). Error bars represent the 95% confidence interval of the median calculated using
5000 bootstrap samples. P-values were calculated using the Wilcoxon–Mann–Whitney Rank
Sum test.
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unbound transcripts with 39 UTR copies of UGUAHAUA

(Supplemental Fig. 1A), accessibility remained a statistically

significant predictor in determining Pum1 binding upon

comparison of bound versus unbound transcripts contain-

ing the same number of consensus sites in their 39 UTRs

(Supplemental Fig. 1B; Supplemental Table 1).

Accessibility improves motif-based mRNA target
prediction for diverse RBPs

Having established proof-of-principle that target site ac-

cessibility, predicted on the basis of mRNA sequence alone,

has a measureable impact on RBP binding in vivo, we

sought to determine the generality of this observation by

assessing the impact of target site accessibility for RBPs

with a diverse range of RNA-binding domains, sequence-
binding preferences, and subcellular functions. To do so,

we compiled RIP-chip data and consensus sequence motifs

for additional RBPs from yeast and human. Of 18 such

RBPs (including Puf3p, Pumilio, and Pum1), we removed

three (Pab1p, Nsr1p, Nrd1p) whose bound sets were not

significantly enriched for the reported consensus sequence

(Wilcoxon–Mann–Whitney P-value > 0.05) and one RBP

(Ssd1p) for which only seven transcripts matched the
consensus. Thus, we were left with 14 likely sequence-

specific RBPs with a large enough number of putative target

mRNAs for our analysis. Although the fact that these RBPs

are sequence-specific suggests that at least some portion of

their binding site needs to be structurally accessible, many

of these RBPs lack crystal structures, so it is not clear how

much of the site needs be accessible or whether the

structural accessibility of the site can be predicted by
computational folding of the mRNA sequence without

consideration of the influence of trans-factors on the

mRNA’s secondary structure. For each of these RBPs, we

again used the relative enrichment among mRNAs copu-

rifying with the RBP, as measured using the RIP-chip assay,

to define its bound mRNA transcripts and a set of unbound

mRNA transcripts that were coexpressed with the RBP but

showed no evidence of being bound (see Supplemental File
1 for details).

Some of the RBP consensus sites matched in a large

number of positions, making it difficult to directly compare

transcripts with the same number of potential target sites.

We therefore adopted a new and more general analytical

procedure (described schematically in Fig. 2) that com-

pared all bound transcripts with all unbound ones and

scanned the entire mature mRNA sequence for binding
sites. To assess the predictive value of target site accessi-

bility, we assigned each transcript a score equal to the sum

of the accessibilities of sites in the transcript, and then

evaluated how well that score distinguished bound and

unbound transcripts. We call this score the ‘‘total accessi-

bility’’ and abbreviate it by ‘‘#ATS’’ because it is equal to

the expected number (#) of Accessible Target Sites per

transcript. To control for the fact that transcripts with

more RBP binding sites were more likely to be bound, we

also assessed how well the number of target sites (‘‘#TS’’)

in a transcript predicted whether or not it was bound.

As before, we evaluated the predictive accuracy of both

#ATS and #TS using AUROC. We tested for a significant
difference between the two AUROCs by combining a per-

mutation test with the Delong–Delong–Clarke–Pearson pro-

cedure (DeLong et al. 1988; see Materials and Methods).

Considering only the transcripts that contained at least

one copy of the consensus sequence, for 13 of the 14 RBPs

there was a statistically significant increase in #TS or #ATS

among the bound transcripts (P < 0.05, Wilcoxon–Mann–

Whitney) compared with unbound. These 13 RBPs, along
with their AUROCs, are displayed in Figure 3. For 10 of

