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including chemical (ToxPrint, PaDEL, and Physchem), bio-

logical (ToxCast), and kinetic descriptors. Using random 

forest modeling with cross-validation and external valida-

tion procedures, study-level covariates alone accounted for 

approximately 15% of the variance reducing the root mean 

squared error (RMSE) from 0.96  log10 to 0.85  log10 mg/kg/

day, providing a baseline performance metric (lower expec-

tation of model performance). A consensus model developed 

using a combination of study-level covariates, chemical, 

biological, and kinetic descriptors explained a total of 43% 

of the variance with an RMSE of 0.69  log10 mg/kg/day. A 

benchmark model (upper expectation of model performance) 

was also developed with an RMSE of 0.5  log10 mg/kg/day 

by incorporating study-level covariates and the mean effect 

level per chemical. To achieve a representative chemical-

level prediction, the minimum study-level predicted and 

observed effect level per chemical were compared reducing 

the RMSE from 1.0 to 0.73  log10 mg/kg/day, equivalent to 

87% of predictions falling within an order-of-magnitude of 

the observed value. Although biological descriptors did not 

improve model performance, the final model was enriched 

for biological descriptors that indicated xenobiotic metabo-

lism gene expression, oxidative stress, and cytotoxicity, 

demonstrating the importance of accounting for kinetics 

and non-specific bioactivity in predicting systemic effect 

levels. Herein, we generated an externally predictive model 

of systemic effect levels for use as a safety assessment tool 

and have generated forward predictions for over 30,000 

chemicals.

Keywords Predictive toxicity · Systemic effects · Effect 

levels

Abstract In an effort to address a major challenge in 

chemical safety assessment, alternative approaches for 

characterizing systemic effect levels, a predictive model 

was developed. Systemic effect levels were curated from 

ToxRefDB, HESS-DB and COSMOS-DB from numerous 

study types totaling 4379 in vivo studies for 1247 chemi-

cals. Observed systemic effects in mammalian models are a 

complex function of chemical dynamics, kinetics, and inter- 

and intra-individual variability. To address this complex 

problem, systemic effect levels were modeled at the study-

level by leveraging study covariates (e.g., study type, strain, 

administration route) in addition to multiple descriptor sets, 
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Introduction

The strategy for the safety assessment of cosmetics ingre-

dients significantly changed as a result of the 7th Amend-

ment to the Cosmetics Directive (Commission 2013). This 

Directive, came into full effect in 2013, banned the testing 

of finished products and ingredients used in cosmetics on 

animals; therefore, cosmetics manufacturers must now use 

in silico and in vitro methods to determine potential risk to 

humans (Commission 2013). This poses a challenge to the 

cosmetic industry since the ban prohibited any animal test-

ing regardless of the availability of sufficiently predictive 

alternative test methods. While in vitro methods for a num-

ber of toxicity endpoints, e.g., genotoxicity (Pfuhler et al. 

2014), eye irritation (McNamee et al. 2009), and skin sensi-

tization (Johansson and Lindstedt 2014) have been refined or 

developed for validation as replacements for in vivo assays, 

alternatives to repeat-dose toxicity assays are still a big chal-

lenge due to their complexity.

In addition to the cosmetics legislation, other drivers 

for the development of alternative testing methods are the 

Registration, Evaluation, Authorization and Restriction of 

Chemicals (REACH) legislation in Europe and the Frank 

R. Lautenberg Chemical Safety for the 21st Century Act in 

the United States (US Safe Chemicals Act). REACH was 

developed in 2006 [(EC) No 1907/2006] with two main 

objectives: improve protection of human health and the 

environment from potential issues stemming from the use 

of chemicals and increase the competitiveness of the Euro-

pean chemical sector. It promotes the use of alternative test 

methods to identify human health and environmental haz-

ards posed by chemicals (ECHA 2006) to reduce animal 

testing. REACH requires all companies manufacturing or 

importing chemical substances of quantities more than 1 ton 

per year in the European Union (EU) to be registered and 

with each registration, chemical safety information must be 

provided. The vast number of animals and time needed to 

accomplish this is impractical; therefore, REACH regulation 

challenges the chemical industries to develop rapid, relevant, 

cost-effective alternative methods, such as in vitro assays 

and computational modeling, to address human health and 

environmental hazards. The Frank R. Lautenberg Chemi-

cal Safety for the 21st Century Act also has provisions for 

requiring the EPA to take action to minimize the use of ani-

mal testing and to use computational toxicology, bioinfor-

matics and high-throughput screening approaches where the 

reliability and quality of information is comparable to tra-

ditional approaches (Frank 2016). The goal is to reduce the 

amount of animal testing needed for each safety evaluation 

using these alternative methods and to encourage data shar-

ing amongst companies and stakeholders. This will require 

leveraging new technologies and computational modeling 

approaches to increase the throughput and efficiency of 

safety testing while reducing or eliminating the need for 

animal testing (Krewski et al. 2010).

Among the research programs developing and applying 

in vitro and computational modeling to chemical safety, 

the EPA’s ToxCast project uses high-throughput screening 

(HTS) as a means to efficiently and economically charac-

terize the biological activity of chemicals (Dix et al. 2007; 

Kavlock et al. 2012). The ToxCast project progressed in two 

primary phases of chemical testing, with over a thousand 

in vitro HTS assay endpoints collected for over one thou-

sand unique chemicals in various biochemical or cell-based 

assays from different assay technologies (Kavlock et al. 

2012; Kleinstreuer et al. 2014; Knudsen et al. 2009; Martin 

et al. 2009; Sipes et al. 2013). The EPA has also built a Tox-

icity Reference Database (ToxRefDB), a reference database 

with over 30 years of legacy animal toxicity studies contain-

ing detailed information on over 6000 in vivo animal toxicity 

studies on over 1100 chemicals (Judson et al. 2010; Martin 

et al. 2011; Reif et al. 2010; Shah et al. 2011; Sipes et al. 

