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Abstract

Background: COVID-19 has led to an unprecedented strain on health care facilities across the United States. Accurately
identifying patients at an increased risk of deterioration may help hospitals manage their resources while improving the quality
of patient care. Here, we present the results of an analytical model, Predicting Intensive Care Transfers and Other Unforeseen
Events (PICTURE), to identify patients at high risk for imminent intensive care unit transfer, respiratory failure, or death, with
the intention to improve the prediction of deterioration due to COVID-19.

Objective: This study aims to validate the PICTURE model’s ability to predict unexpected deterioration in general ward and
COVID-19 patients, and to compare its performance with the Epic Deterioration Index (EDI), an existing model that has recently
been assessed for use in patients with COVID-19.

Methods: The PICTURE model was trained and validated on a cohort of hospitalized non–COVID-19 patients using electronic
health record data from 2014 to 2018. It was then applied to two holdout test sets: non–COVID-19 patients from 2019 and patients
testing positive for COVID-19 in 2020. PICTURE results were aligned to EDI and NEWS scores for head-to-head comparison
via area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve. We compared the
models’ ability to predict an adverse event (defined as intensive care unit transfer, mechanical ventilation use, or death). Shapley
values were used to provide explanations for PICTURE predictions.
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Results: In non–COVID-19 general ward patients, PICTURE achieved an AUROC of 0.819 (95% CI 0.805-0.834) per observation,
compared to the EDI’s AUROC of 0.763 (95% CI 0.746-0.781; n=21,740; P<.001). In patients testing positive for COVID-19,
PICTURE again outperformed the EDI with an AUROC of 0.849 (95% CI 0.820-0.878) compared to the EDI’s AUROC of 0.803
(95% CI 0.772-0.838; n=607; P<.001). The most important variables influencing PICTURE predictions in the COVID-19 cohort
were a rapid respiratory rate, a high level of oxygen support, low oxygen saturation, and impaired mental status (Glasgow Coma
Scale).

Conclusions: The PICTURE model is more accurate in predicting adverse patient outcomes for both general ward patients and
COVID-19 positive patients in our cohorts compared to the EDI. The ability to consistently anticipate these events may be
especially valuable when considering potential incipient waves of COVID-19 infections. The generalizability of the model will
require testing in other health care systems for validation.

(JMIR Med Inform 2021;9(4):e25066) doi: 10.2196/25066
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Introduction

The effect of COVID-19 on the US health care system is
difficult to overstate. It has led to unprecedented clinical strain
in hospitals nationwide, prompting the proliferation of intensive
care unit (ICU) capability and of lower-acuity field hospitals
to accommodate the increased patient load. A predictive early
warning system capable of identifying patients at increased risk
of deterioration could assist hospitals in maintaining a high level
of patient care while more efficiently distributing their thinly
stretched resources. However, a recent review has illustrated
that high quality validated models of deterioration in patients
with COVID-19 are lacking [1]. All 16 of the models appraised
in this review were rated at high or unclear risk of bias, mostly
because of nonrepresentative selection of control patients. A
primary concern is that these models may overfit to the small
COVID-19 data sets that are currently available.

Early warning systems have been and continue to be applied in
hospital settings prior to the COVID-19 pandemic to predict
patient deterioration events before they occur, giving health
care providers time to intervene [2]. The prediction of adverse
events such as ICU admission and death provides crucial
information to avert impending critical deterioration; it is
estimated that 85% of such events are preceded by detectable
changes in physiological signs [3] that may occur up to 48 hours
before the event [4]. In addition, approximately 44% of events
are avoidable through early intervention [5], and 90% of
unplanned transfers to the ICU are preceded by a new or
worsening condition [6,7]. Such abnormal signals indicate that
predictive data analytics may be used to alert providers of
incipient deterioration events, ultimately leading to improved
care and reduced costs [8,9]. Given the number of unknowns
surrounding the pathophysiology of COVID-19, early warning
systems may play a pivotal role in treating patients and
improving outcomes.

One model that has been assessed in patients with COVID-19
is the Epic Deterioration Index (EDI; Epic Systems Inc) [10,11].
The EDI is a proprietary clinical early warning system that aims
to identify patients at an increased risk of deterioration and who
may require a higher level of care. The EDI has the advantage
over models built on COVID-19–specific data in that it is not

overfit to small data sets, as it was trained on over 130,000
encounters [11,12]. Recent work has suggested it may be capable
of stratifying patients with COVID-19 according to their risk
of deterioration [11]. The outcomes used in this study were
those considered most relevant to the care of patients with
COVID-19 including ICU level of care, mechanical ventilation,
and death. Although the EDI was able to successfully isolate
groups of patients at very high and very low risk of deterioration,
the overall performance as a continuous predictor was
moderately low (area under the receiver operating characteristic
curve [AUROC] 0.76, 95% CI 0.68-0.84; n=174) [11].
Additionally, much of the detail surrounding the EDI’s structure
and internal validation has not been shared publicly. This makes
the interpretation of individual predictions difficult. Since
hospitals who do not use Epic electronic health record (EHR)
systems may not have access to EDI predictions, we have also
evaluated the publicly available National Early Warning Score
(NEWS) as a secondary comparison.

In this study, we have applied our previously described model,
Predicting Intensive Care Transfers and Other Unforeseen
Events (PICTURE), to a cohort of patients testing positive for
COVID-19 [13]. Initially developed to predict patient
deterioration in the general wards, we have retrained the model
to target those outcomes considered most relevant to the
COVID-19 pandemic: ICU level of care, mechanical ventilation,
and death. PICTURE, like the EDI, was trained and tuned on a
large non–COVID-19 cohort including patients both with and
without infectious diseases (131,546 encounters). Furthermore,
we took extensive steps in the PICTURE framework to limit
overfitting and learning missingness patterns in the data, such
as a novel imputation mechanism [13]. This is critical in
providing clinicians with novel, useful, and generalizable alerts,
as missing patterns can vary in different settings and different
patient phenotypes [13]. In addition to the risk score, PICTURE
also provides actionable explanations for its predictions in the
form of Shapley values, which may help clinicians easily
interpret scores and better determine if actionability on the alert
is required [14]. We validated this system in both a
non–COVID-19 cohort and in patients who were hospitalized
testing positive for COVID-19 and compared it to the EDI and
NEWS on the same matched cohorts.
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Methods

Setting and Study Population
The study protocol was approved by the University of
Michigan’s Institutional Review Board (HUM00092309). EHR
data was collected from a large tertiary, academic medical
system (Michigan Medicine) from January 1, 2014, to November
11, 2020. The first 5 years of data (2014-2018; n=131,546
encounters) were used to train and validate the model, while
2019 data was reserved as a holdout test set (n=33,472
encounters). Training, validation, and test populations were
segmented to prevent overlap of multiple hospital encounters
between sets. Criteria for inclusion in these three cohorts were
defined as 18 years or older and who were hospitalized (having
inpatient or other observation status) in a general ward. We
excluded patients who were discharged to hospice and whose
ICU transfer was from a floor other than a general ward (eg,

operating or interventional radiology unit) to exclude planned
ICU transfers. We also excluded patients with a left ventricular
assist device to avoid artifactual blood pressure readings.