13 RBPs, there was a statistically significant increase in

AUROC when #ATS versus #TS was used to predict

whether a transcript would be bound. In some cases the

increase in AUROC was quite large, while in other cases it

was more modest. However, it should be noted that

FIGURE 2. Schematic of the in silico assay for measuring the impact
of target site accessibility on RBP binding. The flowchart displays the
procedure for evaluating accuracy at distinguishing bound and
unbound sets of mRNA using either #ATS- or #TS-based scoring of
an RBP consensus sequence. For each RIP-chip data set, transcripts
were sorted in decreasing order by their relative enrichment among
mRNAs copurifying with the RBP. We defined those with relative
enrichment larger than the ‘‘positive threshold’’ to be the ‘‘bound’’ set
of transcripts and those with relative enrichment smaller than the
‘‘negative threshold’’ to be the ‘‘unbound’’ set of transcripts. In this
way, it was guaranteed that the transcripts in the unbound set were
coexpressed with the RBP. We then identified all consensus-sequence
matches (which we call ‘‘target sites’’) in each transcript and removed
transcripts with no target sites. We then ranked transcripts in
decreasing order of number of target sites and used this ranking to
calculate the #TS AUROC. To calculate #ATS, we first calculated the
accessibility of each target site. This calculation considered all possible
secondary structures, weighted according to their stability, so even
sites that were single-stranded or paired in the most probable
secondary structure (as displayed) could have a value <1 or >0,
respectively. We ranked transcripts in decreasing order by the sum of
the accessibilities of their target sites (i.e., #ATS) and calculated the
associated AUROC.
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because random performance for AUROC is 50%, absolute

increases in AUROC translate into relative decreases in
error that are at least twice as large (where error is

measured as 100% � AUROC). For example, although

the average absolute increase in AUROC for all motifs in

Figure 3 is 9.3%, the average relative decrease in error is

22.1%. Notably, in no case did #ATS have an AUROC

significantly smaller than the AUROC for #TS.

Target site accessibility predicted not only the targets of

proteins thought to bind unstructured ssRNA (e.g., the Puf
family of proteins) but also the targets of Vts1p, a stem–

loop-binding protein that recognizes loops containing

CNGG(N)0-3 (Aviv et al. 2006). Indeed, our procedure was

sensitive enough to detect the fact that Vts1p binds loops of

length four bases or more: #ATS had a significant improve-

ment in accuracy over #TS when used with the CNGG motif

but not a CNGGN motif because the latter would score four-

base loops bound by Vts1p as inaccessible.
In summary, target site accessibility is a statistically

significant predictor of in vivo binding for 71% (10 of

14) of the sequence-specific RBPs tested.

Improvement due to accessibility is not explained
by nucleotide composition biases

We performed a number of computational controls to

confirm that the observed role of target site accessibility

was not due to other potential properties of functional

binding sites. One possible alternative explanation for the

observed differences is that functional RBP binding sites are

in regions of biased, low-order nucleotide composition. For

example, many cis-regulatory mRNA elements are located
in 39 UTRs, which tend to be AU-rich. This AU-richness of

flanking sequence has been suggested as an explanation for

the predictive value of accessibility for miRNA binding

(Grimson et al. 2007). However, if this were the case for

RBPs, then one would expect either (1) that the effect

would disappear if our analysis was restricted by only

scanning sites in the 39 UTR or (2) that the flanking regions

around target sites in bound transcripts would be biased
toward a single type of dinucleotide. However, target site

accessibility remained a strong predictor of in vivo bind-

ing when we restricted our scans to 39 UTRs (Fig. 4).

FIGURE 3. Target site accessibility predicts in vivo binding for a diverse range of RBPs. Bar graphs compare the accuracy of #ATS and #TS at
predicting bound transcripts based on a given consensus. To the left of the bar graph, each row is labeled by the RBP, the associated consensus
sequence used for classification, and a cartoon indicating the species of origin (yeast, fly, or human). Some RBPs have multiple reported
consensus sequences; these are grouped and indicated by a vertical bar. To the right of the bar graph, for each RBP, we show its known subcellular
localization and its known RNA-binding domains (using SMART domains). (Left localization column) Nuclear localization (if any) as indicated:
(Hn) hnRNP, (Nu) nucleus; (right localization column) cytoplasmic localization as indicated: (Cy) cytoplasm, (Mi) mitochondrion, (Ri)
ribosome, (SG) stress granule. Supplemental File 1 contains the evidence for the reported localization and domains. The statistical significance of
differences between #ATS AUROC (green bars) and #TS AUROC (yellow bars) was calculated using the Delong–Delong–Clarke–Pearson
procedure: (*) P < 0.05, (**) P < 0.01, (***) P < 10�4. Exact P-values are in Supplemental File 2.
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Furthermore, although there were statistically significant

