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ABSTRACT Infections encompass a set of medical conditions of very diverse kinds that can pose a
significant risk to health, and even death. As with many other diseases, early diagnosis can help to provide
patients with proper care to minimize the damage produced by the disease, or to isolate them to avoid the
risk of spread. In this context, computational intelligence can be useful to predict the risk of infection in
patients, raising early alarms that can aid medical teams to respond as quick as possible. In this paper,
we survey the state of the art on infection prediction using computer science by means of a systematic
literature review. The objective is to find papers where computational intelligence is used to predict infections
in patients using physiological data as features. We have posed one major research question along with
nine specific subquestions. The whole review process is thoroughly described, and eight databases are
considered which index most of the literature published in different scholarly formats. A total of 101 relevant
documents have been found in the period comprised between 2003 and 2019, and a detailed study of these
documents is carried out to classify the works and answer the research questions posed, resulting to our
best knowledge in the most comprehensive study of its kind. We conclude that the most widely addressed
infection is by far sepsis, followed by Clostridium difficile infection and surgical site infections. Most works
use machine learning techniques, from which logistic regression, support vector machines, random forest
and naive Bayes are the most common. Some machine learning works provide some ideas on the problems
of small data and class imbalance, which can be of interest. The current systematic literature review shows
that automatic diagnosis of infectious diseases using computational intelligence is well documented in the
medical literature.

INDEX TERMS Computational intelligence, expert systems, infection prediction, machine learning,
physiological signals, systematic literature review.

I. INTRODUCTION

Infectious diseases are the result of the invasion and multipli-
cation of microorganisms in the body. These microorganisms
can be bacteria, viruses, fungi in the form of yeast, or any
other microscopic organism. Infections can start anywhere
and spread throughout the body. An infection can cause
from fever to other health problems depending on the part
of the body in which it occurs. There are many different
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types of infections, and their effect can range significantly:
while some infections can remain asymptomatic and have no
negligible impact on health, others can put the patient’s life
on threat leading even to death.

Commonly, microorganisms proliferate fast within the
human body, colonizing the affected tissue and beginning the
disease’s manifestations. In some cases, early diagnosis of an
infection can allow medical teams to act quickly, providing
a treatment (such as a prescription of antibiotics) that can
revert the situation and stop the infection. Even if the outcome
of the patient cannot be changed with medical care, early
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identification of infections diseases or their complications
can reduce the probability of outbreaks and reduce the cost
of medical care.
Medicine has developed a variety of mechanisms for diag-

nosing infections. Most common techniques involve labora-
tory techniques, such as blood or urine tests, stool or saliva
samples or lumbar punctures. In some cases, more specific
tests such as imaging scans or biopsies may be required to be
able to properly elaborate a diagnosis. The main drawback of
these techniques is that, in most cases, patients only visit the
doctor after suffering symptoms, such as fever.
Therefore, the need for automated diagnosis techniques

that are able to raise early alarms for some infectious diseases
arises. In the best case, infections can be predicted before
symptoms appear, enabling for a better treatment and timely
isolation if required. In this context, Computational intelli-
gence (CI) can aid the development of diagnosis tools that
are able to predict the existence of an infection in patients, and
that can be integrated as a part of a clinical decision support
system (CDSS) to help medical teams to act accordingly.
Some of these tools could only require as input features
a set of physiological signals, which in some cases could
be retrieved with some wearable devices, allowing for the
disease to be detected with some degree of confidence before
specific medical tests be performed.
By computational intelligence, we refer to both expert sys-

tems and machine learning techniques. In the former, expert
knowledge is introduced into the system, e.g. in the form
of rules, and the system is able to use this knowledge to
provide some decision when data are introduced. In the latter,
specific algorithms are used in order to automatically infer a
model (e.g. a prediction model) from a labelled dataset, and
therefore no explicit expertise is required beyond the labelling
of training data.
In this paper, we conduct an analysis of the state of the

art in infection prediction, by means of a well-described
procedure known as a systematic literature review (SLR).
SLRs hold a good prestige when it comes to analyze the
body of academic knowledge in complex domains, such as
recommender systems [3], Internet of things [79], food-intake
monitoring [68], penetration testing in mobile applications
[2], big data in healthcare applications [77], or computational
intelligence in sports [11].
To do so, relevant research questions are posed and a

thorough search procedure is carried out to locate relevant
documents that can provide answers to such questions. The
purpose of this SLR is to provide an accurate snapshot of
the state of the art, describing how machine learning (ML)
and expert systems (ES) techniques have been used to tackle
the problem of infection prediction, along with the perfor-
mance attained by different applications. Additionally, some
concerns that arise from the machine learning perspective,
such as few data availability or the issue of imbalanced
data are raised. As a result, this SLR can be useful to
researchers aiming at establishing research careers in this
domain.