2011). In addition to the EPA data resources, two other open 

source databases are available, namely, the Hazard Evalua-

tion Support System (HESS-DB, http://www.nite.go.jp/en/

chem/qsar/hess-e.html), and COSMOS (http://www.cos-

mostox.eu/what/COSMOSdb/) databases. The HESS-DB 

was developed to support repeat-dose toxicity assessment 

and aid in read across and other category approaches. The 

COSMOS database is a legacy of the SEURAT-1 project, 

a European research initiative with the long-term goal of 

achieving “Safety Evaluation Ultimately Replacing Ani-

mal Testing”. It contains regulatory submission and open 

literature data from over 12,000 toxicity studies spanning 

27 endpoints with detailed protocols for ~ 1600 chemicals, 

including cosmetics ingredients, linking chemical structure 

to repeat-dose toxicity data (for a subset of the substances).

The building of a predictive model of in vivo effect levels 

for repeat-dose systemic toxicity is a complex process due, in 

part, to varying experimental design and endpoint inclusion. 

There have been many iterations of quantitative regression 

models attempted and evaluated (Hisaki et al. 2015; Mumtaz 

et al. 1995; Pizzo and Benfenati 2016; Rupp et al. 2010; 

Toropova et al. 2015; Veselinovic et al. 2016), including a 

public and crowd-sourced challenge (USEPA 2013). These 

efforts demonstrated the limited ability to model systemic 

toxicity; a heterogeneous and variable endpoint with only a 

small fraction of the overall variability being explained by 

the model. To expand on previous work, we developed a 

predictive regression model of systemic effect levels using 

study-level covariates (e.g., species, strain, dose-spacing 

and administration method) in addition to chemical-level 

descriptors to improve the handling of study-wise sources of 

variability. The chemical-level descriptors comprised mod-

eled physical–chemical properties (Mansouri et al. 2016), 

calculated properties, chemotypes (Ashby and Tennant 

http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.cosmostox.eu/what/COSMOSdb/
http://www.cosmostox.eu/what/COSMOSdb/
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1988; Kroes et al. 2004), ToxCast bioactivity profiles and 

kinetic parameters. The goal of this study was to provide 

chemical safety decision-makers with practical prediction 

outputs with quantified uncertainty. Additionally, we char-

acterized performance bounds for modeling quantitative 

toxicity endpoints from animal studies, i.e., the amount of 

variability coming from the animal study data, as their com-

parison with alternative approaches will depend on under-

standing the variability and uncertainty.

Materials and methods

Data sources and integration

Publicly available data sources were collected, filtered, and 

integrated for developing a predictive model of study-level 

systemic toxicity effect level. The primary linkage between 

all data sources was the generic substance identification 

(gsid; 1:1 with CAS registry number) from DSSTox (http://

www.epa.gov/ncct/dsstox). All combined data and scripts 

are publicly available at goo.gl/R5XmxQ.

In vivo systemic effect level and study data

Study-level systemic effect levels were collected from three 

resources: ToxRefDB (Martin et al. 2009), HESS-DB (http://

www.nite.go.jp/en/chem/qsar/hess-e.html), and COSMOS 

(http://www.cosmostox.eu/what/COSMOSdb/). For all 

database sources, studies were filtered based on common 

“study inclusion criteria”: (1) oral dose administration (i.e., 

food, water, gavage, and capsule administration methods); 

(2) more than one dose level; (3) basic adherence to test 

guideline with acceptable study quality; and (4) testing 

and observation of systemic effects. Systemic effects, for 

the purposes of this study, were defined as in-life observa-

tion or pathological finding (i.e., clinical, macroscopic, and 

microscopic pathology) in repeat-dose exposed first genera-

tion adult animals. Where possible, neurotoxicity findings 

were excluded including cholinesterase inhibition and neu-

robehavioral findings. Integration of these data sources was 

achieved by retrieving or calculating the study-level systemic 

effect levels along with the corresponding effect level type 

and qualifier. The available effect level types consisted of 

lowest effect level (LEL), lowest observed adverse effect 

level (LOAEL), and no effect level (NEL). LEL were sys-

tematically calculated as the lowest dose at which a systemic 

effect was observed, whereas LOAEL were retrieved from 

reviewed documents whereby adversity and a specific effect 

level were determined for systemic toxicity. NEL were set to 

the lowest dose tested when no treatment-related systemic 

toxicities were observed. All effect levels were in units of 

mg/kg/day or were converted from ppm to mg/kg/day using 

EPA standard conversions based on assumed food and water 

consumption. Effect levels were then log10-transformed for 

all subsequent evaluation and modeling. Additional study-

level covariates were extracted or calculated from the source 

databases, including the number of dose levels, dose spac-

ing, test substance purity, study year, the type of effect level 

(i.e., NEL, LEL, LOAEL), and effect level qualifier. Effect 

level qualifiers were assigned when the NEL was assigned 

to the highest dose tested or when the LOAEL or LEL was 

assigned to the lowest dose tested. The effect level qualifier 

for LOAEL and LEL was either “less than or equal to” the 

lowest tested dose or “equal to” based on the dose level in 

which the effect level was established. Whereas the NEL was 

only used when no effects were observed in the study and 

thus given the effect level qualifier of “greater than or equal 

to” the highest tested dose. In addition to the effect level 

qualifier, the following study covariates were collected for 

each study across all databases: study type, species, strain, 

administration method, dose spacing, and number of dose 

groups. A mean effect level for each chemical (mean effect 

level) was also calculated and used to bound the predictivity 

of the model as described below.

Toxicity reference database (ToxRefDB)

ToxRefDB includes study data for over 1100 chemicals eval-

uated in more than 6000 animal studies (Martin et al. 2009). 

Systemic effect levels were queried from ToxRefDB in the 

form of LEL or LOAEL. LOAEL values were determined 

for a subset of studies, primarily registrant-submitted studies 

of pesticide-active ingredients that were reviewed by EPA. 

Subsequent to applying study inclusion criteria described 

above, 3752 studies across 836 chemicals were included in 

the present study.

Hazard evaluation support system database (HESS-DB)

HESS-DB was developed to support repeat-dose toxicity 

assessment and was coupled with other knowledge bases 

to aid in read-across and other category approaches (http://

www.nite.go.jp/en/chem/qsar/hess-e.html; Sakuratani et al. 

2013). Portions of HESS-DB have been included in the 

OECD toolbox. HESS-DB houses detailed repeat-dose tox-

icity study data, including hundreds of otherwise unpub-

lished Japanese governmental studies performed as 28-day 

repeat-dose rat studies. Subsequent to applying study inclu-

sion criteria described above, 432 studies across 411 chemi-

cals HESS-DB were included in the present study.

