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Through Automated Speech
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Purpose: Behavioral speech modifications have variable
effects on the intelligibility of speakers with dysarthria. In
the companion article, a significant relationship was found
between measures of speakers’ baseline speech and their
intelligibility gains following cues to speak louder and reduce
rate (Fletcher, McAuliffe, Lansford, Sinex, & Liss, 2017). This
study reexamines these features and assesses whether
automated acoustic assessments can also be used to predict
intelligibility gains.
Method: Fifty speakers (7 older individuals and 43 with
dysarthria) read a passage in habitual, loud, and slow
speaking modes. Automated measurements of long-term
average spectra, envelope modulation spectra, and Mel-
frequency cepstral coefficients were extracted from short
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segments of participants’ baseline speech. Intelligibility
gains were statistically modeled, and the predictive power
of the baseline speech measures was assessed using
cross-validation.
Results: Statistical models could predict the intelligibility
gains of speakers they had not been trained on. The
automated acoustic features were better able to predict
speakers’ improvement in the loud condition than the
manual measures reported in the companion article.
Conclusions: These acoustic analyses present a promising
tool for rapidly assessing treatment options. Automated
measures of baseline speech patterns may enable more
selective inclusion criteria and stronger group outcomes
within treatment studies.
B ehavioral speech modification is a primary focus
of intervention aimed at improving intelligibility in
speakers with dysarthria. Indeed, techniques in-

volving increasing loudness and reducing speech rate have
been promoted for speakers with a range of dysarthria eti-
ologies (Fox & Boliek, 2012; Sapir et al., 2003; Van Nuffelen,
De Bodt, Vanderwegen, Van de Heyning, & Wuyts, 2010).
However, the efficacy of these strategies is not entirely clear.
Not all speakers show improvement in intelligibility scores
when cued to alter their speech (McAuliffe, Fletcher, Kerr,
O’Beirne, & Anderson, 2017; Neel, 2009; Pilon, McIntosh, &
Thaut, 1998; Tjaden & Wilding, 2004; Turner, Tjaden, &
Weismer, 1995; Van Nuffelen, De Bodt, Wuyts, & Van de
Heyning, 2009; Van Nuffelen et al., 2010), and it is not
uncommon for treatment studies to fail to demonstrate in-
telligibility improvements across speaker groups (e.g., Lowit,
Dobinson, Timmins, Howell, & Kröger, 2010; Mahler &
Ramig, 2012). To promote speech therapy for speakers with
dysarthria, we must become adept at identifying speakers
who are likely to make positive treatment gains. This will
allow us to better target our treatment strategies, enabling
more selective inclusion criteria and stronger group outcomes
within treatment studies.

This study is the second of two (Fletcher, McAuliffe,
Lansford, Sinex, & Liss, 2017) that aim to investigate
whether detailed measures of speakers’ baseline speech can
be used to predict their intelligibility gains following behav-
ioral speech modification. At present, there are limited pro-
tocols for determining whether a treatment technique is
appropriate for a given speaker. Researchers most often
select speakers for treatment based on their Mayo system
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subtype (Darley, Aronson, & Brown, 1975) or neurogenic
etiology, with participants with matching etiologies or sub-
types grouped together in studies (e.g., placing all partici-
pants with Parkinson’s disease and hypokinetic dysarthria
within a single treatment group; Cannito et al., 2012; Lowit
et al., 2010). However, there is little evidence to suggest that
speakers who share a subtype or dysarthria etiology will
respond similarly to treatment strategies (McAuliffe et al.,
2017; Tjaden & Wilding, 2004; Van Nuffelen et al., 2010).

In the companion article (Fletcher et al., 2017), we
demonstrated that perceptual measurements of speech se-
verity, in addition to acoustic measurements of articulation
rate and temporal variability, accounted for between 31%
and 34% of the variation in intelligibility change across
speakers. This supports the notion that measures of baseline
speech features in dysarthria can be used to make predictions
about how speakers might respond to treatment. However,
the measures that best accounted for these intelligibility
gains involved labor-intensive segmentation of the speech
signal and large numbers of listeners to reliably quantify
speech severity. The current study investigates whether auto-
mated measures of the speech signal can account for similar
variability in speakers’ intelligibility gains to those derived
from the manually obtained acoustic/perceptual measures.

Automated Analyses of Dysarthric Speech
Recently, there has been considerable interest in the

application of automated speech measures as a method
of gathering faster, less invasive assessments of speakers’
disease progression (for a review, see Bayestehtashk, Asgari,
Shafran, & McNames, 2015). In the motor speech litera-
ture, several feature sets have been used to characterize the
speech signal: long-term average spectra (LTAS), envelope
modulation spectra (EMS), and Mel-frequency cepstral coef-
ficients (MFCCs). Many perceptual qualities of speech (e.g.,
articulatory imprecision, hypernasality, and strained voic-
ing) do not have simple acoustic correlates. Thus, although
automated acoustic measures can provide detailed descrip-
tions of the shape and composition of the acoustic wave-
form, there is no definitive one-to-one mapping of specific
measurements of LTAS, MFCCs, and EMS to perceptual
speech features. Despite these limitations, measures of LTAS,
EMS, and MFCCs have obvious clinical potential. They
can systematically quantify the speech signal in a manner
that is easy to compute and does not require manual pro-
cessing (e.g., Liss, LeGendre, & Lotto, 2010). Hence, com-
binations of these features can be used as a basis for modeling
speech severity and rapidly assessing treatment options
(Berisha, Utianski, & Liss, 2013).