The remainder of this paper is structured as follows:
section II enumerates some related works consisting on sur-
veys that overlap to some extent with the problem of infection
prediction. Later, section III describes the protocol of the
literature review, including the research questions, literature
sources, search query, search procedure and filtering criteria.
Then, section IV summarizes the execution process of the
SLR. Finally, section V analyzes the relevant documents
in order to provide answers to the research questions, and
section VI provides conclusive remarks about the systematic
literature review.

II. RELATED WORK

To the best of our knowledge, there are no other SLRs
focusing on the problem of infection prediction by means
of automated methods that involve machine learning or other
computer science approaches. However, there are some cases
of reviews (which might adhere or not to the guidelines of a
SLR) that survey papers on disease diagnosis, and whose aim
can partially overlap with the objective of the current SLR.

First, van Mourik et al. [108] performed a review of
automated surveillance methods for healthcare-associated
infections. They discussed how existing electronic surveil-
lance systems based on machine learning algorithms provide
improvement over manual surveillance methods. One of the
findings of this review is that most electronic systems detect
infections once they have happened. Authors noted that these
systems need to focus on real-time infection detection which
is a great challenge in this area.

Esfandiari et al. [25] investigated current and future trends
of knowledge discovery in medicine. They performed a
review research by analyzing previous works along with the
medical and data mining issues considered in those papers.
Although it includes some relevant materials, the review did
not focus on infection prediction.

Luo et al. [58] performed a systematic literature review
of predictive modeling of bronchiolitis. This review study
also included respiratory syncytial virus (RSV), an infection
which can be a main cause of bronchiolitis. They reported
how machine learning approaches can overcome limitations
of predictive modeling. The authors provided some prelim-
inary insights how to cope with open problems and future
challenges.

More recently, Bhattacharjee et al. [8] conducted a review
to analyze recent advancements in the area of sepsis detec-
tion on the hospital wards. They discussed advantages and
disadvantages of several scoring systems for sepsis detection.
In addition, they mentioned and examined several automated
sepsis screening tools and their use in general hospital wards.
They reported that biomarkers and electronic health records
can have a big impact on predicting sepsis in hospital wards
according to studies they examined. Finally, they discussed
future trends and impact of automated big data approaches
for sepsis detection. Ahmadi et al. [1] performed a systematic
review to search fuzzy logic methods for disease diagnosis
from different medical practices.
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Finally, Sinha et al. [91] performed a review to report the
limitations of routine blood culture testing in sepsis diag-
nosis and analyzed popular sepsis diagnosis technologies.
They examined seven molecular technologies that utilize
blood samples. They discussed these recent technologies and
reported detailed advantages and drawbacks. Furthermore,
they analyzed how machine learning methods affect these
technologies with the use of electronic medical records. They
came to conclusion that combining various diagnostic tech-
nologies could improve prediction ability of clinical systems
and reduce the risk of wrong antibiotic usage in clinic.
There is an interest in the problem of disease prediction and

diagnosis, and computer science constitutes a good approach
towards solving this problem. Infections comprise a large
set of diseases whose nature makes its early diagnosis of
special interest, for example, due to their ability to spread
and potential to become epidemic in certain cases. However,
we have noticed the lack of systematic reviews focusing on
this kind of diseases. As a consequence, there is a need to
conduct the current systematic literature review.

III. METHODS

This review was conducted using the guidelines provided
by Kitchenham and Charters [48] and in accordance with
PRISMA guidelines. Kitchenham and Charters’ guidelines
were developed for performing SLRs in the field of software
engineering, although they were inspired by previous manu-
als aimed at the medical domain.
In this section, we thoroughly describe the protocol for

carrying out the systematic literature review. In order to do
so, we first enumerate the research questions that we want to
answer through this study, then describe the search strategy
followed for retrieving source materials for the SLR, explain
the inclusion and exclusion criteria applied over those mate-
rials to filter out non-relevant works, and finally describe the
process for extracting data for solving such research ques-
tions.

A. RESEARCH QUESTIONS

In this research work we want to focus on the prediction of
infections using physiological data. For this reason, we have
raised the following research question:
RQ1. Does the literature document methods to predict

infections given physiological data?