To be included in the COVID-19 cohort (n=637 encounters),
patients must have been admitted to the hospital with a
COVID-19 diagnosis and have received a positive COVID-19
test from Michigan Medicine during their encounter. These
patients were then filtered using the same criteria used in the
2019 test set, with the exception of the hospice distinction. Only
discharged patients or those who already experienced an adverse
event were included. Table 1 describes the study cohort and the
frequency of individual adverse events. When compared to the
non–COVID-19 test cohort from 2019, the proportion of Black
and Asian patients was significantly higher (Black: 4214/33,472,
12.6% vs 220/637, 34.5%; P<.001; Asian: 686/33,472, 2.0%
vs 29/637, 4.6%; P<.001). The rate of adverse events was also
higher, rising from 4.0% (1337/33,472) to 24.3% (155/637;
P<.001).

Table 1. Study population.a

P value (non–COVID-
19 vs COVID-19 test

sets)b

COVID-19Non–COVID-19Data set

Testing 2020Testing 2019Validation 2014-2018Training 2014-2018

N/Ac63733,47226,089105,457Encounters, n

N/A60023,36815,59762,392Patients, n

.0261.8 (49.6-72.0)61.0 (47.0-71.5)60.4 (46.7-71.2)60.2 (46.5-70.8)Age (years), median (IQR)

Race, n (%)

<.001329 (51.6)27,036 (80.8)21,647 (83.0)86,522 (82.0)White

<.001220 (34.5)4214 (12.6)2861 (11.0)12,344 (11.7) Black

<.00129 (4.6)686 (2.0)504 (1.9)2145 (2.0)Asian

<.00159 (9.3)1536 (4.6)1077 (4.1)4446 (4.2)Otherd

.003282 (44.3)16,760 (50.1)13,048 (50.0)53,225 (50.5)Female sex, n (%)

<.001155 (24.3)1337 (4.0)1007 (3.9)4236 (4.0)Event ratee, n (%)

<.00116 (2.5)277 (0.8)232 (0.9)920 (0.9)Death

<.001139 (21.8)1000 (3.0)717 (2.7)2979 (2.8)ICUf transfer

<.00149 (7.7)352 (1.1)299 (1.1)1330 (1.3)Mechanical ventilation

N/AN/A56 (0.2)37 (0.1)143 (0.1)Cardiac arrestg

aPatients were subset into one of four study cohorts: a training set for learning model parameters, a validation set for model structure and hyperparameter
tuning, a holdout test set for evaluation, and a final test set composed of patients testing positive for COVID-19. Values are based on individual hospital
encounters.
bP values were calculated across the two test sets using a Mann-Whitney U test for continuous variables (age) and a chi-square test for categorical
variables.
cN/A: not applicable.
dOther races comprising less than 1% of the population each were incorporated under the “Other” heading.
eThe event rate represents a composite outcome indicating that one of the following events occurred: death, ICU transfer, mechanical ventilation, and
cardiac arrest. The individual frequencies of these adverse events are also reported and represent the number of cases where each particular outcome
was the first to occur. Please see the section Outcomes for the procedure of calculating these targets.
fICU: intensive care unit.
gCardiac arrest was not used as a target in the COVID-19 positive population, as the manually adjudicated data is not yet available at the time of writing.
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Predictors
The variables used as predictors were collected from the EHR
and broadly included vital signs and physiologic observations,
laboratory and metabolic values, and demographics. We selected
specific features based on previous analysis [13]. Vital signs
used in the model included heart rate, respiratory rate, pulse
oximetry, Glasgow Coma Scale (GCS), urine output, and blood
pressure. Laboratory and metabolic features included electrolyte
concentrations, glucose and lactate, and blood cell counts.
Demographics included age, height, weight, race, and gender.
Fluid bolus and oxygen supplementation were also included as
features. A full list of features is presented in Table S1 in
Multimedia Appendix 1 alongside their respective median, IQR,
and missingness rate. Variables centered on treatment (eg,
medication administration) were largely excluded as, similar to
the missingness flags described in Gillies et al [13], the scores
generated by the model may be less generalizable and novel to
the clinician as patterns of care change between diseases (eg,
COVID-19) or institutions. Multimedia Appendix 1 Table S2
describes the effects of including medications as features in
more detail.

Outcomes
The primary outcomes in the training, validation, and
non–COVID-19 test cohorts (data collected from 2014 through
2019) were death, cardiac arrest (as defined by the American
Heart Association’s Get With The Guidelines), transfer to an
ICU from a general ward or similar unit, or need for mechanical
ventilation. Determination of ICU transfer was based on actual
location or accommodation level. Outcomes in the COVID-19
positive cohort differed slightly in two respects. First, cardiac
arrest information was not available at the time of writing and
so was not included. Second, the emergency procedures
undertaken by the hospital to accommodate the high volume of
patients with COVID-19 led to the delivery of critical care in
non-ICU settings. Thus, “ICU level of care” is used to denote
patients who were treated by ICU staff or given ICU-level care
but who may not have been physically housed in a bed
previously demarcated as an ICU bed. This information is
derived from the admission, discharge, and transfer table. Level
of care was used to determine ICU transfer in patients with
COVID-19 in addition to actual location. We discarded
observations occurring 30 minutes before the first event or later
to be consistent with other approaches [15]. For

observation-level predictions, individual observations were
labeled positive if they occurred within 24 hours of any of the
aforementioned events and negative otherwise. We refer to these
composite adverse events as the outcome or target throughout
the text. These outcomes were designed to closely follow those
of a recent analysis of the EDI at Michigan Medicine [11].