LTAS have been commonly used in the speech dis-
order literature to index differences in voice quality and
nasality across speech samples (Lowell, Colton, Kelley, &
Hahn, 2011). LTAS provide a representation of the aver-
age spectral information contained in the speech signal
across a relatively lengthy period (i.e., they provide infor-
mation about the spectral content across whole phrases,
rather than within specific phonemes). Tjaden, Sussman,
Fletche
Liu, and Wilding (2010) and Lowell et al. (2011) demon-
strated that there are significant correlations between LTAS
measures and perceptual ratings of dysarthria severity and
voice disorder. Improvements in voice quality are usually
demonstrated through a strengthening of lower-frequency
components of the LTAS and a weakening of upper-
frequency components (Cannito et al., 2012). For exam-
ple, Tanner, Roy, Ash, and Buder (2005) observed that
speakers with functional dysphonia had lower spectral
means and standard deviations following behavioral ther-
apy. There is also evidence that LTAS measures can be
used to detect changes in nasality, with amplitudes around
250 Hz showing significant changes when speakers simulate
hypernasality (de Boer & Bressmann, 2016).

Another promising tool in the automatic evalua-
tion of dysarthria is the measures of EMS. EMS represent
modulations that occur in the amplitude of the speech
signal. Slow rate modulations in amplitude can provide
information about individual’s articulatory rate as well as
any sudden changes in loudness or interruptions to the
speech signal. Liss et al. (2010) explored measurements
derived from EMS that were taken from a range of fre-
quency bands within the speech signal. They found that
these features were 95% accurate in classifying speakers
with dysarthria from healthy controls on cross-validation.
Furthermore, they demonstrated 67% accuracy in their
ability to classify individuals into five speaker groups.
These groups included four different dysarthria subtypes,
in addition to a group of healthy control speakers. Liss
et al. (2010) selected speakers into these four dysarthria
groups because they exhibited the cardinal perceptual fea-
tures thought to be associated with their subtype. Hence,
their findings suggest that EMS measures may be particu-
larly sensitive to perceptual differences associated with dys-
arthria etiology and subtype.

MFCCs provide the most widely used representations
of the speech signal in automated speech recognition pro-
grams and are becoming increasingly common in analyses
of speech disorders (Han, Chan, Choy, & Pun, 2006; Paja
& Falk, 2012). Broadly speaking, MFCCs are used to cap-
ture information about the spectral structure of speech over
time in a manner that approximates the way we perceive
speech sounds. In the study of dysarthria, they are used
with the aim of measuring subtle changes in the move-
ment of articulators (Khan, Westin, & Dougherty, 2014).
For example, Van Nuffelen, Middag, De Bodt, and Martens
(2009) examined whether acoustic models derived from
MFCCs could be used to estimate listener ratings of intel-
ligibility. This study used acoustic models to compute the
probability that each analysis frame would be aligned to a
phoneme or phonological property. Their final models of
intelligibility achieved correlations of up to .94 with listener
intelligibility scores.

Summary and Aims of the Current Study
The current study used LTAS, EMS, and MFCC

features to predict whether speakers would benefit from
r et al.: Automated Analysis for Predicting Treatment Gains 3059



different speech modification strategies. Unlike the manual
acoustic/perceptual measures presented in the companion
article, these techniques do not require prior segmentation
of phonemes and can be applied to relatively short speech
samples. Thus, it is hoped that they may be more readily
integrated as a speech assessment tool in clinical research.
The specific purpose of the current study was to determine
whether these automated measures could be used to model
variation in speakers’ intelligibility gains. The robust-
ness of these statistical models was tested using cross-
validation techniques. This approach enabled us to assess
whether newly generated statistical models were generaliz-
able to new groups of speakers. Manual acoustic/perceptual
measurements from the companion article were also re-
analyzed to determine their predictive power using the
same cross-validation techniques. With this information,
we compared the performance of the two speech assess-
ment methods.
Method
Speakers and Speech Stimuli

Fifty speakers contributed speech recordings to this
study (seven healthy older individuals and 43 with dysar-
thria). The intention was to be able to acoustically charac-
terize a full spectrum of dysarthria features. Thus, the
speakers had a range of dysarthria etiologies and speech
severities. For full demographic details, see Table 1.