While this is our main research question, in case its answer
be affirmative, we are also interested on formulating the
following subquestions, which enable us to better understand
the state of the art of this research field.
RQ1.1.Which are the infections or types of infections that

are susceptible of prediction according to the literature?

RQ1.2. Do some of these documented methods involve

machine learning?

RQ1.3. Do some of these documented methods involve

expert systems?

RQ1.4.Which are the available data sources for infections

prediction?

RQ1.5. Which are the most frequently reported perfor-

mance metrics for infection prediction?

Again, if the answer to RQ1.2. held true, then we can raise
some additional questions that would help us understand how
the problem of infection prediction can be tackled by means
of machine learning:
RQ1.2.1. According to the literature, which are the

machine learning techniques suitable for infection predic-

tion?

RQ1.2.2. According to the literature, which is the impact

of few training samples in infection prediction performance?

RQ1.2.3. According to the literature, which is the impact

of a largely imbalanced dataset in infection prediction

performance?

Many machine learning tasks in the healthcare domain
are faced with problems relevant to the size and content of
the datasets used. These problems usually emerge in two
ways. The first is the fact that large datasets are seldom
available in this field. This problem is referred as ‘‘small
data’’ to indicate the gap between available training data
and a complete distribution pattern. When the training data
are insufficient to represent an entire population, it becomes
more difficult to develop models that generalize in a broad
sense. This issue may cause several other problems such
as over-fitting, lower accuracy and unfair assessment of the
model developed. Another fundamental problem is the imbal-
anced distribution of classes in the dataset. In the medical
field, this problem often arises in binary classification tasks,
where there exists a predominant class with the samples in
normal/control group and a minority class with diseased or
treated samples. This problem is referred as ‘‘imbalanced
data’’. In this study, we consider these two crucial problems to
see how they affect the particular task of infection prediction
from physiological data. To this end, we define two research
subquestions (RQ 1.2.2 and RQ 1.2.3). These RQs are aimed
to identify how small and imbalanced data impact the activ-
ities in developing and validating computational models and
how these challenges are addresses in the literature. To get
an unbiased view of these impacts, relevant keywords are
not placed into the search query. Instead, these issues are
considered at the data extraction stage after careful reading
of full texts of the articles in final SLR repository.

Finally, if the answer to RQ1.3 were affirmative, we could
ask one more question to study the ways in which expert
systems have been applied to this problem:
RQ1.3.1. According to the literature, which are relevant

reasoning rules for infection prediction?

B. SEARCH STRATEGY

1) SEARCH TERMS

In order to build the search string, we first identify keywords
with some possible alternatives, in order to guarantee the
retrieval of an exhaustive set of relevant literature. In this
SLR, we only consider papers published in the English lan-
guage. The keywords for building the core search query, along
with their considered alternatives, are the following:
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FIGURE 1. Illustration of the search procedure followed for the SLR.

• Infection–infectious disease
• Prediction–diagnosis
• Physiological signals–physiological waveforms, vital
signs

• Machine learning–supervised learning
• Expert system–reasoning, rule-based system
It is noticeable that these alternative to keywords are

not necessarily synonyms, but in some cases are reasonable
replacements given the object of this SLR. For example,
‘‘supervised learning’’ is not equivalent to ‘‘machine learn-
ing’’, but when considering the problem of prediction, it is a
reasonable alternative keyword.
Once these search terms are identified, we build the search

query by combining them with different boolean operators.
This query is the following:

(infection OR infectious disease)

AND (prediction OR diagnosis)

AND (physiological signals OR

physiological waveforms OR

vital signs)

AND (machine learning OR

supervised learning OR

expert system OR reasoning OR

\hbox{rule-based} system)

Of course, it is worth realizing that in some cases the query
has been adapted to the particular syntax accepted by the
different literature resources’ search engines.
Additionally, we have considered two more terms

aimed towards answering very specific research questions
(RQ1.2.2 and RQ1.2.3), and therefore we have not included
them in the core query. Instead, we search for these in the
retrieved documents in order to find answers to those queries.

• Imbalanced dataset–unbalanced dataset, imbalanced
data, unbalanced data, imbalanced classes, unbalanced
classes

• Small data–few training samples, few training instances

2) LITERATURE SOURCES

In order to cover the broadest surface of relevant literature,
we have decided to use the following eight literature sources:
PubMed, IEEE Xplore Digital Library, ScienceDirect, ACM
Digital Library, SpringerLink, Web of Science, Scopus and
Google Scholar.