differences in the dinucleotide composition of sequence

flanking sites in bound transcripts, the enriched and

depleted dinucleotides depended on the consensus se-

quence and tended to favor dinucleotides less likely to pair

with the consensus (Fig. 5). Indeed, most dinucleotides

were significantly enriched for some RBPs and significantly

depleted for others. We also confirmed that the increase in
predictive power was not due to the sequence composition

of the consensus; when we repeated our analysis using the

reverse consensus (e.g., CNGG became GGNC), we only

saw a significant increase for #ATS when the reversed

consensus was a strong match to the forward consensus

(Supplemental Fig. 2).

Many RBPs require the entire target site
to be accessible

We next sought to determine whether different approaches

to calculating target site accessibility had an impact on

the performance of our assay. Different approaches make

different assumptions about the role of target site accessi-

bility in RBP binding. The method we employed, as

proposed by Hackermuller and coworkers (Hackermuller
et al. 2005), requires the whole site to be unpaired for the

protein to bind. However, other methods, including the EF

option of MEMERIS (Hiller et al. 2006), and some methods

used to predict target site accessibility for miRNAs (Robins

et al. 2005; Ellis et al. 2007; Kertesz et al. 2007; Long et al.

2007; Geis et al. 2008; Tafer et al. 2008), allow target sites to

be partially paired. To determine which of these approaches

most accurately predicts in vivo RBP binding, we compared

transcripts scored by #ATS based on the accessibility of the

whole target site and those scored by #ATS when target site

accessibility was approximated by either the average or the

minimum single-base accessibility of all bases in the target

site.
The estimates of target site accessibility from these two

methods (single-base and whole-site) diverge most when

the target site was partially paired. For example, if in all

stable mRNA secondary structures exactly half of the bases

in the target site were paired, then the average single-base

accessibility for that site would be 0.5 but the accessibility

of the whole-target site would be 0. On the other hand, if

the target site was completely unpaired in some structures
and completely paired in others, then both the average

FIGURE 4. 39 UTR target site accessibility predicts in vivo binding.
Results are presented as in Figure 3, but only target sites within the 39
UTRs of transcripts were used to calculate #TS and #ATS. (+)
AUROC is significantly different from random (Wilcoxon–Mann–
Whitney, P < 0.05). Exact P-values are in Supplemental File 2.

FIGURE 5. Differences in dinucleotide composition around putative
RBP binding sites between bound and unbound transcripts. (A) Heat
map showing the t-statistic of the difference in di- and single-
nucleotide frequencies in 40 bases upstream and downstream of the
target site. (Rows) The RBP and its consensus binding sequence
motifs (in IUPAC representation) used to identify target sites.
(Columns) Single nucleotide versus dinucleotide. Rows and columns
were ordered based on two-dimensional hierarchical clustering. Those
t-statistics with absolute value <2 are not statistically significant at
a = 0.05 and are set to 0; those with an absolute value >4 remain
statistically significant after a Bonferroni correction and are thresh-
olded at 4 or �4, as appropriate. (B) As for A, but using 20 bases up-
and downstream.
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single-base accessibility and the whole-site accessibility

would be exactly the same (Fig. 6A).

When we compared the predictive accuracy of #ATS

calculated using whole-site, average single-base, and min-

imum single-base accessibilities (Supplemental Table 2), we

found that for six proteins (Puf3p, Puf4p, PTB, HuR,

Khd1p, Vts1p) both of the single-base approximations

significantly decreased predictive accuracy (Fig. 6B). Four
of these six—Puf3p (Zhu et al. 2009), Puf4p (Miller et al.