Procedures for speech recording are described in the
companion article (Fletcher et al., 2017). “The Grandfather
Passage” was used to elicit a sample of participants’ base-
line speech, as well as samples simulating two common
treatment strategies. For the baseline condition, speakers
were asked to read the passage in their everyday speaking
voice after they had familiarized themselves with the pas-
sage. To create the treatment simulations, a magnitude scal-
ing procedure was used to elicit louder and slower speech.
The procedure for this is described in McAuliffe, Kerr,
Gibson, Anderson, and LaShell (2014).

Procedure
To assess whether features from automated speech

analyses could predict the intelligibility gains of these
speakers, two sets of data were required for each speaker:
(a) perceptual ratings of intelligibility gain in the loud
and slow speaking conditions and (b) measurements of
LTAS, EMS, and MFCC features from the baseline
speech condition.

Perceptual Ratings of Intelligibility Gain
Perceptual ratings of intelligibility gain were collected

in the companion study and are described in detail in the
article (Fletcher et al., 2017). Briefly, to determine intelligi-
bility gains in the loud and slow conditions, 18 listeners
rated speakers’ intelligibility on a visual analogue scale. In
each trial, the listeners were presented with three matching
3060 Journal of Speech, Language, and Hearing Research • Vol. 60 •
phrases, extracted from “the Grandfather Passage,” that
were produced in the baseline, loud, and slow conditions by
one of the study’s speakers. Listeners were blinded to the
identity of the three conditions. The presentation of these
phrases was randomized in each trial, and the listeners were
not informed about the nature of the speech modifications.
In each trial, listeners were instructed to rate how easy the
speech was to understand. Although the listeners heard
different sets of phrases for different speakers, all speech
stimuli were between 11 and 14 syllables in length. The dis-
tance that listeners placed between the baseline and treat-
ment tokens was used to calculate two intelligibility gain
indices for each speaker: one for change in the slow condi-
tion and one for change in the loud condition.
Measurements of Automated Acoustic Features
From the Baseline Speech Condition

To automatically extract acoustic features of speakers’
baseline speech, three sets of features were obtained via
MATLAB scripts (as previously reported in Berisha,
Sandoval, Utianski, Liss, & Spanias, 2013; Liss et al.,
2010; Wisler, Berisha, Liss, & Spanias, 2014). All fea-
tures were extracted from an identical phrase within
speakers’ baseline speech sample. The phrase “he slowly
takes a short walk in the open air each day” was chosen for
this purpose. The phrase was specifically selected because
the 50 baseline recordings were free from reading errors
and there were no significant nonspeech sounds or periods
of silence produced within the phrase. This helped ensure
consistency in the acoustic analyses. The feature sets used
in the automatic analysis of the phrase are described in the
following sections.
LTAS
To extract the LTAS values, the speech signal was

passed through an octave filter, breaking it into nine sepa-
rate bands. The center frequencies of these bands were
30, 60, 120, 240, 480, 960, 1920, 3840, and 7680 Hz. For
each of the nine octave bands and the full signal, the data
were framed using a 20-ms rectangular window with no
overlap to calculate (a) the normalized average root-mean-
square (RMS) energy, (b) the RMS energy range, (c) the
normalized RMS energy range, (d) skew, (e) kurtosis, as
well as the standard deviation of RMS energy normalized
relative to both (f ) the total RMS energy and (g) the RMS
energy in each band (not applicable in the analysis of the
full signal). We also extracted (h) the pairwise variability
of RMS energy between successive frames, (i) the mean of
the framed RMS energies, and (j) the normalized mean
of the framed RMS energies. This produced 99 LTAS fea-
tures. Measures of distribution (including standard devia-
tion, skew, and kurtosis) are frequently used to quantify
differences in LTAS (Tanner et al., 2005). The procedures
used in this study allowed us to examine the energy range
and distribution in the full speech signal, while also focusing
3058–3068 • November 2017



Table 1. Demographic information for speakers with dysarthria.

Gender Age Medical etiology Severity of disorder

F 46 Brain tumor Mild–moderate
M 58 Brainstem stroke Moderate
M 56 Cerebellar ataxia Mild
F 69 Cerebral palsy Severe
M 60 Cerebral palsy Severe
F 68 Freidreich’s ataxia Mild
F 47 Huntington’s disease Moderate–severe
M 55 Huntington’s disease Severe
M 43 Hydrocephalus Severe
F 53 Multiple sclerosis Mild–moderate
F 60 Multiple sclerosis Moderate–severe
F 79 Parkinson’s disease Mild
M 76 Parkinson’s disease Mild
M 77 Parkinson’s disease Mild
M 67 Parkinson’s disease Mild
F 83 Parkinson’s disease Mild
M 68 Parkinson’s disease Mild
M 89 Parkinson’s disease Mild
M 58 Parkinson’s disease Mild
M 73 Parkinson’s disease Mild
M 79 Parkinson’s disease Mild
M 69 Parkinson’s disease Mild
M 68 Parkinson’s disease Mild
F 70 Parkinson’s disease Mild–moderate
M 67 Parkinson’s disease Mild–moderate
M 71 Parkinson’s disease Mild–moderate
F 73 Parkinson’s disease Mild–moderate
M 65 Parkinson’s disease Mild–moderate
M 75 Parkinson’s disease Moderate
M 79 Parkinson’s disease Moderate
M 71 Parkinson’s disease Moderate
M 69 Parkinson’s disease Moderate
M 81 Parkinson’s disease Moderate–severe
M 77 Parkinson’s disease Moderate–severe
F 67 Progressive supranuclear palsy Mild
M 64 Spinocerebellar ataxia Severe
M 72 Stroke Severe
F 48 Traumatic brain injury Mild–moderate
M 55 Traumatic brain injury Mild–moderate
M 60 Traumatic brain injury Moderate
M 47 Traumatic brain injury Severe
M 53 Undetermined neurological disease Moderate
F 45 Wilson’s disease Mild