The criteria for choosing these databases were aimed
towards four objectives: (1) covering most of the medical lit-
erature, (2) covering most of the computer science literature,
(3) covering most papers in journals with an impact factor,
(4) being as exhaustive as possible. The chosen databases
gather most of the published literature in journals, scientific
conference proceedings and book chapters.

3) SEARCH PROCEDURE

In order to select relevant studies, we have adhered to the
following procedure:

1) The search query is executed in the search engine of
each of the eight literature databases.

2) A first filtering out stage is carried by checking titles
and abstracts, in order to quickly remove non-relevant
records.

3) Amore exhaustive filtering out stage is performed after
retrieving and reading full texts. For each excluded
document, the reasons leading to its exclusion were
documented.

4) The references of each of these works were analyzed to
identify further relevant works that had not been found
during the first retrieval stage.

5) Snowballing is performed to get access to new
literature.

The process is illustrated in Figure 1. After these four
steps are carried out, we obtain a set with all documents
fulfilling the inclusion criteria, from which we can retrieve
the full texts in order to be able to answer the research
questions.
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C. STUDY SELECTION

In order to carry out filtering stages (2) and (3) in the search
procedure, we have established a well-defined set of exclu-
sion criteria. These criteria are the following:

• E-1. Papers not related to computer science
• E-2. Papers not involving infection prediction
• E-3. Papers not reporting results on prediction perfor-
mance

• E-4. Papers older than 15 years old (published in 2003 or
earlier)

D. DATA EXTRACTION

The entire search process has been documented, with all
records being stored in a referencemanager. During thewhole
process, we have been careful to annotate the exclusion crite-
rion for each excluded paper, as well as the literature source
for each of them. Full texts were only retrieved for documents
that passed the first filtering stage (title and abstract).

Once a set of relevant records were located and their full
texts were downloaded, we designed a form, that was filled
for each document, in order to extract the following informa-
tion:

• Does the paper use machine learning?
• Does the paper use expert systems?
• Whatmachine learning techniques are used in the paper?
(if applicable)

• What expert system techniques are used in the paper? (if
applicable)

• What features are used for infection prediction?
• What infection(s) does the paper aim at predicting?
• Does the paper mention imbalanced data?
• Does the paper mention small data?
• What performance metrics does the paper report?

With the previous information, we should be able to pro-
vide an answer to each of the research questions posed in this
systematic literature review.

IV. SYSTEMATIC REVIEW EXECUTION

In this section we summarize the execution of the search pro-
cess, describing the number of documents retrieved in each
phase from each bibliographic source, and how exclusion
criteria have filtered out the documents until obtaining a final
set of relevant papers.

A. RELEVANT PAPERS (1ST STAGE)

A summary of the execution of the first stage can be found
in Figure 2. In all cases, only scientific papers were con-
sidered, ignoring other types of resources such as editorials
or tables of contents. The figure also displays the different
exclusion criteria, both for the first pre-filtering (considering
only paper metadata, title and abstract) and for the full text
analysis. The figure also points out a few exceptional papers
whose full text could not be retrieved by any means. Exclu-
sion criterion E-4 is not shown for the full text analysis, since

FIGURE 2. Results of the first stage, showing the effect of each exclusion
criterion.

it refers to the year of the record, and therefore the filtering
was applied earlier.

It can be seen that the most discriminating criterion is
E-1, which filters out a large corpora of papers not related
to computer science (most of them retrieved from Google
Scholar) by simple inspection of the title and abstract: it
is easy to identify from such information whether a paper
is about computer science or not. Another discriminating
criterion is E-2, which is able to filter out almost 400 papers.
Criterion E-4 is not particularly helpful, something that can
be explained because the object of this research (infection
prediction using computer science) is relatively recent, and
therefore papers older than 15 years are scarce.

A dataset listing the 47 included papers in the first stage
has been publicly released in Mendeley Data [7].

B. RELEVANT PAPERS (2ND STAGE)

In the second stage, we have revised the references from the
relevant papers found in the first stage in order to identify
additional documents. For these new documents to be con-
sidered, they could not be available in our set beforehand and
they had to fulfill the inclusion criteria. After completing this
process, we found 30 relevant documents. Then, to find more
recent papers, we performed forward snowballing, gaining
access to other 24 relevant papers. Therefore, the final set of
relevant records for the SLR comprises a total of 101 papers.

Figure 3 summarizes the SLR execution process, showing
the explicit difference between the two stages.

V. RESULTS AND FINDINGS

After manually reviewing the relevant documents, we are able
to provide the following answers to all research questions:
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FIGURE 3. Summary of the SLR execution, displaying the number of
documents available after every stage.