To verify the accuracy of our automatically generated labels, a
clinician (author MRM) manually reviewed the patient charts
for 20 encounters to determine whether the patient was infected
with COVID-19, whether the recorded event truly took place,
and whether the event was unplanned. To do so, we randomly
sampled two encounters (one positive, the other negative if
available) from each patient service with eight or more
encounters to ensure the accuracy of the labels across all
services. The result was a sample of 20 encounters, 11 of which
were positive. The recorded event of interest for each encounter
was reviewed by the clinician to determine whether the event
took place and whether it was emergent (not planned). For the
patients that were labeled as negative, the clinician reviewed
the entire patient chart to ensure that no adverse events occurred
during the encounter. The results indicate that all 20 patients
were infected with COVID-19, all the labels and the event times
were accurate, and all the events were unplanned. This provides
evidence that the automatically generated outcomes accurately
identify unplanned adverse events.

PICTURE Model Development
To train and evaluate the PICTURE model, we partitioned our
data into four folds: a training and validation set using data from
2014 to 2018, a test set using 2019 data, and a fourth set
consisting of data from patients who are COVID-19 positive.
We partitioned the sets such that multiple hospital encounters
from the same individual were restricted to one cohort,
preventing patient-level overlap between cohorts. Encounters
with an admission date from January 1, 2014, to December 31,
2018, were used for training and validation and hyperparameter
tuning (n=131,546 encounters). These patients were further
divided between training and validation sets using an 80%/20%
split. Those patients with an admission date between January
1 and December 31, 2019, were reserved as a holdout test set
(n=33,472 encounters). Lastly, patients testing positive for
COVID-19 from March 1 to September 11, 2020, were reserved
as a separate set (n=637 encounters). Figure 1 displays a
graphical overview of this delineation.
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Figure 1. PICTURE training and validation framework. The electronic health record data is split into COVID-19 and non–COVID-19 patients.
Encounters with an admission date between January 1, 2014, and December 31, 2018, were set aside for training (80%) and validation (20%) subsets.
Encounters with an admission date between January 1 and December 31, 2019, were used as a non–COVID-19 test set. Encounters from 2020 that
tested positive for COVID-19 were held out as a separate test set. In the case that a given patient has multiple encounters that overlap these boundaries,
only the later encounters were considered to remove patient overlap between the cohorts. EDI: Epic Deterioration Index; NEWS: National Early Warning
Score; PICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events; XGBoost: extreme gradient boosting.

As the EHR stores data in a long format (with each new row
corresponding to a new measurement at a new time point), it
was first converted to a wide structure such that each observation
represented all features at a given time point for a given patient.
The training and validation sets were grouped into 8-hour

windows to ensure that each encounter would have the same
amount of observations for the same amount of time in the
hospital, avoiding emphasis on patients who get more frequent
updates while training the model as described in Gillies et al
[13]. The 2019 and COVID-19 test sets were left in a granular
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format, where each new observation represented the addition
of new data (eg, an updated vital sign). Vital signs and
laboratory values were forward filled such that each observation
represented the most up-to-date information available as of that
time, and the only time series–adjusted variables were oxygen
supplementation, oxygen device use, and oxygen saturation as
measured by pulse oximetry (SpO2), which were represented
by the maximum (oxygen supplementation and device) or
minimum (SpO2) over the previous 24 hours. Otherwise, each
observation contained only the most up-to-date data available
as of that time point and did not take historical values in to
account. The remaining missing values were iteratively imputed
using the mean of the posterior distribution from a multivariate
Bayesian regression model. This method has previously been
demonstrated to reduce the degree to which tree-based models
learn missingness patterns to bolster performance [13].
Classification was achieved using an extreme gradient boosting
model (v 0.90), an open-source implementation of a
gradient-boosting tree framework that fits additional iterations
using the errors of previous results [16]. The model uses a binary
cross-entropy objective function with a maximum tree depth of
three nodes, a learning rate of 0.05, no minimum loss reduction,
uniform sampling with a subsample parameter of 0.6, and
stopped when the validation area under the precision-recall
curve (AUPRC) had not improved for 30 rounds. The model
was applied to individual observations independently—that is,
the model used the latest information available (via forward
filling). In this sense, time dependance was not modeled aside
from those aforementioned variables. All analyses were
performed using Python 3.8.2 (Python Software Foundation).

Epic Deterioration Index and NEWS
The EDI is a proprietary model developed by Epic Systems
Corporation. Michigan Medicine uses Epic as its electronic
medical record system and has access to the EDI tool. Similar
to PICTURE, it uses clinical data that are commonly available
in the EHR to make predictions regarding patient deterioration.
It was trained using a similar composite outcome including
death, ICU transfer, and resuscitation as adverse events [11]. It
is calculated every 15 minutes. Specific details surrounding its
structure, parameters, or training procedures have not been
shared publicly.

NEWS, developed by the Royal College of Physicians, is a
second index used to detect patients at an increased risk of
deterioration event such as cardiac arrest, ICU transfer, and

death [17,18]. In contrast to the EDI, which is based on a
proprietary system, the basis of the NEWS score is openly
available. NEWS scores were calculated based on the algorithm
described in Smith et al [17]. The original NEWS was selected
over the updated NEWS2 score due to evidence that its
performance was found to be higher when predicting adverse
events in patients at risk of respiratory failure [19].

PICTURE Model Evaluation

Evaluation of PICTURE Performance in
Non–COVID-19 Cohort
We first assessed the performance of the PICTURE model on
all 33,472 encounters in the holdout test set comprising patients
from 2019. Another early warning aggregate score, NEWS, was
used for comparison in this preliminary analysis [17,18]. For
each observation time point, the NEWS score was calculated
according to their published scoring system and compared to
PICTURE scores. Performance was assessed on two scales:
observation level and encounter level. The term observation
level is used to denote the performance of the model at each
time the data for a patient is updated, with observations
occurring 24 hours prior to a target event marked as 1 and
otherwise marked as 0. Encounter level describes the model
performance across the entire hospital encounter for one patient.
It refers to the maximum model score during the patient’s stay,
occurring between admission and at least 30 minutes (or longer
for different minimal lead times; see the section Comparison
of PICTURE to EDI in a Non–COVID-19 Cohort) before the
first event. The target in this case is 1 if the patient ever met an
outcome condition during their stay, and 0 otherwise.

Comparison of PICTURE and EDI
Since the EDI makes a prediction every 15 minutes, we
simulated how the PICTURE score, calculated at irregular
intervals each time a new data point arrives, would align with
the EDI. This limited the available number of encounters to
21,740 in the 2019 test set and 607 encounters in the COVID-19
cohort. The PICTURE scores were merged onto EDI values by
taking the most recent PICTURE prediction before the EDI
prediction. This was to give the EDI any advantages in the
alignment procedure. Figure 2 displays a visual schematic of
this alignment. We then evaluated the two models using the
same observation-level and encounter-level methods described
in the previous section.
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Figure 2. Alignment of PICTURE predictions to EDI scores. Although the PICTURE system outputs predictions each time a new observation (eg, a
new vital sign) is input in to the system, the EDI score is generated every 15 minutes. To give the EDI any potential advantage, PICTURE scores are
aligned to EDI scores by selecting the most recent PICTURE score before each EDI prediction. In both cases, observations occurring 30 minutes before
the target and after are excluded (red). For the patients who did not experience an adverse event, the maximum score was calculated across the entire
encounter. EDI: Epic Deterioration Index; PICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.