Note. F = female; M = male.
on specific sections of the LTAS by separately considering
the energy contained within the nine octave bands.

EMS
Before obtaining the EMS, speech recordings were

filtered into nine frequency bands with center frequencies
of 30, 60, 125, 250, 500, 1000, 2000, 4000, and 8000 Hz.
Amplitude envelopes were taken from the nine bands as
well as the full speech signal. Low-pass filters with a cutoff
of 30 Hz were then applied to the amplitude envelopes to
capture the slower changes in amplitude that occur across
words and phrases. Fourier analyses were used to quan-
tify the temporal modulations in the signal. Six EMS met-
rics were computed for each of the nine bands and the full
signal: (a) peak frequency, (b) peak amplitude, (c) energy in
Fletche
the spectrum from 3 to 6 Hz, (d) energy in spectrum from 0
to 4 Hz, (e) energy in spectrum from 4–10 Hz, and (f) en-
ergy ratio between 0–4 Hz band and 4–10 Hz band. Note
that (c), (d), and (e) are normalized by the total energy in
the EMS between 0 and 10 Hz. This resulted in a total
of 60 EMS features. Liss et al. (2010) provides further ex-
planation as to why these six metrics were developed for
the analysis of speech prosody.

MFCCs
The MFCCs were calculated using a filter bank

approach described in Vergin, O’shaughnessy, and
Farhat (1999), where the speech signal was filtered into
39 frequency bands distributed approximately evenly
along the Mel scale. The first 20 filters were linearly spaced
r et al.: Automated Analysis for Predicting Treatment Gains 3061



between 0 and 1000 Hz, whereas the next 19 were loga-
rithmically spaced between 1 and 22.05 kHz. For each
of the 39 Mel-filtered signals, the data were framed using
20-ms Hamming windows with 10-ms overlap, and the
log energy was calculated. Taking the inverse discrete cosine
transform of the 39 filtered log energy values for each frame
yields the set of 39 MFCCs for that frame. Within each
of these 39 MFCCs, six different statistics were computed:
(a) mean, (b) standard deviation, (c) range, (d) pairwise
variability, (e) skew, and (f ) kurtosis. This resulted in
234 MFCC features. Many studies that investigate automatic
speech recognition extract only the first 13 coefficients to
represent the envelope of the short-term power spectra.
By extracting a larger number of MFCCs and examining
their distribution, we attempt to gain additional spectral
details that could illuminate individual differences in speech
production.
Measurements of Manual
Acoustic/Perceptual Variables

The aim of this study was to predict speakers’ intelli-
gibility gains using automatically generated baseline speech
features and compare these models to predictions made
with manual measurements of the speech signal. The ex-
traction of these manual features is reported in our com-
panion article (Fletcher et al., 2017). The manual features
included a perceptual rating of speech severity and acoustic
measurements of speakers’ articulation rates, formant cen-
tralization ratios, the amplitudes of their first harmonics
relative to second, cepstral peak prominences, the standard
deviation of their pitch and amplitude from across the pas-
sage reading, and the pairwise variability index of their
vowels. These data were reanalyzed in the current study
and used to create new statistical models. These statistical
models assess how well the manual features predict the
performance of untrained speakers (i.e., their predictive
power on cross-validation). The statistical procedures are
described in the following section.
Statistical Analyses
Four regression models were developed. Models 1 and

2 predicted the degree that speakers changed their intelligi-
bility in the slow condition relative to their baseline speech
sample. The first model selected independent variables from
the eight manual speech measures reported in the com-
panion study. The second model selected its independent
variables from the full range of automated acoustic feature
sets (including measures of MFCCs, EMS, and LTAS).
Models 3 and 4 predicted the degree that speakers changed
their intelligibility in the loud condition relative to their
baseline speech sample. Model 3 selected independent vari-
ables from the eight manual speech measures. Model 4 se-
lected variables from the full range of automated acoustic
features. Each model’s predictive power was assessed by
determining the correlations between the intelligibility
3062 Journal of Speech, Language, and Hearing Research • Vol. 60 •
gain predicted by the model’s output and the real intelligi-
bility gains made by the speakers.