RQ1. DOES THE LITERATURE DOCUMENT METHODS TO

PREDICT INFECTIONS GIVEN PHYSIOLOGICAL DATA?

The systematic literature review has resulted in a set
of 101 relevant documents. Each paper reports one or more
computational methods to predict infection from some kind
of physiological data. Therefore, the answer to this question
is affirmative.

RQ1.1. WHICH ARE THE INFECTIONS OR TYPES OF

INFECTIONS THAT ARE SUSCEPTIBLE OF PREDICTION

ACCORDING TO THE LITERATURE?

In the literature, 19 different types of specific infectious
diseases are reported as susceptible of predictionwith compu-
tational methods. Six papers target general infections rather
than a particular type: they tested their algorithms on several
different types.
Figure 4 shows the number of articles in the final SLR

repository for each infection type. The most frequent man-
ifestations of infections considered in the context of early
prediction by computational methods is sepsis, which is a
body’s life-threatening response to an infection that can lead
to tissue damage, organ failure or even death. Surgical Site
Infection (SSI) is the second most frequent type although it
does not refer to a specific biological type, but rather indicates
any infection that has spread during surgery. Clostridium
difficile infection (CDI) is the third most common infection
addressed in this context. CDI is a bacterial infection that may
cause life-threatening inflammation. The influenza infection
is addressed in si different studies. Influenza is a viral infec-
tion, which is often referred as flu. The infection types with a
count of lower than three are labeled as others.
The complete list of other infections are as follows:

Catheter-Associated Urinary Tract Infection (CAUTI),
Healthcare-Associated Infections (HCAIs) (including Cen-
tral Line-Associated Bloodstream Infection, Central Venous
Catheter or Ventilator-Associated Pneumonia), Dengue
Fever, Ebola and Marburg Viruses, Malaria, Meningitis and
Encephalitis, Methicillin-Resistant Staphylococcus Aureus
(MRSA), Upper Respiratory Infection and Urinary Tract
Infection.

FIGURE 4. Number of documents per type of infection.

RQ1.2. DO SOME OF THESE DOCUMENTED METHODS

INVOLVE MACHINE LEARNING?

In this context, machine learning refers to any algo-
rithm which attempts to fit a computational model to
distinguish between infectious and non-infectious samples
given an annotated training data. Some studies address
multiple classes, where subtypes of infections are also
considered.

In our SLR repository, 66 of the articles propose machine
learning methods to predict infection (see Table S2 in the
appendix). A framework typically common to all these stud-
ies involves two main stages: extracting features from input
data and learning a classification model that fits best into the
training data.

RQ1.2.1. ACCORDING TO THE LITERATURE, WHICH ARE THE

MACHINE LEARNING TECHNIQUES SUITABLE FOR

INFECTION PREDICTION?

All methods documented in the literature employ a typical
discriminative framework for supervised classification. They
differ in the type of classification algorithm used and the
feature sets used to feed these classifiers.

Table S1 in the appendix lists all studies involving machine
learning methods to predict infection. Some of them report
the experimental results with more than one classification
algorithm. Most common algorithm is Logistic Regression
(LR), which is used in 33 of the studies in total. It is followed
by Support Vector Machine (SVM) and Random Forest or
Decision Tree methods (RF) with the usage counts of 21 and
18 respectively. Other abbreviations are: Hidden Markov
Model (HMM), Linear Discriminant Analysis (LDA), Naive
Bayes (NB), K-Nearest Neighbors (KNN), Artificial Neural
Networks (ANN), Bayesian Network (BN), Long Short-Term
Memory (LSTM), Gradient Boosted Trees (GBT), Contin-
gency Table (CT), Quadratic Discriminant Analysis (QDA),
Linear Dynamical System (LDS), Gaussian Process / Gaus-
sian Mixture Model (GP), AdaBoost (AB), Ensemble of
Learners (EL), Convolutional Neural Networks (CNN), Topic
Models (TM, used for Latent Dirichlet Allocation or its
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FIGURE 5. Distribution of most common machine learning classification
techniques over most common infection types.