COSmetics to optimize safety database (COSMOS-DB)

COSMOS was one of seven projects forming the SEURAT-1 

cluster (Gocht et al. 2015). As part of the COSMOS project, 

http://www.epa.gov/ncct/dsstox
http://www.epa.gov/ncct/dsstox
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.cosmostox.eu/what/COSMOSdb/
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
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the COSMOS relational toxicity database was developed to 

store regulatory submission and open literature repeat-dose 

study findings (http://www.cosmostox.eu/what/databases/). 

Version 1 of the database is publicly available at http://

cosmosdb.cosmostox.eu/. COSMOS database stores over 

12,000 toxicity studies spanning 27 endpoints including 

subchronic and chronic toxicity across approximately 1600 

chemicals. Subsequent to applying study inclusion criteria 

described above, 195 studies across 141 chemicals were 

included in the present study.

Chemical-level data

Physicochemical property (physchem) descriptor set

A set of physicochemical and environmental fate proper-

ties, LogP (logp), fish bioconcentration factor (bcf), water 

solubility (watersol), Henry’s Law constant (Henry), bio-

degradability (bio), fish biotransformation (biotrns), gas-

phase reaction rate (aop), melting point (mp), boiling point 

(bp), carbon-normalized soil sorption (koc), octanol–air 

coefficient (koa), and vapor pressure (vp), were calculated 

using OPERA, a free and open source tool developed at 

NCCT (https://github.com/kmansouri/OPERA.git). The 

calculated properties are predictions of weighted k-nearest 

neighbors (kNN) QSAR models adapted from the publicly 

available PHYSPROP database in EPIsuite. Available at 

http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.

htm, Scientific Databases available at http://www.srcinc.

com/what-we-do/environmental/scientific-databases.html. 

Prior to modeling, the PHYSPROP database has undergone 

extensive curation using an automated KNIME workflow 

designed for the purpose of validating and correcting the 

chemical structures and their identifiers such as CAS, names, 

SMILES and MOLBlocks (Mansouri et  al. 2016). The 

curated PHYSPROP datasets were then processed through a 

standardization workflow to generate the QSAR-ready struc-

tures used for modeling (Mansouri et al. 2016). The same 

standardization workflow was used to process the chemicals 

structures of this study prior to prediction resulting in a total 

of 12 modeled physchem descriptors.

PaDEL descriptor set

The curated molecular structures were used to calculate 

molecular descriptors using the free and open-source soft-

ware PaDEL (Yap 2011). In PaDEL, only 2D descriptors 

were selected since 3D descriptors can affect the repeat-

ability of the predictions due to differences in descriptor 

values, especially with very flexible molecules with a high 

number of 3D conformers. A total number of 1446 molecu-

lar descriptors were calculated including constitutional, 

topological, functional group counts, fragmental, atom-type, 

and E-state indices. Padel descriptors with constant or near 

constant values across the full chemical set were removed 

resulting in 1096 descriptors moving forward in the mod-

eling process.

ToxPrint chemotype descriptor set

The curated molecular structures were imported into the 

ChemoTyper application (https://chemotyper.org/). ToxPrint 

chemotype fingerprints were assigned across three librar-

ies: generic structural fragments, Ashby–Tennant genotoxic 

carcinogen rules (Ashby and Tennant 1988), and cancer 

threshold of toxicological concern (TTC) categories (Kroes 

et al. 2004). A total of 729 fragments were analyzed and for 

each chemical, the presence or absence of the fragment was 

recorded in a binary system as 1 or 0, respectively. ToxPrint 

descriptors with constant or near constant values across the 

full chemical set were removed resulting in 135 descriptors 

moving forward in the modeling process.

ToxCast bioactivity profiles

ToxCast HTS summarized activity calls (positive or nega-

tive) and potency estimates (the modeled 50% activity con-

centrations, or AC50 values) were compiled in a matrix 

format, with one row per chemical and columns containing 

assay endpoint data represented as the negative log10 of the 

modeled activity concentration at 50% (AC50) divided by 

one million. To ensure adequate assay and chemical cover-

age (i.e., a near complete matrix of data), chemicals with 

fewer than 800 assay endpoints tested or any assay end-

points with fewer than 500 chemicals tested were removed 

from the dataset. These assay and chemical coverage cutoffs 

generally equate to the full ToxCast Phase I and II chemi-

cal libraries that were screened in nearly all assays. The 

numeric cutoffs were used to allow for future updates and 

expansions to the model without having to explicitly men-

tion the chemical library. Any spurious missing data was 

replaced with the assay median value, the most straightfor-

ward approach, due to the non-random and blocked nature 

of the missing values. For the remaining 1076 chemicals, 

a cytotoxicity potency estimate was calculated as previ-

ously described (Judson et al. 2016). In contrast to previous 

efforts that removed endpoint activity at or near cytotoxicity 

for a given chemical, we down-weighted such activity by 

subtracting out the cytotoxicity potency (i.e., “burst”). The 

down-weighted activity scores are also on the negative log10 

scale, and such values of 0 indicate inactive, values ranging 

from > 0 to < 4 approximately indicate activity occurring 

at or near cytotoxicity, and values > 4 generally represent 

activity specific to the intended target. To further contextual-

ize the assay results, assays were binned based on intended 

biological target or target family and assay modality (e.g., 

http://www.cosmostox.eu/what/databases/
http://cosmosdb.cosmostox.eu/
http://cosmosdb.cosmostox.eu/
https://github.com/kmansouri/OPERA.git
http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.htm
http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.htm
http://www.srcinc.com/what-we-do/environmental/scientific-databases.html
http://www.srcinc.com/what-we-do/environmental/scientific-databases.html
https://chemotyper.org/
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agonist vs antagonist) to form 62 assay groups and indi-

vidual activity scores were averaged by target and modality. 

A full listing of assay to assay group mappings is provided as 

a supplemental table (supplementary data, Table 1). ToxCast 

descriptors with constant or near constant values across the 

full chemical set were removed resulting in 53 descriptors 

moving forward in the modeling process.

High-throughput toxicokinetic (httk) data

Estimated toxicokinetic parameters along with two experi-

mentally derived values, plasma protein binding and hepatic 

clearance, were combined in a simple model to produce oral 

equivalent dose values (Rotroff et al. 2010; Wetmore et al. 