The large number of automated features extracted from
speakers’ baseline speech (a combined total of 393 features
per speaker) meant that standard stepwise regression methods
needed to be applied with caution in Models 2 and 4. For
example, a forward stepwise regression (with α set to p =
.05) would likely continue adding variables until it overfits
the perceptual data. Hence, a cross-validation procedure
was applied to determine the total number of features to
be included in all models. This cross-validation proce-
dure provided a measurement of the amount of variation
that the statistical models could predict in the intelligi-
bility gains of speakers they had not been trained on. A
10-fold cross-validation procedure was employed, where
the speakers were divided at random into 10 equal groups.
Cross-validation was achieved by training models on 90%
of the speakers and testing their predictive power on the re-
maining 10% (test speakers). This process was then repeated
a further nine times. On each repetition, a different set of
nine speaker groups was used to train the model, and the
model was tested on the remaining group. The predictive
power was then averaged across the 10 repetitions to deter-
mine the models’ performance.

This cross-validation procedure was used to test the
performance of the models each time a new variable was
added to the forward stepwise regressions. For example,
initially only one independent variable was selected for
each model. The selection of this variable was based on its
correlation with the intelligibility gains of the speakers it
was trained on. Because there were 10 different renditions
of the model every time a variable was added (as it was
trained 10 times on different combinations of speakers), a
different variable could be selected for the model each
time, depending on the training data. The performance of
the 10 renditions was averaged to provide an estimate of
how well the model could account for variations in intel-
ligibility gain when only one independent variable was
used. This process began anew in the second step of the
forward regression, using the same 10 groups of speakers
to train and test the model when it contained two inde-
pendent variables (provided the second variable accounted
for statistically significant additional variation, p < .05).
Testing continued with up to 10 independent variables
allowed in each of the models. The results of this proce-
dure were used to determine at which point in the forward
regression the predictive power of the cross-validated model
was highest.
Results
Stepwise Regression to Predict Intelligibility
Change in the Slow Condition

Figures 1 and 2 detail the relationship between
participants’ baseline speech features and their intelligibil-
ity gains in the slow speaking condition across different
statistical models. The y-axis shows the correlation between
3058–3068 • November 2017



Figure 1. The predictive power of manual acoustic/perceptual
measurements. The y-axis depicts the correlation between the
intelligibility gain predicted by the models’ output and the true
intelligibility gain indices measured following cues to reduce rate.
Average correlations are generated for each step of the forward
regression (as shown along the x-axis).
the performance predicted by the statistical models and the
true intelligibility gains made by the test speakers. This rela-
tionship is evaluated at each step in the forward regression
model building process (up until a total of 10 variables had
Figure 2. The predictive power of automated acoustic measurements.
The y-axis depicts the correlation between the intelligibility gain
predicted by the models’ output and the true intelligibility gain
indices measured following cues to reduce rate. Average correlations
are generated for each step of the forward regression (as shown along
the x-axis).

Fletche
been added). The figures demonstrate the models’ perfor-
mance on speakers that they have not been exposed to or
trained on. As described in the methods, this value is an
average of 10 renditions of the stepwise regression, each
tested on different speakers.

Figure 1 shows the performance of the eight man-
ual variables (a perceptual rating of speech severity and
acoustic measurements of speakers’ articulation rates, for-
mant centralization ratios, the amplitudes of their first
harmonics relative to second, cepstral peak prominences,
the standard deviation of their pitch and amplitude, and
the pairwise variability index of their vowels). This figure
demonstrates that, as the number of independent variables
in the models increases, there is almost no change in the
models’ accuracy in predicting the intelligibility gains of
the test speakers. Three steps into the forward stepwise
regression, the performance of the models remains static.
This demonstrates that the stepwise regression can no
longer find any manual variables that would account for
further statistically significant variation in intelligibility
gains of any speakers it has been trained on (at p = .05).
Overall, the models achieve their highest accuracy in pre-
dicting the performance of the test speakers when only
one independent variable is included. When one variable
is included, there is a correlation of .41 between the test
speakers’ true intelligibility gain indices and the average
predicted by the models, indicating that the manual vari-
ables can account for approximately 17% of the variation
in speakers’ intelligibility changes.

Figure 2 illustrates the performance of the 393 auto-
mated acoustic features. When the number of indepen-
dent variables increases above two, there is a sharp decline
in the models’ accuracy in predicting the intelligibility gains
of the test speakers. This demonstrates that overfitting is
occurring. The stepwise regression continues to select inde-
pendent variables that account for significant variation in
the intelligibility gains of the speakers it is trained on. How-
ever, it becomes less accurate in predicting the intelligibility
gains of new speakers. This suggests that the additional inde-
pendent variables have begun to describe small variations
in intelligibility gains that are specific to this group of par-
ticipants and do not reflect patterns in the larger popula-
tion. Overall, the models achieve their highest accuracy in
predicting the performance of the test speakers when two
independent variables are included. At this point, there is
an average correlation of .32 between the test speakers’
true intelligibility gain indices and those predicted by the
models, indicating that the manual variables can account
for approximately 10% of the variation in speakers’ intelli-
gibility changes.