2008), PTB (Oberstrass et al. 2005), and Vts1p (Aviv et al.

2006)—have solved co-crystal structures showing that the

RBP binds to a completely unpaired target site, and there is

other evidence to suggest that the entire HuR binding site

must be unpaired (Levine et al. 1993; Gao et al. 1994;

Meisner et al. 2004). Our data thus suggest that Khd1p will

also require its entire binding site to be unpaired. It should
be noted that we found no instances where either of the

single-base approximations significantly improved accuracy

compared with the whole-site method.

The impact of other variations in the calculation
of target site accessibility

We evaluated two other methods for calculation of target
site accessibility. First, when transcripts were scored using

the maximum accessibility of the target sites in the

transcripts, AUROC scores almost always decreased relative

to #ATS, often significantly (Supplemental Table 2); the

only exceptions were Vts1p and Msl5p. These results

suggest that multiple accessible sites in the same transcript

contribute to binding. Second, we investigated whether also

considering the accessibility of sequence flanking the target

site helped predict binding. Unlike the case for miRNAs
(Kertesz et al. 2007), we found that for RBPs there was little

improvement in AUROC when a measure of flanking

region accessibility was added to target site accessibility

(Supplemental Table 2).

In vivo sequence motif finding using accessibility

We next attempted to recover the RBP sequence-binding
preferences from the in vivo data using motif-finding

methods that either did or did not incorporate target site

accessibility. We carried out these analyses for two reasons:

First, we wanted to ensure that the increased predictive

accuracy of accessibility did not arise from how the RBP

consensus sequences were originally defined; second, we

wished to assess whether incorporation of accessibility as

a feature improved either the accuracy or the statistical
power of RBP motif finding based on in vivo copurification

data. We performed this motif-finding

analysis on all yeast RBPs in our collec-

tion: These included 14 with previously

associated motifs and 12 with no asso-

ciated sequence motifs (Bfr1p, Cbc2p,

Cbf5p, Gbp2p, MRN1p [also known

as Ypl184c], Nab3p, Nab6p, Nop56p,
Npl3p, Puf1p, Scp160p, and Tdh3p).

We used a discriminative motif-finding

procedure that attempted to identify

consensus sequences that, when scored

with either #ATS or #TS, best distin-

guished bound and unbound tran-

scripts by being more often present

and/or having either more sites (for
the #TS-derived motif) or more acces-

sible sites (for the #ATS-derived motif)

among the bound transcripts (see

Materials and Methods). In Figure 7,

we report two motifs for each RBP: one

based on #TS and the other #ATS.

These motifs were derived from the

entire set of bound and unbound tran-
scripts. However, the AUROCs that we

report for #ATS and #TS were calcu-

lated on held-out data using a cross-

validation training procedure that we

employed to avoid over-fitting (see

Materials and Methods). Motifs learned

during cross-validation were similar to

FIGURE 6. Target site accessibility is a better predictor than average/minimal accessibility of
single bases in the target site. (A) Diagrams represent examples of how secondary structure
leads to differences in the calculated target site accessibility when the calculation is for the
entire site (green), minimal single-base accessibility (magenta), or average single-base
accessibility (light blue). In each case, two equally stable structures are shown, and the
numbers represent accessibility calculated for a four-base site assuming each secondary
structure is equally probable. (B) As per Figure 3 except that light blue and magenta bars show
AUROCs for #ATS scoring when the target site accessibility is replaced with the average and
minimal accessibility of all single bases in the target site. Exact P-values are in Supplemental
File 2.
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those reported in Figure 7. (Supplemental File 1 contains all

learned motifs; note we do not display consensus sequence

motifs for the nine RBPs for which our procedure was

unable to find motifs whose predictive accuracy was
significantly better than random.)