Performance Measures
AUROC and AUPRC were used as the primary criteria for
comparison between the models. AUROC can be interpreted
as the probability that two randomly chosen observations (one
with a positive target, the other negative) are ranked in the
correct order by the model prediction score. AUPRC describes
the average positive predictive value (PPV) across the range of
sensitivities. We also calculated 95% CIs for encounter-level
statistics with a bootstrap method using 1000 replications to
compute pivotal CIs. For observation-level statistics, block
bootstrapping was used to ensure randomization between
encounters and within the observations of an encounter. P values
for AUROC differences were computed by counting the fraction
of bootstrapped test statistics less than 0. If there were no
simulations where the test statistic was greater than 0, the P
value was recorded as P<.001.

Feature Ranking and Prediction Explanation
Despite the many benefits yielded by increasingly advanced
machine learning models, use of these models in the medical
field has lagged behind other fields. One contributing factor is
their complexity, which make the resulting predictions difficult
to interpret and in turn make it difficult to build clinician trust
[20]. To better provide insight into the PICTURE predictions,
tree-based Shapley values were calculated for each observation.
Borrowed from game theory, Shapley values describe the

relative contribution of a feature to the model’s prediction
[14,21]. Positive values denote features that influenced the
model toward a high prediction score (here indicating a higher
likelihood of an adverse event), while negative values indicate
the feature pushed the model toward a lower prediction score.
The sum of the Shapley values across a single prediction plus
the mean log-odds probability of the model is proportional to
the log-odds of the prediction probability. Shapley values can
be used to provide insight into individual model predictions or
aggregated to visualize global variable importance.

Calibration and Alert Thresholds
Neither PICTURE nor the EDI are calibrated scores—that is,
even though their output ranges from 0 to 1 (or 0 to 100 in the
case of EDI), these values do not reflect a probability of
deterioration [11]. Furthermore, both PICTURE and the EDI
were trained on cohorts of non–COVID-19 patients. which have
a much lower event rate and therefore may require a different
alert threshold. A calibration curve depicting PICTURE and
EDI score quantiles against calculated risk is used to
demonstrate the deviation of PICTURE and EDI scores from
an estimated probability. Several simulated PICTURE alarm
thresholds are then examined, calculated by aligning them to
the EDI threshold suggested in Singh et al [11] via sensitivity,
specificity, PPV, and negative predictive value (NPV). The
performance at these thresholds simulates when and how often
a clinician would receive alerts. Data from an example patient
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is also highlighted to demonstrate how these alert thresholds
and Shapley values may interact to provide actionable insights
to clinicians.

Results

Validation of PICTURE Performance in a
Non-COVID-19 Cohort
The ability of the PICTURE model to accurately predict the
composite target was first assessed using the 33,472 encounters
in the holdout test set from 2019. To provide a baseline for
comparison, NEWS scores were calculated alongside each

PICTURE prediction output. The observation-level and
encounter-level AUROC and AUPRC are presented with 95%
CIs in Table 2. The observation-level event rate can be
interpreted as the fraction of individual observations during
which an adverse event occurred within 24 hours, while the
encounter-level event rate refers to the proportion of hospital
encounters experiencing such an event. The difference in
AUROC between PICTURE and NEWS was 0.068 (95% CI
0.058-0.078; P<.001) on the observation level and 0.064 (95%
CI 0.055-0.073; P<.001) on the encounter level. The difference
in AUPRC was similarly significant, at 0.041 (95% CI
0.031-0.050; P<.001) and 0.141 (95% CI 0.120-0.162; P<.001)
on the observation and encounter levels, respectively.

Table 2. Evaluation of PICTURE (performance in a non–COVID-19 cohort).

Event rate (%)P value (AUROC)AUPRCd (95% CI)P valuec (AUROC)AUROCa (95% CIb)Granularity and analytic

1.01<.001<.001Observation

0.099 (0.085-0.110)0.821 (0.810-0.832)PICTUREe

0.058 (0.049-0.064)0.753 (0.741-0.765)NEWSf,g

3.99<.001<.001Encounter (n=33,472)

0.326 (0.301-0.351)0.846 (0.834-0.858)PICTURE

0.185 (0.165-0.203)0.782 (0.768-0.795)NEWS

aAUROC: area under the receiver operating characteristic curve.
b95% CIs were calculated using a block bootstrap with 1000 replicates. In the case of the observation level, this bootstrap was blocked on the encounter
level.
cP values are calculated using the bootstrap method outlined in the section Performance Measures.
dAUPRC: area under the precision-recall curve.
ePICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
fNEWS: National Early Warning Score.
gNEWS is used as a baseline for comparison.

Comparison of PICTURE to EDI in a Non–COVID-19
Cohort
PICTURE was then compared to the EDI model on
non–COVID-19 patients in the same holdout test set from 2019.
Due to limitations in available EDI scores, the number of
encounters was restricted to 21,740. These time-matched scores
were again evaluated using AUROC and AUPRC on the
observation and encounter levels (Table 3). Panels A and B in

Figure 3 display the associated receiver operating characteristic
(ROC) and precision-recall (PR) curves for the observation-level
performance. The difference in AUROC and AUPRC between
PICTURE and the EDI reached significance on both the
observation level (AUROC 0.056, 95% CI 0.044-0.068; P<.001;
AUPRC 0.033, 95% CI 0.021-0.045; P<.001) and the encounter
level (AUROC 0.056, 95% CI 0.046-0.065; P<.001; AUPRC
0.094, 95% CI 0.069-0.119; P<.001). NEWS results were
similarly significant and are included in Table 3 for comparison.
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Table 3. Comparison of PICTURE and the EDI in a non–COVID-19 cohort.