Stepwise Regression to Predict Intelligibility
Change in the Loud Condition

Figures 3 and 4 detail the relationship between par-
ticipants’ baseline speech features and their intelligibility
gains in the loud speaking condition. Figure 3 shows the
performance of statistical models based on the eight
r et al.: Automated Analysis for Predicting Treatment Gains 3063



Figure 3. The predictive power of manual acoustic/perceptual
measurements. The y-axis depicts the correlation between the
intelligibility gain predicted by the models’ output and the true
intelligibility gain indices measured following cues to speak loud.
Average correlations are generated for each step of the forward
regression (as shown along the x-axis).
manual variables measured in our companion article. The
accuracy of the models in predicting speakers’ intelligibility
gain indices increases until three independent variables
are included. After this point, the performance of the
models remains static. This demonstrates that the stepwise
Figure 4. The predictive power of automated acoustic measurements.
The y-axis depicts the correlation between the intelligibility gain
predicted by the models’ output and the true intelligibility gain
indices measured following cues to speak loud. Average correlations
are generated for each step of the forward regression (as shown
along the x-axis).
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regression can no longer find any manual variables that
would account for further statistically significant variation
in intelligibility gains of any speakers it has been trained
on (at p = .05). Overall, the models achieve their highest ac-
curacy in predicting the performance of the test speakers
when three independent variables are included. At this
point, there is a correlation of .44 between the test speakers’
true intelligibility gain indices and those predicted by the
models, indicating that the manual variables can account
for approximately 19% of the variation in speakers’ intelli-
gibility changes.

Figure 4 illustrates the performance of the 393 auto-
mated acoustic features. When the number of independent
variables increases above two, overfitting occurs, and the
models become less accurate in predicting the intelligibil-
ity gains of new speakers. Overall, the models achieve
their highest accuracy in predicting the performance of
the test speakers when two independent variables are in-
cluded. At this point, there is a correlation of .50 between
the test speakers’ true intelligibility gain indices and those
predicted by the models, indicating that the manual vari-
ables can account for approximately 25% of the variation
in speakers’ intelligibility changes.

Final Models of Intelligibility Gain
The final regression analyses were conducted using

the full data set to model speakers’ intelligibility gain
indices. Results from the cross-validation procedure were
used to determine the appropriate number of independent
variables in each of the four models.

Predicting Intelligibility Gains in the Slow Condition
A one-step forward regression was conducted using

the eight manual variables reported in Fletcher et al. (2017).
The independent variable that showed the greatest correla-
tion with the intelligibility gain indices was the first to be
selected into the model. For predicting intelligibility gains
in the slow condition, this variable was the perceptual rating
of speakers’ speech severity.

A two-step forward regression was conducted using
the automatic acoustic feature sets. The first two variables
to emerge from this regression were as follows: (a) the
standard deviation extracted from calculations of the 34th
MFCC from across the speech sample and (b) the amount
of skewness in the distribution (from across the speech
sample) of the 14th MFCC. Both variables were negatively
associated with intelligibility gains.

Predicting Intelligibility Gains in the Loud Condition
A forward regression was conducted using the eight

manual variables reported in Fletcher et al. (2017).
Consistent with previous findings in the companion arti-
cle, when the full data set was included in this regression,
only two independent variables reached the threshold for
statistical significance. The independent variables that
showed the greatest correlation with the intelligibility gain
indices in the loud condition were selected in the following
3058–3068 • November 2017



order: (a) the articulation rate and (b) the perceptual rating
of speakers’ speech severity. A two-step forward regres-
sion was also conducted using the automatic acoustic fea-
ture sets. The first two variables to emerge from the regression
were as follows: (a) the overall range observed in the mea-
surements of the 14th MFCC and (b) a measurement of
kurtosis in the 25th MFCC. Both measures were negatively
associated with intelligibility gains.
Discussion
This current study explored whether automated

acoustic analyses of baseline speech could be used to pre-
dict speakers’ intelligibility gains following common treat-
ment strategies. Specifically, this study focused on the
performance of models on cross-validation. Cross-validation
procedures were used to assess how accurately statistical
models could predict the intelligibility gains of new groups
of speakers. Overall, this study found that both the auto-
mated feature sets and the manual measures taken from
Fletcher et al. (2017) predicted the intelligibility gains
of speakers they had not been trained on. However, the var-
iation they accounted for in the loud and slow speaking
conditions was different. When speakers were prompted to
speak louder, the statistical models were more accurate in
predicting their intelligibility gains. The outcome of the
cross-validation process was used to determine an appropri-
ate method of model selection using the automated acous-
tic feature sets. The cross-validation procedure and the
final models that resulted from these analyses are discussed
in turn.