variants), Natural Language Processing (NLP1) and Linear
Regression (LiR).
The preference of classification algorithm may vary

according to the infection type being considered. Figure 5
discerns these preferences in the literature, where only the
algorithms that are used at least in three studies are plotted.
For sepsis prediction, LR and SVM are preferred with similar
prevalence. LR is most common in CDI prediction.
Existing studies use several numeric features which are

believed to be representative for the infection types under
consideration. These features can be grouped into nine sets.
Demographics define the personal information such as age,
gender etc. Vital signs refer to basic measurements that are
routinely monitored to see how well the body is function-
ing. We consider five vital signs (heart rate, temperature,
respiratory rate, pulse oxiometry, blood pressure) as a dis-
tinct feature in our analysis since they are most common
in all infection types. Lab tests may refer to any kind of
lab analysis from blood or urine. The electronic measure-
ments such as Electrocardiograms (ECG) or images obtained
from any imaging modality are simply referred as biomedical
signals. We use the term ‘‘clinical data’’ to describe any
prescriptions, medications or procedures which are employed
during examination or treatment of the patients. Logistic data
describes any information about the administrative process of
the patients, such as hospital entrance time, duration of stay,
etc. Microbiology data are all about genotype information
such as biomarkers. Risk factors are the features derived from
other data to describe the severity of some clinical risks.
Some of the studies prefer to use the term of Electronic
Health/Medical Records to abstract the features they used.
Since they did not specify the features explicitly, we use
the term EHR to refer to these category features, although
it may include already many of the other feature sets given
above. Table S2 in the appendix gives a detailed view of these

1Although NLP is an application rather than a technique, the paper allo-
cated to this category provides few details about the actual ML mechanisms
used to perform NLP.

FIGURE 6. Distribution of machine learning features over most common
infection types.

features sets used in the articles in our repository. When we
simply consider the counts that they are used in collected
articles, three vital signs are most common features used for
infection prediction: heart rate, temperature, respiratory. Lab
tests, demographics and clinical data are also widely used.
The feature sets used to feed classifiers also differ based on
the infection type (Figure 6).

RQ1.2.2. ACCORDING TO THE LITERATURE, WHICH IS THE

IMPACT OF FEW TRAINING SAMPLES IN INFECTION

PREDICTION PERFORMANCE?

The small data problem was explicitly mentioned in 30 of the
retrieved papers with details given in Figures 7 and 8. Eight
of these studies referred the problem as a general limitation
imposed in the prediction systemwithout any specific impact.
Three particular impacts were revealed: (1) low accuracy,
(2) limited generalization and (3) unfair assessment. 11 of
the studies either shown or hypothesized that the accuracy
of infection prediction diminishes with smaller number of
samples in training data. The authors of other 11 articles
argued that it is not easy to generalize the model to the entire
population due to having a small data set. Three of the papers
mentioned the impact of small data in unfair assessment of
the model. Unfair assessment in this context refers to the lack
of enough resources or proper environment to make a fair
comparison between the performances of the computational
methods being assessed.
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FIGURE 7. Impacts of small data mentioned in the relevant documents.

FIGURE 8. Solutions for small data explicitly offered to tackle the
problem in the relevant documents.

In 15 of the papers that mentioned small data prob-
lem, no specific solution was offered. Five of the studies
reported that they adapted their methods to cope with small
training data by adjusting model parameters. For example,
Stanculescu et al. [93] used a symmetric Dirichlet prior
with optimized parameters in their autoregressive Hidden
Markov Model to prevent estimates from being too small
since the number of samples in their sepsis data is low,
Wiens et al. [112] proposed a new feature extraction scheme
that would fit better for small datasets, and Kam andKim [43]
introduced a new deep learning model with a detailed archi-
tecture customized for low dimensional training data. Other
three studies used random re-sampling to increase the amount
of the training data. The authors of seven papers argued that
collecting new data would be the best solution to overcome
the negative effects of small data. It should be noted that the
counts in the figure do not add up to total number of papers
since some of them refer more than one impacts or solutions
relevant with the small data problem.

RQ1.2.3. ACCORDING TO THE LITERATURE, WHICH IS THE

IMPACT OF A LARGELY IMBALANCED DATASET IN

INFECTION PREDICTION PERFORMANCE?

The imbalanced data problem was explicitly mentioned
in 26 of the retrieved articles (see Figures 9 and 10). Eight
of these studies referred the problem as a general limitation

FIGURE 9. Impacts of imbalanced data mentioned in the relevant
documents.

FIGURE 10. Solutions for imbalanced data explicitly offered to tackle the
problem in the relevant documents.

without any specific impact. Same particular impacts were
revealed as with the small data problem. According to the
results, an unfair assessment of the models developed for
predicting infection is the most severe impact of the imbal-
anced data, which was mentioned in eight of the retrieved
articles. The second most frequently mentioned impact is the
low accuracy of the resulting model. The authors of these
papers determine that conventional methods such as general
accuracy metrics are not sufficient to discern the ability of
the models under evaluation. In three studies, the authors
report that imbalanced data may limit the generalization of
the offered model.