Event rate (%)P value (AUPRC)AUPRCc (95% CI)P value (AUROC)bAUROCa (95% CI)Granularity and analytic

0.77Observation

0.115 (0.096-0.130)0.819 (0.805-0.834)PICTUREd •• vs EDI: <.001vs EDIe: <.001
• vs NEWS: <.001• vs NEWSf: <.001

0.081 (0.066-0.094)0.763 (0.746-0.781)EDI •• vs NEWS: <.001vs NEWS: .01

0.062 (0.051-0.072)0.745 (0.729-0.761)NEWS •• N/AN/Ag

4.21Encounter (n=21,740)

0.368 (0.335-0.400)0.859 (0.846-0.873)PICTURE •• vs EDI: <.001vs EDI: <.001
•• vs NEWS: <.001vs NEWS: <.001

0.274 (0.244-0.301)0.803 (0.788-0.821)EDI •• vs NEWS: <.001vs NEWS: .15

0.229 (0.204-0.254)0.797 (0.781-0.814)NEWS •• N/AN/A

aAUROC: area under the receiver operating characteristic curve.
bP values reflect the difference in AUROC or AUPRC.
cAUPRC: area under the precision-recall curve.
dPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
eEDI: Epic Deterioration Index.
fNEWS: National Early Warning Score.
gN/A: not applicable.

Figure 3. Comparison of PICTURE and the EDI. Panel A: receiver operating characteristic (ROC) curves for PICTURE, EDI, and NEWS models in
the non–COVID-19 cohort. PICTURE area under the curve (AUC): 0.819; EDI AUC: 0.763; NEWS AUC: 0.745. Panel B: Precision-recall (PR) curves
for the two models in the non–COVID-19 cohort. PICTURE AUC: 0.115; EDI AUC: 0.081; NEWS AUC: 0.062. Panel C: ROC curves for PICTURE,
EDI, and NEWS models in the COVID-19 cohort. PICTURE AUC: 0.849; EDI AUC: 0.803; NEWS AUC: 0.746. Panel D: PR curves for the two
models. PICTURE AUC: 0.173; EDI AUC: 0.131; NEWS AUC: 0.098 in the COVID-19 cohort. All curves represent observation-level analysis. EDI:
Epic Deterioration Index; FPR: false-positive rate; NEWS: National Early Warning Score; PICTURE: Predicting Intensive Care Transfers and Other
Unforeseen Events; TPR: true-positive rate.
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In addition to classification performance, lead time represents
another critical component of a predictive analytics’ utility.
Lead time refers to the amount of time between the alert and
the actual event, and it determines how much time clinicians
have to act on the model’s recommendations. We assessed the
model’s relative performance at different lead times in a
threshold-independent manner by excluding data occurring 0.5

hours, 1 hour, 2 hours, 6 hours, 12 hours, and 24 hours before
an adverse event and calculating encounter-level performance
(Table 4). In our cohort, PICTURE’s AUROC and AUPRC
were significantly higher (P<.001) than the EDI model even
when considering predictions made 24 hours or more before
the actual event.

Table 4. Lead time analysis in non–COVID-19 cohort.a

Sample size, nEvent rate (%)AUPRCc (95% CI)AUROCb (95% CI)Lead time (hours)

EDIPICTUREEDIePICTUREd

21,6364.210.274 (0.244-
0.302)

0.368 (0.336-
0.400)

0.803 (0.787-
0.820)

0.859 (0.846-
0.873)

0.5

21,6364.180.254 (0.227-
0.280)

0.346 (0.315-
0.379)

0.795 (0.778-
0.811)

0.850 (0.835-
0.864)

1

21,6224.140.238 (0.210-
0.265)

0.321 (0.292-
0.352)

0.784 (0.767-
0.802)

0.838 (0.823-
0.853)

2

21,5723.920.210 (0.184-
0.237)

0.280 (0.249-
0.310)

0.768 (0.750-
0.787)

0.825 (0.810-
0.840)

6

21,5153.670.183 (0.159-
0.207)

0.247 (0.215-
0.275)

0.767 (0.749-
0.786)

0.817 (0.801-
0.832)

12

21,4193.240.144 (0.121-
0.164)

0.205 (0.172-
0.230)

0.759 (0.740-
0.779)

0.808 (0.790-
0.826)

24

aThe performance of the two models (encounter level) at various lead times were assessed by evaluating the maximum prediction score prior to x hours
before the given event, with x ranging in progressively greater intervals from 0.5 to 24. On this cohort of non–COVID-19 patients, PICTURE consistently
outperformed the EDI. At each level of censoring, the P value when comparing PICTURE to the EDI was <.001.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision-recall curve.
dPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
eEDI: Epic Deterioration Index.

Comparison of PICTURE to EDI in Patients With
COVID-19
When applied to patients testing positive for COVID-19,
PICTURE performed similarly well. PICTURE scores were
again aligned to EDI scores using the process outlined in the
section Comparison of PICTURE and EDI. This resulted in the
inclusion of 607 encounters. Table 5 presents AUROC and
AUPRC values for PICTURE and the EDI on both the
observation and encounter levels with 95% CIs and includes
NEWS scores for comparison. Panels C and D in Figure 3
display the associated ROC and PR curves. The difference in
AUROC and AUPRC between PICTURE and the EDI reached
statistical significance (α=5%) on the observation level
(AUROC 0.046, 95% CI 0.021-0.069; P<.001; AUPRC 0.043,
95% CI 0.006-0.071; P=.002) and the encounter level (AUROC
0.093, 95% CI 0.066-0.118; P<.001; AUPRC 0.155, 95% CI
0.089-0.204; P<.001). Of note, the EDI results at the observation

level (AUROC 0.803, 95% CI 0.771-0.838) were similar to
those described in a previous validation (AUROC 0.76, 95%
CI 0.68-0.84), although with a smaller confidence interval due
to a larger sample size [11]. The differences in AUROC and
AUPRC between PICTURE and NEWS also reached
significance (α=5%) in patients with COVID-19, both on the
observation level (AUROC 0.104, 95% CI 0.075-0.129; P<.001;
AUPRC 0.076, 95% CI 0.033-0.105; P<.001) and the encounter
level (AUROC 0.122, 95% CI 0.090-0.154; P<.001; AUPRC
0.224, 95% CI 0.151-0.290; P<.001).

As with the non–COVID-19 cohort, a similar lead time analysis
was then performed to assess the performance of PICTURE and
EDI when making predictions further in advance. Thresholds
were again set at 0.5 hours, 1 hour, 2 hours, 6 hours, 12 hours,
and 24 hours before the event, and observations occurring after
this cutoff were excluded. In our cohort, PICTURE again
outperformed the EDI even when making predictions 24 hours
in advance (Table 6).
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Table 5. Comparison of PICTURE and the EDI in patients testing positive for COVID-19.