Power to Predict Intelligibility Gains
Cross-validation revealed that the models built using

manual baseline measures and those built using the auto-
mated feature sets varied in their ability to predict the intel-
ligibility gains of speakers they had not been trained on.
The automated measures showed a clear reduction in their
cross-validated performance after two features had been
added to the regression. This suggested that the model had
been overfitted. Overfitting occurs when dependent variables
try to model random noise in the data set (e.g., fluctuations
in speakers’ intelligibility gains that are completely unrelated
to their baseline speech). Allowing a model to choose from
393 features increases the likelihood that overfitting will
occur because there is a greater chance that a feature will
account for random—but statistically significant—variance
in intelligibility gains. Overfit models generally have poor
accuracy in predicting the outcomes of new groups of
speakers, as demonstrated in Figures 2 and 4. When the
manual measures were trained on 90% of the data points,
they tended to stop adding features after two or three
steps of the forward regression were completed and did not
display the same tendency toward overfitting.

Overall, both feature sets demonstrated a stronger abil-
ity to predict intelligibility gains when speakers were cued
to speak louder. The automated feature set demonstrated
Fletche
the strongest predictive power in this condition, account-
ing for 25% of the variance in speakers’ intelligibility
gains. This suggests that additional acoustic information—
beyond the manual acoustic/perceptual measures used in
Fletcher et al. (2017)—is important for determining the
effectiveness of cues to speak louder. In contrast, the
manual measures from Fletcher et al. (2017) were better
able to predict speakers’ intelligibility gains when cued to
speak slower. In this case, the final model centered on
measurements of baseline speech severity. Thus, it appeared
that no single automated measurement of the acoustic
speech signal accounted for more information than listeners’
perceptual impressions.

Final Models: Which Features Best Predict
Intelligibility Gains?

Forward stepwise regression was completed to iden-
tify which baseline speech factors were most closely related
to intelligibility gains. Models of intelligibility gain that
were based on the manual acoustic/perceptual measure-
ments converged on the same independent variables as
reported in the companion article (which utilized a back-
ward stepwise regression approach). The relationship be-
tween these manual perceptual/acoustic measurements and
speakers’ intelligibility gains is discussed in detail in the
companion article.

When using the manual measures, cross-validation
results suggest that only one independent variable was able
to predict intelligibility gain in the slow condition: the
baseline perceptual rating of speech severity. In the loud
condition, three independent variables provided statisti-
cally significant information about intelligibility gains.
However, this was only true for some of the training groups.
When examining the entire data set, the addition of a third
variable in the loud condition did not improve the model;
only speakers’ baseline articulation rates and perceptual
rating of speech severity were statistically significant predic-
tors of intelligibility gain. This suggests that intelligibility
gains produced by some speaker subgroups may be more
accurately modeled using different baseline speech vari-
ables. Indeed, it is likely that further analysis of certain dys-
arthria subgroups could produce more effective, fine-tuned
models of intelligibility gain. However, larger groups of
speakers are needed to test this hypothesis.

Several automated acoustic measures demonstrated
a strong relationship with speakers’ intelligibility gains.
When these features were used as independent variables,
both final models selected measures derived from speakers’
MFCC values. This presents a major challenge for inter-
preting these models because MFCCs are notoriously diffi-
cult to relate to perceptual characteristics of speech. This
challenge stems from the fact that, although MFCCs are
used to describe the shape of the spectrum, individual
MFCCs cannot be tied any specific frequency or region
of frequencies. So, although we know generally that higher
MFCCs are representative of more rapid deviations in
the log energy spectrum across frequency, understanding
r et al.: Automated Analysis for Predicting Treatment Gains 3065



exactly what characteristics of the speech are captured by
the 12th coefficient, but not by the 11th coefficient, is next
to impossible. As a result, our efforts to interpret the per-
ceptual attributes reflected by specific MFCC features
are limited to broad conjectures, and we do not attempt
to interpret why specific coefficients were selected over
others.

Our models did not suggest the MFCCs themselves
were relevant in determining whether speakers would
produce intelligibility gains. Instead, it was the variation
in the distribution of MFCCs that was most important.
For example, in the slow condition, the standard devia-
tion of the 34th MFCC had the strongest association with
speakers’ intelligibility gains. This likely indicates that the
amount of articulatory movement from one phoneme to
another is important (rather than the average value of
the spectrum across the speech sample).

We also see evidence that higher-order MFCC fea-
tures may be more important than lower MFCCs. Return-
ing to the same example, the 34th MFCC represents rapid
variations in the spectral structure with respect to frequency.
This is likely to be indicative of smaller changes in the
movement of the vocal tract. For example, it is more likely
to represent small changes in vowel formant values than
the broad differences produced when moving between a
vowel and a consonant sound. We hypothesize that differ-
ences in these fine-grained movements of the vocal tract
may be better able to index a speakers’ dysarthria severity.