2012). Oral equivalent dose values are the amount of daily 

oral intake required to reach specific steady-state concentra-

tions in the blood. These toxicokinetic models have been 

extended to also predict area under the curve (AUC), peak, 

and mean concentrations as well as volume of distribution 

in the blood assuming a specific dose regimen. The values 

for all subsequent modeling were calculated using the ‘httk’ 

R package under the assumptions of a single daily dose of 

1 mg/kg/day for 90 days in humans (Pearce et al. 2017). 

For modeling purposes, 10 kinetic descriptors in total were 

selected, including intrinsic clearance, fraction unbound, 

area under curve (and log10 converted), peak (and log10 

converted), mean (and log10 converted), and volume of dis-

tribution (and log10 converted).

Feature reduction and missing data handling

Following removal of descriptors for constant or near con-

stant values, the initial descriptor set totaled 1306 descrip-

tors. To reduce the number of descriptors prior to model 

development, descriptors that were highly correlated were 

removed using the findCorrelation function in the “caret” R 

package (Kuhn 2008). A correlation cutoff of 0.9 was used 

to identify and subsequently remove descriptors across all 

input descriptor sets, including physical–chemical properties 

(physchem), PaDEL, ToxPrint, ToxCast, and httk. The initial 

set of 1306 descriptors was reduced to 740 descriptors by 

removing 566 highly correlated descriptors. Principal com-

ponent analysis was performed, using “prcomp” in R with 

centered and scale data, on the remaining 740 descriptors 

solely to characterize the remaining descriptor redundancy 

showing that 25% of the variance is explained in the first 

4 components, 50% variance in the first 17 components, 

and 75% in the first 79 components. Of the remaining 740 

descriptors, all missing values were replaced by the descrip-

tor median value, the most straightforward approach, due to 

the non-random and blocked nature of the missing values.

Predictive model development and evaluation

A schematic of the model development process as seen in 

Fig. 1.

Study-level, effect level and associated study design 

parameters were combined by direct linkage to the gsid with 

the chemical-level descriptors to produce the complete data-

set for modeling. All multivariate models were developed 

using the randomForest package in R. Additional machine 

learning methods were applied to the dataset and are not 

presented here as the random forest models were comparable 

or outperformed other methods in terms of reduced mean 

squared error (MSE); required less tuning to prevent overfit-

ting, permitted mixed-type data; did not require data scal-

ing; and, provided clear indications of variable importance 

as indicated by mean decrease in node impurity (Liaw and 

Wiener 2002). Throughout the model development process, 

two statistical methods were used to compare and evaluate 

model performance. Root mean squared error (RMSE) and 

percent variance explained (pseudo R-squared or R2 for ease 

of reporting). Both statistics rely on MSE which is calcu-

lated as the mean of the squared difference of the predicted 

value minus the true value. RMSE is the square root of MSE 

while R2 is one minus MSE divided by the variance of the 

observed values. Models were developed using different 

descriptor and chemical sets (Fig. 1). The three chemical 

sets stratified the study- and chemical-level data based on 

Table 1  Combined study counts across ToxRefDB, HESS-DB and 

COSMOS datasets by study type and species with unique chemical, 

strain group, and route of administration totals

SUB subchronic (90  days), CHR chronic (1–2  years), DEV prenatal 

developmental, MGR multigenerational reproductive, SAC subacute 

(14–28 days)

Study 

type

Species Study 

total

No. 

unique 

chemicals

No. 

unique 

strains

No. unique 

admin-

istration 

methods

SUB Rat 774 599 5 4

CHR Rat 566 492 5 5

DEV Rat 542 467 5 4

CHR Mouse 477 431 4 5

DEV Rabbit 395 350 5 4

SAC Rat 369 347 4 3

MGR Rat 368 333 5 4

CHR Dog 307 281 2 5

SUB Mouse 263 235 4 4

SUB Dog 200 186 2 4

DEV Mouse 36 33 3 4

SAC Mouse 33 30 3 3

SAC Dog 31 31 1 4

MGR Mouse 18 16 2 3
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having only chemical descriptors, chemical and biological 

descriptors, and chemical, biological and kinetic descrip-

tors; equating to sequentially smaller datasets based on data 

availability. Across the three chemicals sets, models were 

also developed using five sequentially added descriptor sets: 

study-level covariates only, chemical descriptors, biological 

descriptors, kinetic descriptors, and finally adding the mean 

effect level per chemical.

Random forest (RF) models

The complete dataset was available for modeling, which 

includes the feature reduced chemical-level descriptors with 

median imputed replacement of missing values mapped to 

each study effect level and their associated study-level covar-

iates. RF, as implemented in randomForest for regression 

in R (Liaw and Wiener 2002), bootstraps the data, creating 

‘in-bag’ and ‘out-of-bag’ sets for each tree. However, the 

multi-level nature of the data (i.e., study-level vs. chemical-

level) presented a challenge as the inherent inter-class cor-

relation can introduce bias and overfitting when evaluating 

the “out-of-bag” performance of each constructed tree, but 

has been shown to be addressable (Karpievitch et al. 2009). 

For example, if bootstrapping is performed, then training 

a model on study1–chemical1 and testing the performance 

of the model on study2–chemical1 would lead to a higher 

and potentially misleading assessment of the performance. 

To overcome this potential bias, all model development 

steps, including cross-validation and external validation, 

was performed with chemical-level splitting. Specifically, 

the complete dataset was split into an internal training set 

and an external validation set with an 80/20 split using an 

adaptation of the Venetian blinds technique (Consonni et al. 

2009) where by the dataset was ordered by the mean effect 

level for each chemical (mean effect level) and every fifth 

chemical was selected for the external dataset. Training 

and testing, using the internal dataset only, was performed 

using randomized fivefold cross-validation and repeated five 

times (i.e., 5× bootstrapping). Additionally, each model set 

was developed against the full dataset as well as subsets 

of chemicals based on data availability. Performance was 

measured by the internal test set RMSE and R2. RF mod-

els were developed with sequentially adding descriptor sets 

in following order: in vivo study covariates only (baseline 

model), chemical descriptors (physchem, PaDEL, ToxPrint), 

biological descriptors (i.e., ToxCast bioactivity), kinetic 

parameters (i.e., httk), and a benchmark model. The bench-

mark model used the mean effect level for each chemical 

across its respective study set (mean effect level) in addition 

to in vivo study covariates in developing the RF models. 