Event rate (%)P value (AUPRC)AUPRCb (95% CI)P value (AUROC)AUROCa (95% CI)Granularity and analytic

3.20Observation

0.173 (0.116-0.211)0.849 (0.820-0.878)PICTUREc •• vs EDI: .002vs EDId: <.001
• vs NEWS: <.001• vs NEWSe: <.001

0.131 (0.087-0.163)0.803 (0.772-0.838)EDI •• vs NEWS: .002vs NEWS: <.001

0.098 (0.066-0.122)0.746 (0.708-0.783)NEWS •• N/AN/Af

20.6Encounter (n=607)

0.665 (0.590-0.743)0.895 (0.868-0.928)PICTURE •• vs EDI: <.001vs EDI: <.001
•• vs NEWS: <.001vs NEWS: <.001

0.510 (0.438-0.588)0.802 (0.762-0.848)EDI •• vs NEWS: .02vs NEWS: .05

0.441 (0.364-0.510)0.773 (0.732-0.818)NEWS •• N/AN/A

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
dEDI: Epic Deterioration Index.
eNEWS: National Early Warning Score.
fN/A: not applicable.

Table 6. Lead time analysis in COVID-19 cohort.a

Sample size, nEvent rate (%)AUPRCc (95% CI)AUROCb (95% CI)Lead time (hours)

EDIPICTUREEDIePICTUREd

60720.60.510 (0.436-0.587)0.665 (0.586-0.739)0.802 (0.761-0.842)0.895 (0.867-0.926)0.5

60620.50.491 (0.418-0.570)0.631 (0.553-0.710)0.793 (0.753-0.836)0.887 (0.860-0.918)1

60320.10.478 (0.400-0.555)0.598 (0.518-0.675)0.794 (0.754-0.833)0.870 (0.840-0.901)2

59719.30.435 (0.354-0.517)0.552 (0.474-0.639)0.769 (0.729-0.813)0.847 (0.813-0.885)6

58717.90.403 (0.333-0.480)0.497 (0.411-0.577)0.752 (0.708-0.798)0.821 (0.783-0.863)12

57416.00.370 (0.289-0.459)0.443f (0.344-0.529)0.740 (0.690-796)0.808 (0.767-0.856)24

aThe performance of the two models (encounter level) at various lead times were again assessed by evaluating the maximum prediction score prior to
x hours before the given event, with x ranging in progressively greater intervals from 0.5 to 24. On this cohort of non–COVID-19 patients, PICTURE
consistently outperformed the EDI. At each level of censoring, the P value when comparing PICTURE to the EDI was <.001 unless otherwise marked.
bAUROC: area under the receiver operating characteristic curve.
cAUPRC: area under the precision-recall curve.
dPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
eEDI: Epic Deterioration Index.
fP=.001.

Explanations of Predictions
To provide clinicians with a description of factors influencing
a given PICTURE score, we used Shapley values computed at
each observation. Figure 4 depicts an aggregated summary of
the 20 most influential features in the 2019 test set (panel A)
and in the COVID-19 set (panel B). Positive Shapley values
indicate that the variable pushed the PICTURE score toward a
positive decision (ie, predicting an adverse event). Although
many of the feature rankings appear similar between the 2019

and COVID-19 cohorts, we noted that respiratory variables such
as respiratory rate, oxygen support, and SpO2 played a more
pronounced role in predicting adverse events in COVID-19
positive patients than in non–COVID-19 patients. Multimedia
Appendix 1 Figure S1 [22]. provides expanded detail on several
of the variables (eg, respiratory rate and temperature) whose
Shapley values do not appear to monotonically increase with
their magnitude. One point of note is that the amount of oxygen
support played a significant role in both cohorts. Although the
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EDI does not use the amount of oxygen support as a continuous
variable, it does have a feature termed “oxygen requirement”
[11]. To demonstrate that the observed improvement of
PICTURE over the EDI is not driven solely by this additional
information, oxygen support was binarized and the PICTURE
model retrained. Although performance did decrease, indicating
that the inclusion of oxygen support as a continuous variable is

useful in predicting deterioration, PICTURE still outperformed
the EDI on both the non–COVID-19 (difference in AUROC
0.057, AUPRC 0.082) and COVID-19 (difference in AUROC
0.035, AUPRC 0.050) cohorts. Thus, oxygen support alone does
not account for the difference between PICTURE and EDI
performance.

Figure 4. Shapley summary plots. Panel A depicts an aggregated summary plot of the Shapley values from the 2019 test set, while panel B corresponds
to COVID-19 positive patients. The 20 most influential features are ranked from top to bottom, and the distribution of Shapley values across all predictions
are plotted. The magnitude of the Shapley value is displayed on the horizontal axis, while the value of the feature itself is represented by color. For
example, a large amount of oxygen support over 24 hours (red) in panel A was associated with a highly positive influence on the model, while low to
no oxygen support (blue) pushed the model back toward 0. BUN: blood urea nitrogen; GCS: Glasgow Coma Scale; INR: international normalized ratio;
SHAP: Shapley; WBC: white blood cells.

Calibration and Alert Thresholds
Both PICTURE and the EDI return scores indicate a patient’s
risk of deterioration; however, neither score is calibrated as a
probability. Therefore, alert thresholds may provide a convenient
mechanism to decide whether or not to alert a clinician that their
patient is at increased risk. A previous study assessing the use
of the EDI in patients with COVID-19 found that an EDI score
of 64.8 or greater to be an actionable threshold to identify
patients at increased risk [11]. As PICTURE scores lie on a
different scale than the EDI, calibration is required to simulate
PICTURE alert thresholds.

Figure 5 depicts the distribution of PICTURE and EDI scores
and a calibration curve comparing quantiles of PICTURE and

EDI with observed risk. In this figure, EDI scores are rescaled
from 0-100 to 0-1, while raw PICTURE scores are presented
alongside a transformed score using a monotonically increasing
function (logit transform) and scaled to the range 0-1. Based
on this curve, the EDI appears to overestimate risk, while
PICTURE may underestimate risk. However, neither metric is
intended to reflect a probability. To more closely approximate
a probability, techniques such as Platt scaling or isotonic
regression may improve calibration in the future. Multimedia
Appendix 1 Figure S2 illustrates the distribution of scores
separated by positive and negative outcomes, and indicates that
the PICTURE score may provide more separation between
patients, something that the EDI has previously been
demonstrated to struggle with [11].
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Figure 5. Distribution of scores and calibration curve. Panel A presents a KDE of the distribution of PICTURE and EDI scores. In addition to raw
PICTURE scores, logit-transformed scores are also included. Panel B depicts quantiles of PICTURE and EDI scores (0.1, 0.2, 0.3,...0.9) against observed
risk. Neither PICTURE nor the EDI are calibrated as probabilities, and as such, the use of set alarm thresholds may be useful to help alert clinicians
when their patient is at an increased risk. EDI: Epic Deterioration Index; KDE: kernel density estimate; PICTURE: Predicting Intensive Care Transfers
and Other Unforeseen Events.