The second feature used to model intelligibility
changes in the slow condition was skew in the distribution
of the 14th MFCC. The 14th MFCC describes broader
variations in the shape of the spectrum. One hypothesis
for the occurrence of increased skew is that the precise
articulation of particular phonetic targets may lead to out-
lying positive values at certain MFCCs. This would posi-
tively skew their distribution. Because it may be more
challenging for speakers with dysarthria to produce these
precise articulatory movements, we would expect this vari-
able to also provide information about the severity of a
person’s dysarthria. We know that both the standard devi-
ation of the 34th MFCC and the skewness of the 14th
MFCC were negatively associated with intelligibility gains.
These results are congruous with models of the manual
acoustic/perceptual measures, which suggested that speakers
who were perceived to have greater dysarthria severity pro-
duced larger intelligibility gains in the slow condition.

Intelligibility gains in the loud condition were also
predicted by two MFCC measures, indicating the impor-
tance of articulatory information. First, the overall range
of the 14th MFCC was selected. The MFCC range will
be largest when a speaker has two analysis frames that
contain spectrums that are starkly different in shape. Dif-
ferences in spectrum shape could come about in a variety
of ways. However, we would expect the largest differences to
be occurring between vowels and consonants. For example,
certain fricative sounds in the speech sample can be pro-
duced with intense, high-frequency energy. This would re-
sult in a distinctly different spectral pattern, a pattern that
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is likely to represent a sharper consonant sound. It is possi-
ble that speakers who produce larger ranges of movement
(i.e., from a narrow constriction of the vocal tract to an
unoccluded, open vowel) might exhibit a larger MFCC
range. Larger ranges were negatively associated with intelligi-
bility gains in the loud condition.

The second measure added to the model described the
level of variation in the 25th MFCC, as measured through
kurtosis. As with the 34th MFCC, we hypothesize that this
MFCC is more representative of the fine-grained articula-
tory movements discussed previously. Hence, we would
again hypothesize that this measure might be a strong in-
dicator of overall dysarthria severity. This finding is con-
gruous with models of the manual acoustic/perceptual
measures, which suggested that speakers who were per-
ceived to have greater dysarthria severity produced larger
intelligibility gains in the loud condition. Differences in
manual measurements of articulation rates were also a
significant predictor of intelligibility gains in the loud con-
dition, but it is unclear exactly how these are associated
with speakers’ MFCC variables.
Conclusions
Models of intelligibility gain accounted for a maxi-

mum of 25% of the variance in intelligibility gains in the
speakers they were tested on. Hence, it appears that there
could be considerably more factors, unmeasured in this
study, that affect how speakers respond to speech modifi-
cation strategies. This finding is not surprising. We know
that people with dysarthria implement cues to speak louder
and reduce rate in different ways (Tjaden & Wilding, 2004),
and measures of cognitive ability, fatigue, depression, and
self-efficacy are all believed to affect the success of treat-
ment strategies (Fletcher & McAuliffe, 2017). Hence, al-
though information about a person’s baseline speech may
convey valuable information about whether a treatment
strategy is appropriate, it cannot entirely predict to what
degree they will change their speech patterns and how lis-
teners will perceive these changes.

There are also limitations inherent in relying on a
single dependent variable to index speakers’ intelligibility
gains. This study analyzed ratings of intelligibility gain
derived from a visual analogue scale. Although these rat-
ings appeared to be reasonably sensitive to changes in
speech patterns, listeners’ preferences for different speech
samples were not entirely consistent and reliable. This issue
of listener subjectivity is discussed further in the compan-
ion article. More objective intelligibility measures based
on orthographic transcription are prone to ceiling effects
and may be less sensitive to some of the speech changes
implemented by speakers with mild dysarthria (Sussman &
Tjaden, 2012). However, they would allow us to elucidate
whether some of the negative intelligibility changes ob-
served in our data were reflective of a listener bias against
slower or less natural sounding speech patterns, rather
than a true reduction in the listeners’ ability to understand
3058–3068 • November 2017



the speaker. Hence, these measures could be a valuable
addition to future studies.

Summary
In summary, automated acoustic features can be

used as an indicator of how different speakers’ intelligibil-
ity changes in response to common speech modifications.
Furthermore, this information has the considerable bene-
fit of being automatically extracted without any manual
checking or subjective judgments from researchers. Objec-
tive diagnostic information is important for researchers
wanting to develop more specific inclusion criteria for
treatment studies. Furthermore, as automated acoustic
measures continue to be incorporated into more user-
friendly applications, these data may also be used to help
provide recommendations for clinicians when choosing
between different treatment programs. However, further
development of the models presented in this study is re-
quired. Ideally, these models would benefit from training
on larger groups of speakers. The inclusion of more data
points in model training is likely to improve the cross-
validated accuracy of models generated with three, four,
or five variables. This would allow more confidence in
their application to new groups.
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