The baseline and benchmark models provide an estimation 

of the lower and upper performance bounds, respectively, to 

aid in assessing the quality of the primary, descriptor-based 

models. Specifically, the benchmark model is assuming that 

one would know the ‘true’ effect level for a chemical prior 

to developing the model and that any remaining error not 

Fig. 1  Schematic of the data preparation, model development, and model application workflow. “S” represents the study number per chemical 

and “C” represents the chemical index (for illustration purposes only)
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explained at the study-level using the study covariates is 

unexplained variability. Three different chemical sets were 

also used in the model development process to account 

for the varying overlap of a specific chemical with a set of 

descriptors and to evaluate the relative impact of smaller 

datasets. The randomForest parameter, mtry, was set to one-

third the number of input variables (rounded down where 

fractional) with the number of trees set to 250. Bias correc-

tion was performed using the linear regression coefficients 

(i.e., slope and intercept) of the training prediction versus 

observed values to adjust the test prediction values.

Final study-level RF regression models were developed 

using the entire internal dataset with the number of trees 

set to a high number (i.e., 2500 trees) to achieve more sta-

ble variable importance estimates. Variable importance 

was measured by the mean decrease in node impurity as 

indicated by the residual sum of squares (Liaw and Wiener 

2002). Bias correction was performed using the mean of lin-

ear regression coefficients (i.e., mean of slope and intercept) 

across the fivefold CV and 5× bootstrap procedures. Final 

models were then applied to the external validation set to 

evaluate model performance of the models and RMSE and 

R2 were reported. Model performance was then conducted at 

the chemical-level by calculating the minimum observed and 

predicted effect level per external test set chemical.

Forward predictions were made for 33,302 chemicals 

where, at minimum, the full set of chemical descriptors 

(i.e., physchem, PaDel and ToxPrint) were generated. Of the 

33,302 chemicals with the full set of chemical descriptors, 

295 chemicals were also tested in ToxCast across enough 

assays to derive the biological descriptors used in the current 

study. Of the 295 chemicals with chemical and biological 

descriptors, kinetic descriptors were available and modeled 

for 90 chemicals. Using a sampling (N = 5) of all observed 

combinations of in vivo covariates where a LOAEL was 

established, multiple study-level predictions were made for 

each chemical and the minimum, mean and standard devia-

tion of the predicted effect levels across the sampled mock 

study covariates was used to represent the chemical-level 

predicted effect level. Uncertainty estimates were globally 

applied as plus or minus the model’s external test set RMSE.

Results

Study and chemical summary statistics

The integration of ToxRefDB, HESS-DB and COSMOS 

resulted in a dataset of 4379 studies across 1247 chemicals. 

ToxRefDB comprised the largest study set following quality 

and applicability filters with 3752 studies (836 chemicals). 

HESS-DB and COSMOS contained 433 and 195 studies 

(411 and 141 chemicals), respectively. Effect level data 

relevant to systemic toxicity were extracted from a diverse 

set of studies spanning multiple study types, species, strains, 

and routes of administration (Table 1).

The effect level distribution for all 4379 studies had a 

mean of 1.7  log10 mg/kg/day (~ 50 mg/kg/day) with a stand-

ard deviation of 0.94  log10 mg/kg/day (Fig. 2). The effect 

levels were truncated between −2 and 4 (0.01–10,000 mg/

kg/day) to prevent disproportionate influence of extreme 

values with 95% of the values falling between −0.3 and 3.2 

 log10 mg/kg/day (~ 0.5 and 1500 mg/kg/day). The mean 

of the effect level distribution decreased significantly (p 

value ⋘ 0.01) from COSMOS (2.2  log10 mg/kg/day or 

~ 158 mg/kg/day) as compared to HESS-DB (1.8  log10 mg/

kg/day or ~ 55 mg/kg/day) and ToxRefDB (1.7  log10 mg/

kg/day or 50 mg/kg/day); this observation was likely driven 

by differences in the chemical use types between these data-

bases, with enrichment of cosmetic ingredients in COSMOS 

as compared to industrial chemicals and pesticides in HESS-

DB and ToxRefDB, respectively.

The distribution of effect levels stratified by the various 

study-level covariates illustrate the influence those param-

eters have on the overall effect level distribution (Fig. 3). 

The first and third quartiles (colored segments of boxplots) 

include the overall median effect level, 1.8  log10 mg/kg/day, 

with a few exceptions. Notably, the NEL effect levels have 

substantially higher values with a median of 3, a  log10 dose 

equivalent to 1000 mg/kg/day, or the top allowable dose for 

most guideline toxicity studies. The individual covariate 

distributions demonstrate the average impacts of various 

study-level parameters and provide support for not applying 

Fig. 2  Histogram of study-level effect level  (log10 mg/kg/day) across 

4379 animal toxicity studies. The overall effect level distribution con-

stituted a mean of 1.7  log10 mg/kg/day (~ 50 mg/kg/day) with a stand-

ard deviation of 0.94  log10 mg/kg/day. ToxRefDB and HESS-DB had 

comparable mean effect level of 1.7 (blue dashed line) and 1.8 (green 

dashed line), respectively, whereas COSMOS had a mean effect level 

of 2.2  log10 mg/kg/day (salmon dashed line)
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standard safety (i.e., conversion) factors based simply on 

study type, duration and species.

The chemical-level dataset (chemical, biological and 

kinetic descriptor sets) was integrated via chemical to 

the study-level dataset. However, biological and kinetic 

descriptor sets were only available for subsets of chemi-

cals and, hence, studies (Table 2). The respective study and 

chemical counts as additional descriptor sets were added to 

illustrate the tradeoff in expanding the diversity of descrip-

tors at the expense of study and chemical coverage.