To simulate when a clinician might receive an alert from the
PICTURE system, four thresholds were selected, aligned based
on the observed sensitivity, specificity, PPV, and NPV of the
EDI score using the 64.8 value posed by Singh et al [11]. As
an example, the aligned by sensitivity threshold listed in Table
7 was derived by determining the PICTURE threshold that had
a sensitivity of 0.448, matching that of the EDI. Each of these
thresholds, and their performances measured via F1 score, are
compared to the EDI and are included in Table 7. The workup

to detection ratio is calculated as 1 / PPV and indicates the
number of false alerts a clinician might receive for each true
positive [6]. For PICTURE, the workup to detection ratio ranged
from 1.46 to 1.52 on the encounter level depending on the
threshold used, compared to the EDI’s 1.71. The median time
between alert and adverse event according to each threshold is
also displayed. Confusion matrices describing the performance
of the model at each threshold are included in Multimedia
Appendix 1 (Table S3).
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Table 7. Alert thresholds and median lead time.a

Lead timef (h:min), median
(IQR)

F1 scoreeWDRdNPVcPPVbSpecificitySensitivityThreshold
value

Threshold
source

Score

32:26 (4:37-66:08)0.5071.710.8650.5830.9170.44864.8Singh et al
[11]

EDIg

PICTUREh

40:14 (7:51-67:50)0.5411.460.8690.6830.946N/Ai0.165Align by
sensitivity

40:04 (7:44-91:00)0.6361.520.9020.658N/A0.6160.097Align by
specificity

54:10 (29:26-115:50)0.668N/A0.940N/A0.8510.7920.048Align by
PPV

41:40 (7:31-68:30)0.5271.48N/A0.6750.9460.4320.173Align by
NPV

aSensitivity, specificity, PPV, and NPV were calculated for the EDI at a threshold of 64.8 as suggested in Singh et al [11] and based off encounter-level
performance. PICTURE thresholds were then aligned to match these statistics. The WDR is also calculated as 1 / PPV and represents the number of
false alarms received for each true positive. This value is important in limiting alert fatigue for clinicians and indicates that PICTURE may yield as
much as 17% fewer false alarms for each true positive.
bPPV: positive predictive value.
cNPV: negative predicative value.
dWDR: workup to detection ratio.
eF1 scores were calculated as the harmonic mean between PPV and sensitivity.
fLead times were determined using the intersection of true positives between PICTURE and the EDI, and were calculated as the time between a patient
first crossing the threshold and their first deterioration event.
gEDI: Epic Deterioration Index.
hPICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events.
iN/A: not applicable.

Discussion

Validation of PICTURE Performance in
Non–COVID-19 Cohort
PICTURE makes a prediction at every observation for the
features included. A natural starting point for the assessment
of PICTURE’s performance is at this level of granularity. Using
the general structure outlined in Gillies et al [13], we updated
the PICTURE model to reflect the target outcomes of death,
ICU transfer or accommodation, and mechanical ventilation
within 24 hours. This updated model was tested on data from
33,472 encounters in 2019 to ensure its performance
(observation-level AUROC 0.821) was reasonably consistent
with that described in Gillies et al [13]. It was also compared
to the NEWS scores at simultaneous time points and was found
to have significantly outperformed NEWS (AUROC 0.753).
These results confirm the findings in Gillies et al [13] using
2019 data instead of 2018 data. They also provide a baseline of
comparison as we move to predictions made at uniform intervals
instead of every observation.

Comparison of PICTURE to EDI in a Non–COVID-19
Cohort
The EDI does not make predictions at every feature observation;
instead, it makes predictions every 15 minutes. To provide a
direct comparison to the EDI, we subset the PICTURE scores
and time-matched them to the EDI scores as described in the
section Performance Measures. PICTURE significantly

outperformed the EDI on this cohort of non–COVID-19 patients,
with an observation-level AUROC of 0.819 compared to the
EDI’s AUROC of 0.763. This performance gap extended out
over multiple lead times, and even when restricted to data
collected 24 hours or more before the adverse event, PICTURE’s
performance remained high with an AUROC of 0.808, while
the EDI’s AUROC dropped to 0.759. These results suggest that
using PICTURE, instead of the EDI, at the University of
Michigan hospital will lead to less false alarms. PICTURE
maintained the performance improvement even as the models
were forced to make predictions with longer times before the
adverse event.

Comparison of PICTURE to EDI in Patients With
COVID-19
As the EDI has increasingly been investigated as a feasible
metric to gauge deterioration risk in patients with COVID-19
[11], we sought to apply our own deterioration model,
PICTURE, to a cohort of patients with COVID-19. Although
both models were trained and validated in non–COVID-19
general ward patients, their performance on our cohort of
patients with COVID-19 was reasonably consistent with their
respective results on our non–COVID-19 cohort. Even with a
lower sample size (n=607 encounters), PICTURE significantly
(P=.002) outperformed the EDI with an observation-level
AUROC of 0.849 compared to the EDI’s AUROC of 0.803.
PICTURE’s lead was again maintained 24 hours or more before
the adverse event, with an AUROC of 0.808 versus the EDI’s
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AUROC of 0.740. These results suggest that using PICTURE
instead of the EDI for patients with COVID-19 will lead to less
alarm fatigue.

One important point of discussion is the considerably higher
rate of deterioration observed in patients with COVID-19 (20.6%
vs 4.21% of encounters). This is likely due to a combination of
the severity of the virus when compared to a general ward
population and the aggressive treatment regimen endorsed by
clinicians facing a disease that, during the early phases of the
pandemic, represented many unknowns. Therefore, the threshold
selection presented in the section Calibration and Alert
Thresholds may differ between COVID-19 and general ward
patients. The performance of the PICTURE analytic (as
measured by AUROC) increased slightly (though with
overlapping 95% CIs) when applied to patients with COVID-19
versus the general test set, indicating that patients with
COVID-19 may represent a slightly easier classification task.
This is supported by the fact that the EDI also performed better
on the COVID-19 cohort when measured by observation-level
AUROC (0.763 vs 0.803), though this increase was not sustained
in the encounter-level results (AUROC 0.803 vs 0.802).