Three of the papers that mentioned imbalanced data prob-
lem do not offer any specific solution for it. Five of the stud-
ies adapted their methods to cope with imbalanced data by
adjusting model parameters. For instance, inn CREST [87],
the authors assigned a higher misclassification cost to minor-
ity class in their modified objective function while learning
an SVM model to predict infection, Monsalve et al. [69]
tailored an ensemble of logistic regression models, where
each sub-model was trained from a balanced subset, and
Wiens et al. [113] used an asymmetric cost parameter to train
an SVM from an imbalanced infection data. In 14 of these
studies, an over- or under-sampling strategy was applied to
balance the distribution of the classes. The authors of four
papers did not apply a specific solution, however, employed
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FIGURE 11. Distribution of computational intelligence approaches (ML or ES) over the years of study.

TABLE 1. Main data sources for works in the SLR, along with their source and prevalence.

FIGURE 12. Distribution of computational intelligence approaches (ML or
ES) over most common infection types.

a more objective performance evaluation scheme based on
the area under ROC (AUROC) curve. In spite of no explicit
mention of imbalanced data problem, 61 of the studies in our
final SLR repository used an AUROC-based methodology to
assess and benchmark their model performance. This means
that the imbalanced data problem is considered either in an
implicit or explicit way in the majority of the papers that we
retrieved on computational infection prediction.

RQ1.3. DO SOME OF THESE DOCUMENTED METHODS

INVOLVE EXPERT SYSTEMS?

Expert systems andmachine learning are considered to be two
ends of a spectrum working to solve classification problems
in a different way. Expert systems use if-then-else rules and a
logical approach to assign a given sample to one of predefined
classes where machine learning methods attempt to build
a complex model to distinguish between classes. The rules
in expert systems are usually extracted by a domain expert

FIGURE 13. Most frequently reported performance metrics in the
documents found by the SLR.

or in a hybrid way that integrates human knowledge with
automated reasoning strategies. Some of the documented
methods in the literature report the use of expert systems
for predicting infection. The count of such articles in our
SLR is 11. Figure 11 depicts the use of expert systems and
machine learning methods for each calendar year that we
include in our SLR study. As shown, there is no specific
tendency to prefer either ML or ES method according to
publication date. However, ES is preferred for particular types
of infections (see Figure 12). The figure suggests that ES can
be a convenient alternative to ML techniques for prediction
of sepsis. This result may be attributed to the fact that sepsis
has some specific guidelines for diagnosis, which make this
infection type susceptible to apply rule-based techniques for
prediction.
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TABLE S1. Machine learning techniques reported in each of the relevant documents.
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TABLE S2. (Continued.) Machine learning techniques reported in each of the relevant documents.
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TABLE S2. (Continued.) Machine learning techniques reported in each of the relevant documents.

RQ1.3.1. ACCORDING TO THE LITERATURE, WHICH ARE

RELEVANT REASONING RULES FOR INFECTION PREDICTION?

Awell-known criteria, are the manifestations of the Systemic
Inflamamatory Response Syndrome (SIRS). Those were used
in two studies for the prediction of Sepsis in an expert system
setup [4], [5]. Five of the studies customized their rules with
respect to the infection type considered [14], [32], [42], [104],
[106]. Two studies deployed fuzzy-logic-based reasoning to
soften the boundaries for decision [18], [107]. To predict
HCAIs, [19] used a criteria defined by Hospitals in Europe
Link for Infection Control through Surveillance (HELICS)
program. [60] developed an ontology-driven association rule
induction method for classification and applied their method
on disease classification including several infections. The
studies gathered in the SLR are shown by the end of Table S2
in the appendix, where the previous set of rules can be seen,
as well as custom rules and one study applying an Analytical
Hierarchy Process (AHP).

RQ1.4. WHICH ARE THE AVAILABLE DATA SOURCES FOR

INFECTIONS PREDICTION?

Most of the works surveyed in the SLR rely on private
data acquired ad-hoc for the study. In most cases, these
data are obtained from pilots in hospitals, clinics or medical
centers in different countries over the world. These sources
are acknowledged in the Data column of Table S2 in the
appendix.

Interestingly, some works rely on public data sources,
which are more interesting as they can be accessed by other
researchers, and can ease reproducibility and benchmarking
of the results. The most frequently used public datasets are
MIMIC-III and MIMIC-II, followed by far by BIDMC and,
in the last place, by the Taiwanese National Health Insurance
Research Dataset. The main data sources and their prevalence
in the SLR are summarized in Table 1.