Fig. 3  Boxplot of study-level effect level  (log10 mg/kg/day) strati-

fied by individual covariate values. Continuous values were binned 

for presentation purposes (e.g., dose spacing). The upper and lower 

hinges (i.e., box) correspond to the first and third quartiles, while the 

upper and lower whiskers correspond to the highest and lowest val-

ues, respectively, within 1.5 of the inter-quartile range. Data beyond 

the whiskers are shown as dots. The over effect level median of 1.8 

 log10 mg/kg/day is shown with the black vertical line

Table 2  Study and chemical counts based on availability of descriptor sets across the 4379 studies and 1247 chemicals with internal and exter-

nal dataset counts provided

With the addition of each subsequent descriptor set the total number of descriptors increased while study and chemical counts decreased

Study and chemical sets based on descriptor set availability Study count (internal/

external)

Chemical count (inter-

nal/external)

Descriptor count 

including study 

covariates

Chemical descriptors available 4379 (3476/903) 1247 (998/249) 699

Chemical and biological descriptors available 3106 (2427/679) 603 (468/135) 742

Chemical, biological, and kinetic descriptors available 2189 (1688/501) 391 (304/87) 748
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Systemic effect level models

Internal training and testing across all descriptor sets

Cross-validation models were developed containing 

study-level covariates with sequentially added descrip-

tor sets for the three chemical sets (Fig. 4). Performance 

was compared based on the percent variance explained 

(R2) from the fivefold cross-validation test sets for each 

bootstrapped dataset (n = 5) illustrating the relative sta-

bility of the models developed using different chemical 

and descriptor sets. Each model expanded the descriptor 

set beyond the original eight study-level covariates with 

an additional 12 physchem, 554 PaDEL, 119 ToxPrint, 

49 ToxCast, and 6 httk descriptors. The baseline model 

was developed using only the study-level covariates (i.e., 

in vivo covariates only) and resulted in a median R2 of 

18% across all cross-validated and bootstrapped data-

sets and chemical sets. The three primary model sets 

improved over the baseline performance with a median 

R2 of 35% demonstrating model stability. However, the 

addition of biological and kinetic descriptors did not sig-

nificantly improve model performance. Adding biological 

or kinetic descriptors alone without chemical descriptors 

does improve model performance over baseline (data 

not shown). The benchmark model was developed using 

study-level covariates and chemical-level effect level (i.e., 

mean effect level across all studies for each chemical) 

which accounted for 74% of the total variance. Internal 

model training and cross-validation detailed relative 

model performance and provided context for evaluating 

the final models.

Final model development

Final models were developed using the full internal data 

set with the external dataset of 858 studies across 240 

chemicals characterizing the overall model performance 

and uncertainty. The final RF models were also devel-

oped using a large number of trees (ntree = 2500) for a 

robust evaluation of descriptor importance. Model per-

formance (i.e., external test set R2 and RMSE) and the 

top five additional descriptors with their relative rank 

amongst all descriptors are summarized in Table 3. Vari-

able importance plots are also available (Supplementary 

Data, Fig. 1). All models have significantly increased R2, 

32–43%, as compared to the baseline performance met-

ric (R2 = 11–16%) established by developing a model 

only using in vivo covariates. The performance metrics 

were also highly comparable between the cross-validated 

training models and the final models. The collection of 

models did not approach the benchmark performance 

metric of approximately 70% variability explained. The 

roughly 30% gap in explained variability between the 

primary models and the benchmark model was likely 

due, in part, to unquantified and unaccounted variabil-

ity in the observed effect levels (e.g., vehicle control 

substance of each study, animal handling procedures, 

data reporting protocols). Additionally, uncertainty in 

the input descriptors (e.g., noise/error in the predicted 

physical chemical properties and ToxCast results) also 

contributed to the performance gap. Nonetheless, chemi-

cally, biologically and kinetically plausible descriptors 

were demonstrated to be of high relative importance, e.g., 

logP, physico-chemical property and “burst” activity in 

Fig. 4  Dotplot of variance 

explained (R2) of cross-valida-

tion test sets for each bootstrap 

(n = 5) across five model 

sets including baseline and 

benchmark models. The five 

model sets were also run with 

varying chemical sets based on 

availability of biological and 

kinetic descriptors. The gray 

crossbar has been placed at the 

median R2 for each of the five 

model sets
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ToxCast. Study-level covariates consistently remained, 

as expected, highly important in each model with dose-

spacing being among the top five most important descrip-

tors in all models, underscoring the influence of dose-

spacing in effect level determinations. The chemical 

descriptor model highlighted descriptors recognized to 

be important in driving chemical distribution and uptake 

including bioconcentration factor (bcf) and bioavailability 

(bio). Additionally, the PaDEL descriptor set added auto-

correlation metrics (ATSC4m and AATSC1m) and logP 

(ALogP). The ToxPrint descriptor set was generally less 

important but did reflect that organophosphate structures 

(bond.P.S_generic) corresponded to lower effect level, 

reflective of the acute toxicity of these chemicals. Even 

though biological and kinetic descriptors did not improve 

overall model performance, ToxCast descriptors provided 

biologically relevant descriptors; all of which were plau-

sible determinants of systemic effects including PPARα 

activity, zebrafish toxicity, and cytotoxicity (i.e., ‘burst’ 

activity, Judson et al. 2016), and estrogen receptor activ-

ity. Additionally, ToxCast descriptors provided a meta-

bolic context with xenobiotic metabolism induction as a 

highly important descriptor. The preliminary addition of 

kinetic (httk) descriptors for a relatively small number of 

chemicals (322 chemicals in the internal dataset and 74 

in the external dataset) showed marginal variable impor-

tance in combination with all other input descriptors. The 

underlying httk data and models have and continue to be 

expanded, improved and evaluated for chemical-specific 

reliability. For the purpose of this study, only publicly 

available and unfiltered data was used in an attempt to 

allow for immediate public use as well as to maintain 

as much chemical overlap as possible. The relationship 

between modeled kinetic descriptors and effect levels 

requires further exploration.

Model predictions across the full external test set of 903 

studies using the full complement of chemical, biologi-

cal, and kinetic descriptors resulted in an R2 of 43% and an 

RMSE of 0.69  log10 mg/kg/day (Fig. 5a). Of the 903 effect 

level predictions, 788 predicted effect level (87%) were 

within an order of magnitude of the observed effect level. 

Practically, the utility of the model predictions would be 

for decisions made at the chemical-level. Comparing the 

minimum observed effect level and minimum predicted 

effect level for the 249 chemicals in the external test set 

resulted in an R2 of 48% and an RMSE of 0.73  log10 mg/kg/

day demonstrating the practical utility of the model outputs 

for chemical-specific predictions (Fig. 5b). Similar to the 

study-level predictions, approximately 87%, or 216 out of 

the 249, external test set chemicals, were within an order 

of magnitude of the minimum observed effect level. Only 6 

out of 249 chemicals had predictions greater than two orders 

of magnitude from the minimum observed effect level. It 

should be noted that 5 out of those 6 chemicals were under-

predicted demonstrating the challenge of detecting and quan-

tifying extreme values.