Both #ATS-based and #TS-based motifs were consistent

with previously determined binding preferences for all nine

yeast RBPs displayed in Figure 3. Also consistent with

Figure 3, the AUROC of the #ATS motif on held-out data

was significantly higher than that of the #TS for seven of

the nine RBPs reported therein. As expected, the #ATS-

trained motif for Vts1p recovered the bound loop sequence
and achieved a higher AUROC than the #TS-trained motif

which attempted to model the stem sequence. For eight of

the nine RBPs, there was also a significant increase in

AUROC when we used #ATS to score the held-out data

based on the #TS-trained motif (the only exception was

Vts1p). Thus, even motifs trained to maximize the #TS-

based score remained more predictive of RBP binding

when scored with #ATS, demonstrating that target site
accessibility increased accuracy regardless of how the se-

quence motif was derived.

Figure 7 also contains two RBPs not previously associ-

ated with motifs, Gbp2 and MRN1/Ypl184c. For these

RBPs, the #ATS-derived and #TS-derived motifs were

similar and there was a statistically significant increase in

accuracy when scoring either of these motifs using #ATS,

thus following the same pattern as most of the RBPs already

associated with motifs. These results

suggest that these two RBPs also bind

unstructured ssRNA. Supplemental Fig-

ure 3 displays motifs for the six other

RBPs: For three of these RBPs (Bfr1p,

Scp160p, and Tdh3p), the #ATS-de-

rived motif was contained within the

motif discovered by #TS, and the
AUROC for #ATS scoring based on

the #TS-derived motif was smaller than

the two other AUROCs. This pattern

mirrors Vts1p, suggesting that the ad-

ditional bases in the #TS-derived motif

are likely to be inaccessible.

In summary, our motif analysis dem-

onstrated two things. First, the ability
of target site accessibility to improve

accuracy (as shown in Fig. 3) is not an

artifact of how the previously reported

RBP sequence motifs were defined;

even motifs trained to maximize #TS

AUROC in our assay underwent a sig-

nificant improvement in accuracy when

scored using #ATS. Second, the #TS-
and #ATS-derived motifs were very

similar for RBPs that bind unstructured

ssRNA and for these RBPs, we often

observed no significant difference in AUROCs when the

two motifs were scored using #ATS. This observation

suggests that mRNA secondary structure functions primar-

ily to sequester nonfunctional matches to an RBP’s se-

quence preferences rather than to reveal binding sites for
RBPs with highly degenerate sequence preferences.

DISCUSSION

We have demonstrated that binding-site accessibility has

a significant impact on mRNA target selection for 12 of 14

RBPs (86%) with previously determined sequence-binding

preferences. Also, using a novel discriminative in vivo motif
finding approach that incorporates target site accessibility,

we were able to identify two additional RBPs, Gbp2p and

MRN1p, that are likely to bind unstructured ssRNA.

Together, these 14 RBPs include five different classes of

RNA-binding domains (RRM, KH, Pum-repeats, SAM,

C2H2-Zn-finger), are not biased toward either nuclear or

cytoplasmic function, and include examples of RBPs

known to bind both unstructured ssRNA and loop se-
quences. Thus, accessibility predicts target selection by

RBPs with a diverse set of RNA-binding domains that bind

within different secondary structure contexts and that have

different subcellular locations of binding.

We have also identified some differences between fea-

tures of RBP binding sites and miRNA and siRNA binding

sites. First, as previously reported for in vitro binding

FIGURE 7. RBP motifs optimized to distinguish bound versus unbound transcripts. Each
RBP is shown associated with two motifs: the #ATS-derived motif with the highest AUROC
(green box) and the #TS-derived motif with the highest AUROC (yellow box) after motif
finding was performed on the complete set of bound and unbound transcripts. (Gray
background) Overlap of manually aligned regions of the #ATS and #TS motifs for the same
RBP. The bar graphs display median AUROC over 30 held-out test sets for motifs trained to
maximize #ATS AUROC and scored with #ATS (green bar), trained to maximize #TS AUROC
and scored with #TS (yellow bar), and trained to maximize #TS AUROC but scored with #ATS
(orange bar). We assessed P-values for differences in distributions of 30 AUROCs on matched
test sets using the Wilcoxon sign-rank test. (Italicized RBP names) The RBP has a previously
defined consensus sequence, (bold italics) a significant increase in #ATS reported in Figure 3.
The P-value threshold is indicated as for Figure 3, and exact P-values are available in
Supplemental File 2. Subcellular location and RBD domains are displayed for RBPs not
represented in Figure 3.
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(Hiller et al. 2006), allowing partial pairing of putative RBP