RQ1.5. WHICH ARE THE MOST FREQUENTLY REPORTED

PERFORMANCE METRICS FOR INFECTION PREDICTION?

The most commonly reported metrics for describing the
performance of the infection prediction works surveyed in
this SLR are summarized in Figure 13. The most frequent

metric was the area under the ROC curve (AUROC), followed
by sensitivity and specificity. Accuracy was also a highly
reported metric, although it is often not useful by itself, and
is most commonly used as a supporting metric. With less
frequency, precision and recall (as well as F1 score, which
average them) were used, followed by the positive predictive
value (PPV) and negative predictive value (NPV).

VI. CONCLUSION

In this paper we have designed and executed a systematic
literature review (SLR) to find relevant works where machine
learning and expert systems techniques are used for automatic
diagnosis and prediction of infectious diseases. This topic is
of special interest because accurate early diagnosis allows for
the correct application of treatment, increasing the chances of
patients’ recovery, or in the worst cases enabling authorities
to initiate quarantine procedures before the disease spreads.

The results of the SLR has allowed us to provide suc-
cessful answers to our research questions. Our main RQ
involved whether the literature documents methods for pre-
dicting infections given physiological data. After executing
the SLR, we have found a total of 101 relevant documents,
therefore being able to obtain an affirmative response to such
question. As a result, this is a very comprehensive survey
of the topic, and to the best of our knowledge, it is the first
entirely focusing on infection prediction using computational
intelligence.

Infection prediction might be a problem too generic since
infections comprise a very broad set of diseases, with differ-
ent symptoms and consequences. For this reason, we wanted
to learn about the most common types of infections that were
subject of study in the related literature. Given the results of
the SLR, we can observe that the most widely studied disease
is by far sepsis, followed by Clostridium difficile infection.
Also, 12 papers focus on surgical site infections, which com-
prise different types of infections that can be acquired by a
patient during and 30 days after surgery.

Additionally, we were interested in knowing whether these
papers used machine learning or expert systems to perform
such prediction. After carrying out the SLR, we have found
that the majority of papers (90) use diverse machine learn-
ing techniques to carry out prediction of infectious diseases.
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TABLE S2. Relation of the papers studied in the systematic literature review and their taxonomy.
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TABLE S2. (Continued.) Relation of the papers studied in the systematic literature review and their taxonomy.
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TABLE S2. (Continued.) Relation of the papers studied in the systematic literature review and their taxonomy.

VOLUME 8, 2020 31097



A. Baldominos et al.: Predicting Infections Using Computational Intelligence

TABLE S2. (Continued.) Relation of the papers studied in the systematic literature review and their taxonomy.

The most common machine learning techniques are logis-
tic regression, support vector machine, random forest and
decision trees, hidden Markov models, linear discriminant
analysis and naive Bayes. The remaining 11 documents
used different implementations of expert systems, most
commonly custom rule knowledge bases to perform the
diagnosis.
Performance reported in this SLR should be taken only

as informative, since problems and databases vary across
studies, and the latter are in most cases privately hold. How-
ever, since a large corpora of works focus on sepsis predic-
tion using the public MIMIC-III database, it is relevant to

highlight that the best performance in this case is attained by
Kam and Kim [43], who have reported an AUROC of 0.929.

Finally, we were worried about two problems that can be
commonly found in the application of machine learning to
medical applications: class imbalance and the lack of data.
Therefore, we posed two additional questions that we tried to
answer during the SLR regarding these two specific issues.
From the 101 papers, 30 mentioned the problem of reduced
availability of data, and so did 26 papers with the issue of
class imbalance. Regarding the former problem, most papers
(a total of 15) did not suggest any particular solution, although
other papers suggested collecting new data, and to a lesser
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extent adapting the model parameters or performing random
resampling. As with the problem of class imbalance, most
papers suggested the use of over- or under-sampling to tackle
this issue, whereas some other papers described solutions
which involved adapting the model parameters or using a
performance metric that was not affected by this problem,
such as the area under the curve (AUROC).
From our SLR, we conclude that automatic diagnosis of

infectious diseases is a topic of intensive research, and a field
of increasing interest, since more than half of all found papers
(a total of 60) were published from 2016 onwards.
As a future line of work, it would be interesting to study

how the different features and algorithms used for infection
prediction evolve over time, to detect technological trends
and advances in the discipline. It could also be useful to
study the evolution of peak performance, although this would
be a more challenging analysis, given that authors focus on
different problems and datasets.

APPENDIX

See Tables S1 and S2.
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