Forward predictions

Forward predictions were made across the applicable set 

of descriptors and chemicals (i.e., the subset of chemicals 

that have chemical, biological and/or kinetic descriptors). 

For each chemical, a random sampling of five mock stud-

ies across all observed combinations of in vivo covariates 

with an established LOAEL were generated and combined 

with the chemical-level descriptors to make study-level 

Table 3  Final model performances (ntree = 2500) using the full chemical set with R2 and RMSE of the external test set presented

The standard deviation of the observed effect levels is also shown to provide context to the RMSE values. The top five descriptors of the sequen-

tially added descriptor sets with their variable importance rank illustrated the relative impact of the additional descriptor set. Using the minimum 

of the observed and predicted study effect levels per chemical, model performance was evaluated at the chemical-level

SD standard deviation of observed values  (log10 mg/kg/day)

Terminal descriptor set Study-level 

model perfor-

mance

Top 5 descriptors from terminal descriptor set (importance rank) Chemical-level 

model perfor-

mance

RMSE R2 SD RMSE R2 SD

In vivo study covariates only (baseline) 0.85 16 0.93 dose_spacing (1); strain_group (2); pod_qual (3); study_type (4); 

dose_no (5)

0.91 13 0.98

+ chemical descriptors (physchem, 

PaDEL, ToxPrint)

0.7 43 0.92 AATSC0p (6); MDEO-11 (7); ATSC4 m (9); SHsOH (10); 

SHBd (13)

0.73 48 1

+ biological descriptors (ToxCast) 0.7 43 0.92 peroxisome_proliferator_activated_receptor_alpha (25); estro-

gen_receptor (48); xenobiotic_metabolism_induction (87); 

zebrafish_development (269); androgen_receptor (364)

0.73 48 1

+ kinetic descriptors (httk) 0.69 43 0.92 logmean (124); intcl (137); peak (213); logvdist (263); fub (295) 0.73 49 1

+ mean effect level (benchmark) 0.5 72 0.93 podmn (1) 0.4 83 0.98



597Arch Toxicol (2018) 92:587–600 

1 3

predictions. The sampling of observed in vivo covariates 

represented the range of possible study conditions for which 

any future chemical could undergo. Models developed 

using the sample observed in vivo covariates and chemical 

descriptors only generated predictions for 31,302 chemicals. 

Therefore, for each of the 31,302 forward predictions chemi-

cals there were a total of 156,510 total study-level effect 

level predictions to provide a distribution of predicted val-

ues across a diverse set of study conditions. The minimum 

predicted effect level across the sampled study covariates 

was selected to represent the chemical-level effect level 

and is provided as a supplemental file (supplementary data, 

Table 2). Additionally, the mean and standard deviation of 

the study-level predicted effect level is provided to illustrate 

the relative impact of study conditions on the predictions. 

Future predictions were also made using chemical and bio-

logical descriptors on 295 chemicals and on 90 chemicals 

with kinetic descriptors.

Discussion

At face value, this work demonstrated the marginal predic-

tivity of regression-based, random forest models of systemic 

effect levels using a collection of descriptors. However, 

this work also demonstrated the importance of account-

ing for study-level covariates within the modeling process 

and estimating performance expectation bounds to assess 

model utility. The modeled dataset comprised of 4379 stud-

ies 1247 chemicals curated from three different database 

resources: ToxRefDB, HESS-DB, and COSMOS. Effect lev-

els  (log10 mg/kg/day) were randomly divided into an internal 

(3476 studies of 998 chemicals) and external dataset (903 

studies of 249 chemicals) with no single chemical in both 

the internal and external set. The databases cover a diverse 

set of chemicals spanning pesticides, industrial chemicals, 

cosmetics, and pharmaceuticals and are generally underrep-

resented by highly toxic compounds (e.g., dioxin) to avoid 

over-weighting of extreme values. Chemical, biological, and 

kinetic descriptors were applied if available. A novel step 

in this analysis was the use of study-level covariates in the 

model development process. The internal dataset was used 

to develop a suite of models with fivefold cross-validation 

and 5X bootstrapping to test overall model performance and 

stability. The full internal dataset was then used for final 

model development. The results were very similar to the 

cross-validation models demonstrating the robustness of the 

modeling approach and that overfitting was unlikely to have 

a significant impact on future performance. The baseline and 

benchmark models provided lower and upper performance 

bounds with RMSE estimates of 0.85 and 0.5  log10 mg/kg/

day, respectively, equating to approximately 15 and 70% var-

iance explained (R2). The final consensus model, including 

chemical, biological, and kinetic descriptors, had an RMSE 

of 0.69  log10 mg/kg/day explaining 43% of the study-level 

effect level variance.

Performance metrics of regression models are often 

reported as RMSE and R2. However, these metrics do not 

provide the full context of model performance, as they do 

not take into account underlying expectations and upper 

Fig. 5  a Predicted vs observed study effect level  (log10 mg/kg/day) 

of the full external test set (N = 903 studies) using study-level covari-

ates with chemical, biological and kinetic descriptors resulted in an 

R2 of 43% and an RMSE of 0.7  log10 mg/kg/day. b Using the mini-

mum predicted and observed effect level per chemical in the external 

test set (N = 249 chemicals), chemical effect level predictions were 

made and resulted in an R2 of 48% and an RMSE of 0.73  log10 mg/

kg/day
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performance bounds for how good a model could be given 

the underlying data. Effect levels, in particular, are associ-

ated with a large amount of variability due to study design 

and interpretation of the observations that form the basis for 

assigned NOAEL, LOAEL, NEL, or LEL values (Leisenring 

and Ryan 1992). Effect levels extracted from various data 

sources also carry with them a level of ‘unexplainable’ vari-

ability, as the source of the variability may not be captured 

in the primary reports, study summaries, or a computable 

format in database. For example, animal handling technique 

and expert contributions to LOAEL selection contribute to 

systematic study error or bias not generally captured. There-

fore, the expectation to approach 100% explained variance 

(i.e., RMSE approaching 0 or R2 approaching 100%) is 

unreasonable and would be a clear sign of overfitting. Base-

line and benchmark RF models were developed incorpo-

rating the study-level covariates (e.g., study type, species, 

strain) with and without the chemical-level effect levels 

(i.e., mean effect level across all studies for each chemical). 