binding sites significantly reduces in vivo predictive accu-

racy for six RBPs. Five of these RBPs have previously been

reported to require their entire binding site to be unpaired,

strongly suggesting that the sixth, Khd1p, will have a similar

requirement. It should be noted that we never observed an

advantage to allowing partial pairing. Also, unlike miRNA

binding (Kertesz et al. 2007), requiring flanking sequence
also to be accessible never significantly improved predictive

accuracy.

Our observations, taken together with similar observations

on the role of mRNA secondary structure in small regu-

latory RNA targeting (Kertesz et al. 2007; Bompfunewerer

et al. 2008; Long et al. 2008; Tafer et al. 2008), demon-

strate that accessibility plays a role in target selection

throughout the lifetime of an mRNA. Because in all cases
structural accessibility was predicted using methods that

consider only the mRNA sequence, these data suggest that

intrinsic mRNA secondary structure forms prior to trans-

factor binding and constrains subsequent binding events at

all levels of post-transcriptional regulation. These data also

provide a possible mechanism by which the clustering of

target sites in the transcript increases the likelihood of RBP

binding (Stadler et al. 2006; Ule et al. 2006; Akerman et al.
2009): Many of the RBP consensus motifs that we consid-

ered do not form stable RNA secondary structures when

concatenated. Thus, site clustering, in addition to pro-

viding more target sites for the RBP, cooperatively en-

hances the accessibility of sites in the cluster. Preferential

RBP binding at accessible target sites also provides a mech-

anism that explains why accessibility modulates the cis-

regulatory impact of known splicing enhancer and sup-
pressor elements on nearby splice sites (Hiller et al. 2007).

Our data predict that HuR, Puf3p, and Puf4p require

their whole binding site to be accessible and are thus

consistent with previous in vitro studies for HuR (Levine

et al. 1993; Gao et al. 1994; Meisner et al. 2004; Ray et al.

2009) and solved co-crystal structures for Puf3p (Zhu et al.

2009) and Puf4p (Miller et al. 2008). However, our

observations appear to conflict with recent reports for
HuR (Lopez de Silanes et al. 2004) and Puf3p and Puf4p

(Rabani et al. 2008), in which the binding sites we propose

for these RBPs are predicted to be partially paired within

a hairpin. There are a number of possible explanations for

this disparity. First, it is possible that these proposed

hairpins do not form because they are not energetically

favored. The algorithms used to identify these stem–loops,

COVE (Eddy and Durbin 1994) and RNApromo (Rabani
et al. 2008), employ Covariance Models (CM) to predict

RNA secondary structure. CMs consider only the existence

of possible pairings but consider neither their thermody-

namic stability nor the impact of flanking sequence on the

predicted structure. Indeed, as stated in the user guide to

COVE, ‘‘covariance models routinely overpredict [RNA

secondary] structure, because a) they don’t look for

Watson–Crick complementarity and b) it is often statisti-

cally advantageous for the model to pair as many posi-

tions as possible’’ (Eddy 1993; Guide.tex accessed from

ftp://selab.janelia.org/pub/software/cove/cove-2.4.4.tar.Z on

February 7, 2010). Another explanation may that the

hairpins do form but are comparatively less stable in bound

than unbound mRNA. If true, this would be consistent with

our observations because our model considers only the
relative, not the absolute, accessibility of sites in bound

mRNAs.

Our results have important consequences for large-scale

analyses of RNA–protein interactions and RNA processing,

both experimentally and computationally. We have shown

that target-site accessibility almost always increases—and

never significantly decreases—the ability to predict se-

quence-specific RBP binding to mRNAs. We have also
found that rewarding a transcript for containing multiple

target sites improves predictive accuracy. Thus, methods

that attempt to identify RBP target sites in mRNAs or to

infer regulatory networks should be augmented with target

site accessibility data for all potential binding sites.

Our models do not perfectly reproduce the in vivo

binding data, suggesting that there remains room for

further improvement. Although some of the errors that
our models make may be due to external factors, such as

noise in the original experimental assay or our inability to

precisely recover the mRNA transcript sequence targeted by

the RBP, many errors are likely to be due to in vivo

regulatory mechanisms that are not captured by our model.

First, our model considers the accessibility of target sites in

an mRNA but does not take into account whether or not

that site is associated with a particular element of RNA
secondary structure such as a hairpin loop. Indeed, we have

recently found that searching for Vts1p binding sites only

within hairpin loops improves the predictive power of our

model (K Cook and Q Morris, unpubl.). Second, we did

not model possible competition for binding sites by other

trans-factors or cooperative binding with different trans-

factors. These factors could, for example, be responsible for

our poor performance at predicting Pum1 sites because
Pum1 has similar binding preferences to Pum2 and there is

an enrichment of microRNA binding sites around human

Pum sites (Galgano et al. 2008). Third, the method that we

used to predict target site accessibility considers neither the

effects on RNA secondary structure of other bound trans-

factors nor long-range interactions within the mRNA (e.g.,

Kreahling and Graveley 2005).

Despite these caveats, our analysis demonstrates that
mRNA secondary structure has a significant impact on

RBP binding in the absence of any of these other consider-

ations, thus suggesting that internal mRNA secondary

structure is an important determinant of RBP binding.

Our results and evaluation framework also provide a means

by which the universality and predictive power (or lack

thereof) of these other possible regulatory mechanisms may
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be demonstrated. Python scripts to reproduce our analysis,

calculate #ATS, assess AUROC, and perform our motif

finding, as well as our detailed benchmark results, are

available in the Supplemental Material.

MATERIALS AND METHODS

RBP copurification and sequence motif
data collection

We used RBP copurification data from six different sources,

though in compiling these data we made extensive use of matched

collections of RBP binding data and consensus sequences com-

piled by Hogan et al. (2008) and Ray et al. (2009). The RBP

copurification data we used were derived from the RNP immu-

noprecipitation–microarray (RIP-chip) assay. To ensure that we

had sufficient statistical power for our analyses, we only used

RBPs that copurified with at least 30 mature mRNA targets.

Supplemental File 1 describes the source of each data set.

Source of transcript sequences

The Drosophila melanogaster (BDGP5.4), Saccharomyces cerevisiae

(SGD1.01), and Homo sapiens (NCB136) transcript sequences

were downloaded from Ensembl using BioMart (http://www.

biomart.org/). For fly and human, we downloaded all cDNA

sequences and defined 39 UTRs as the portion of the cDNA

downstream of the 39 end of the coding sequence, as defined by

Ensembl. Full-length cDNAs including 59 and 39 UTRs were not

available for most yeast genes, so, like Hogan et al. (2008), we

defined the yeast cDNA as the longest ORF corresponding to each

gene plus 200 nucleotides (nt) upstream and 200 nt downstream

of the start and stop codons, respectively, removing any ORF

sequence from the upstream or downstream genes.

Defining bound and unbound sets of transcripts

Transcripts were classified into these two sets by comparing their

relative enrichment in the RNA fraction copurifying with the RBP

to two thresholds. The positive threshold defined the bound set

and the negative threshold defined the unbound set (refer to Fig. 2

for more details and Supplemental File 1 for the thresholds). We

defined relative enrichment using either FDR, Z-score, or LOD as

reported in the original manuscript. Whenever possible, we used

positive and negative thresholds established in the original study

describing the data. However, in some cases we used a more

permissive negative threshold to increase the statistical power of

our analyses.