Even though regulatory applications would not utilize the 

chemical-level mean effect level, the mean effect level is 

used as an anchoring point to assess the variability across 

study type, species, etc., from chemical-to-chemical. The 

baseline RF model showed that approximately 15% of the 

variance was explained by study-level covariates and add-

ing chemical, biological, and kinetic descriptors resulted 

in increased R2 and decreased RMSE. The benchmark RF 

model explained approximately 70% of the variability, pro-

viding an estimated upper bound within which even a model 

with perfect input parameters (i.e., zero uncertainty in the 

input data fully explaining all dynamic and kinetic factors of 

effect level determinations) would not be expected to exceed. 

Baseline and benchmark performance metrics established 

by these methods serve as guideposts for contextualizing 

the final models. However, the benchmark estimate is likely 

overoptimistic as the mean effect level was calculated using 

the observed, not true, effect level. A more detailed and 

thorough examination of sources of effect level variability 

beyond the baseline and benchmark models presented herein 

is needed and underway.

Initially, we and many other groups modeled effect lev-

els from each study at the chemical-level (i.e., prediction of 

minimum effect level across all studies by chemical) with 

limited success (Novotarskyi et al. 2016; USEPA 2013). 

The effect levels used for the initial modeling effort, derived 

from many different study types and spanning many repeat-

dose systemic effect observations, constituted a heterogene-

ous endpoint for prediction. The current work attempted to 

address the heterogeneity in the source data by modeling 

effect levels at the study-level as opposed to the chemical-

level. Study-level effect levels and associated study-specific 

covariates were combined with chemical-level descriptors 

for the development of a set of predictive random forest 

models. This methodology enabled accounting for variability 

in the study type and other study-level covariates. Although 

not directly comparable, the chemical-level predictions from 

the EPA challenge (Novotarskyi et al. 2016; USEPA 2013) 

resulted in final models that explained roughly 30% of the 

variance, while the chemical-level predictions from the cur-

rent model explain nearly 50% of the variance in the exter-

nal validation dataset. There is a long history of attempting 

to develop QSAR and other predictive models of NOAEL, 

LOAEL,  LD50, and other effect levels (Hisaki et al. 2015; 

Mumtaz et al. 1995; Pizzo and Benfenati 2016; Rupp et al. 

2010; Toropov et al. 2015; Veselinovic et al. 2016), and the 

summary performance statistics for these published models 

vary widely. Additionally, external evaluation of these mod-

els has often shown that the models either only apply to a 

very specific chemical domain or were originally reported 

with overoptimistic performance statistics (Pizzo and Ben-

fenati 2016). Although attempted, direct comparisons to 

these previous models were not made due to a number of 

limiting factors, including different endpoints (e.g., NOAEL/

LOAEL vs  LD50), lack of cross- and/or external validation, 

availability of underlying chemical or toxicological data, 

and very limited chemical space). Therefore, in addition to 

developing the model using study-level covariate informa-

tion, a focus of the present work was to provide performance 

baseline and benchmark guideposts using the data in-hand.

Similar to the findings and observations of Novotarskyi 

et al. (2016), adding biological descriptors, i.e., ToxCast 

bioactivity data, did not significantly increase model per-

formance. There is limited, peer-reviewed guidance on the 

incorporation of bioactivity data in modeling. The OECD 

has recommended a set of five guidelines for development 

of QSAR models, including data used be associated with 

a mechanistic interpretation of a predicted endpoint (Fjo-

dorova et al. 2008). The results of the modeling process 

herein may provide biological plausibility and mechanistic 

insight into the driving systemic effects at the effect level, 

as nuclear receptor activity, oxidative stress, and cytoxic-

ity were leading predictive descriptors. Additionally, an 

advantage to creating ToxCast assay groups, beyond reduc-

ing descriptor space and highly correlated descriptors, is 

the easy translation of the model for practical applications 

in the future. It is not necessary to run every assay in the 

current ToxCast suite to generate an activity score for the 

model and to gain biological insight. Even with a subset 

of the assay data, this model can be run in conjunction 

with chemical descriptors to predict effect levels. Assay 

grouping serves to outline common biological space, so 

HTS assays that are different from those currently in Tox-

Cast, but that assess the same biological space or function, 

could be used as descriptors for model development and 

prediction.
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A limitation of the current model is the available bio-

activity descriptors from ToxCast/Tox21 represent a finite 

biological space currently covered in the ToxCast/Tox21 

HTS program. ToxCast and Tox21 research programs 

continue to expand biological and technological space, 

including investigation into the feasibility and utility of 

high throughput transcriptomics and assays with increased 

metabolic capacity. Additionally, the current model does 

not take into account kinetics for the full chemical library. 

To ensure the model will have a broad domain of chemi-

cal applicability, future directions will include incorpora-

tion of additional reverse toxicokinetic data (Rotroff et al. 

2010; Wetmore et al. 2012) to enhance the kinetic context; 

transcriptomics (Paules 2014) and additional HTS assays 

to provide broader biological coverage; and, expansion of 

the chemical space included in the internal validation set.

In conclusion, a novel suite of regression models of 

repeat-dose systemic toxicity was developed using study-

level covariates and chemical-level descriptors capable of 

predicting effect levels with quantified uncertainties. For-

ward predictions were made for over 30,000 chemicals, 

many of which have little to no empirical bioactivity or 

toxicity data. This work demonstrates it is possible to pre-

dict effect levels for additional chemicals if the appropriate 

chemical descriptor sets are available. Potential applications 

of this model include use in weight-of-evidence evaluations 

for chemicals that are barred from use in animal testing, such 

as cosmetic ingredients being developed in Europe. Within 

the US, the model could be used to predict effect levels for 

data poor chemicals in the home or environment (e.g., con-

taminated sites), fill in gaps for estimating the hazard index 

for multiple contaminants, or in emergency situations for 

chemicals with limited data. Regardless, the suite of predic-

tive systemic effect level models provides a key indication 

of hazard potential and dose response characterization for 

thousands of chemicals with limited safety-related data.
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