Quantifying target site accessibility

Target site accessibility was assessed using RNAplfold (Bernhart

et al. 2006). RNAplfold models cotranscriptional folding by cal-

culating base-pair probabilities using a small window of sequence

around the site of interest based on a computational model of

thermodynamic stability of RNA secondary structures. Specifi-

cally, it estimates the probability that either a binding site, or

a single base, is unpaired by calculating local-pair probabilities for

bases with a maximal span of L nucleotides, by sliding a moving

window of size W nucleotides along the input RNA sequence. It

computes the probability that a region of U consecutive nucleo-

tides is unpaired by averaging the probability over all windows of

size W that contain this region. In our experiments, we fixed W =

80 and L = 40 and set U to either the width of the consensus

sequence or to 1 when calculating single-base accessibility. These

parameter settings were previously optimized for predicting

siRNA binding (Bompfunewerer et al. 2008; Tafer et al. 2008).

When calculating target site accessibilities for a 39 UTR site, we

input the entire transcript into RNAplfold to ensure that the

target site accessibility for sites immediately downstream of the

stop codon incorporated coding sequence.

Scoring accessibility of target sites and their
flanking regions

We scored the accessibility of a target site and the flanking region

up to X bases upstream of the site and Y bases downstream by

summing the single base accessibilities (calculated as described

above) for the X upstream and Y downstream bases and then

adding the accessibility of the target site times the length of the

target site. We adopted this procedure, rather than calculating the

accessibility of the site including its flank, because the latter value

often dropped below machine precision (and became inaccurate)

for larger values of X and Y.

Statistical tests for the significance of difference
between two AUROCs

We used the Delong–Delong–Clarke–Pearson (DDCP) (DeLong

et al. 1988) procedure to assess the significance of differences

between the AUROCs on #TS and #ATS. However, because the

UcR R package (Lindbäck 2009) implementation of DDCP that

we used did not correct for tied ranks when assessing the

significance of difference between two AUROCs, whenever there

were tied ranks we reported the median DDCP P-value over 100

random permutations of the ordering of these tied ranks.

Motif finding procedure and cross-validation

In general, we used a training set of bound and unbound

transcripts to fit motifs which we then assessed using a held-out

test set. We applied a two-step strategy to fit motifs. First, we

calculated #TS and #ATS AUROCs for all possible 6-mers

(including transcripts with no target sites when ranking tran-

scripts, assigning them a score of 0) using the training set. We

selected the 6-mers used to seed the next step of motif finding

based on these AUROCs. We fit two separate consensus sequence

motif models for each RBP, one seeded with the five 6-mers with

the highest AUROCs when scored with #ATS, and the other

seeded with the five 6-mers with the highest #TS-scored AUROCs.

Starting from each seed, we employed an iterative motif-

refinement procedure that shortened, lengthened, or introduced

degeneracy a single base at a time. At each iteration, the motif that

gave the largest AUROC on the training set was selected

(measured using #ATS or #TS, as appropriate); the procedure

was terminated when the AUROC failed to increase or the as-

sociated Bonferroni-corrected Wilcoxon–Mann–Whitney P-value

failed to decrease. As with the 6-mers, we also ranked transcripts

with no target sites when calculating the AUROC. Once the motif

finding converged for all five seeds, we selected the motif with

the highest AUROC on the training set. We then evaluated the

Predicting binding sites of RNA-binding proteins

www.rnajournal.org 1105



AUROC of each model on the test set to assess its predictive

accuracy. We generated 30 training/test set splits using a 3 3 10

fold cross-validation procedure whereby we randomly split the

bound and unbound sets into 10 equally sized bins, trained the

motif models on the sequences in nine of the bins, and evaluated

them on the remaining bin. We repeated this random split three

times and collected 30 test set AUROCs for each motif finding

method and each transcript scoring method.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://morrislab.med.

utoronto.ca/datamain and http://www.rnajournal.org.
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