Explanations of Predictions
One key feature of the PICTURE model is its use of Shapley
values to help explain individual predictions to clinicians. These
explanations help add interpretability to the model, allowing
clinicians to evaluate individual model scores and identify
potential next steps, follow-up tests, or treatment plans. Figure
4 depicts an aggregated summary of Shapley values across all
observations in both the COVID-19 and non–COVID-19
cohorts. In non–COVID-19 patients, a high degree of oxygen
support, high blood urea nitrogen (BUN), very high or very low
respiratory rate, low SpO2, and low GCS were the top five
features most associated with high risk scores by the model.
The COVID-19 cohort yielded the same top five features but
reordered such that respiratory parameters (respiratory rate,
oxygen support, and SpO2) ranked above BUN and GCS. Of
note, temperature was one of the few features that changed
direction between the two cohorts. In non–COVID-19 patients,
a high temperature was associated with low to moderate risk,
whereas high temperatures in patients with COVID-19 tended
to indicate those with the highest risk scores. The aggregate
feature explanations are, in general, similar between the two

cohorts and are largely consistent with clinician intuition.
However, these few key differences may reflect some of the
unique challenges faced when caring for patients with
COVID-19.

Calibration and Alert Thresholds
Simulated alert thresholds were calculated based on the derived
sensitivity, specificity, PPV, and NPV of the EDI threshold
posited by Singh et al [11]. For each of the four thresholds,
PICTURE outperformed the EDI according to the other four
metrics as demonstrated in Table 7. For example, when the
PICTURE alert threshold was adjusted such that its sensitivity
matched the EDI’s (0.448); the specificity (0.946), PPV (0.683),
and NPV (0.869) were all higher than the EDI’s (0.917, 0.583,
and 0.865, respectively). Additionally, PICTURE’s workup to
detection ratio ranged from 1.46 to 1.52 on the encounter level
depending on the threshold used, compared to the EDI’s 1.71.
This indicates that PICTURE may generate up to 17% fewer
false positives for each true positive encounter.

Case Study Example
As a demonstration of the potential utility of PICTURE, an
individual hospital encounter was selected, and the trajectories
of PICTURE and the EDI are visualized in Figure 6. The EDI
score threshold of 64.8, suggested by Singh et al [11], and the
sensitivity-aligned and PPV-aligned PICTURE thresholds are
also depicted. Note that the PICTURE score remains low until
approximately 12.5 hours before the adverse event (in this case,
transfer to an ICU level of care), where it crosses the
PPV-aligned threshold. Approximately 11 hours before the
event, the PICTURE score peaks at a value of 0.235 and exceeds
the sensitivity-aligned threshold of 0.165. After the initial peak,
the PICTURE score then remains elevated, staying above the
PPV-aligned threshold of 0.048 until the patient is transferred.
In contrast, the EDI score never exceeded its alert threshold,
and it dropped when the PICTURE score increased.

To simulate what a clinician receiving an alert from PICTURE
might encounter, the Shapley values explaining the PICTURE
predictions at both alert thresholds are recorded in Table 8. Note
that these explanations are dominated by respiratory features,
though heart rate and temperature are also present. Although
these features may seem obvious in predicting the need for ICU
care, it is worth highlighting that the EDI did not identify this
patient as being at risk.
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Figure 6. Sample trajectory of one patient. Panel A depicts the PICTURE predictions over 27 hours before the patient is eventually transferred to an
ICU level of care (green bar). Two possible alert thresholds are noted: one (red: 0.165) based on the EDI’s sensitivity at a threshold of 64.8 (as suggested
by Singh et al [11]), while the other (yellow: 0.048) is based on the EDI’s PPV at this threshold. Note that PICTURE peaks above the sensitivity-based
threshold approximately 11 hours in advance of the ICU transfer and then remains elevated over the PPV threshold until the transfer occurs. * and †
represent the first time points that PICTURE crossed each threshold, referenced in Table 7. Panel B demonstrates the EDI over the same time range,
with the threshold of 64.8 suggested by Singh et al [11]. The EDI did not identify this patient as being at risk. EDI: Epic Deterioration Index; ICU:
intensive care unit; PICTURE: Predicting Intensive Care Transfers and Other Unforeseen Events; PPV: positive predictive value.

Table 8. Sample Predicting Intensive Care Transfers and Other Unforeseen Events explanations.

Shapley scoreMedian (IQR)bValueRank and feature namea

Shapley values after PPV c threshold (t – 12.75 h)

1.062.0 (0.0-3.0)7 L/min1. Oxygen supplementation (rolling 24 h max)

0.9392.0 (90.0-94.0)85%2. SpO2
d (rolling 24 h min)

0.7620.0 (18.0-20.0)26 bpm3. Respiratory rate

0.3236.9 (36.8-37.2)39.1 ˚C4. Temperature

0.136.0 (5.6-6.4)5.75. Protein level

Shapley values after sensitivity threshold (t – 11 h)

1.932.0 (0.0-3.0)35 L/min1. Oxygen supplementation (rolling 24 h max)

1.0992.0 (90.0-94.0)85%2. SpO2 (rolling 24 h min)

0.7320.0 (18.0-20.0)24 bpm3. Respiratory rate

0.7183.0 (74.0-92.0)124 bpm4. Heart ratee

0.3236.9 (36.8-37.2)39.1˚C5. Temperature

aThe top 5 features corresponding to Predicting Intensive Care Transfers and Other Unforeseen Events predictions as it crosses the PPV-aligned threshold
and the sensitivity-aligned threshold as noted in Figure 6. These predictions represent two possible locations where a clinician could receive an alert
that their patient is deteriorating. Such information could be shared alongside the prediction score to provide better clinical utility to health care providers.
Note that oxygenation (supplemental oxygen, SpO2, and respiratory rate) and temperature play a dominant role in both cases.
bThe median and IQR are included for comparison, and are calculated using the COVID-19 data set.
cPPV: positive predictive value.
dSpO2: oxygen saturation as measured by pulse oximetry.
eHeart rate represented the primary difference between these two time points. When the Predicting Intensive Care Transfers and Other Unforeseen
Events score first exceeded the PPV threshold 12.5 hours before the intensive care unit transfer, the heart rate remained at 65 bpm and was not among
the top features as measured by Shapley. At 11 hours before the event, when the Predicting Intensive Care Transfers and Other Unforeseen Events score
was at its highest, the heart rate had jumped to 124 bpm and was the fourth-most influential feature as measured by Shapley values.
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Limitations
This analysis is limited to a single academic medical center,
and its generalizability to other health care systems will require
future study. Our sample of patients with COVID-19 was also
limited in size, limiting our power to detect differences between
PICTURE and the EDI. Lastly, the thresholds presented in the
section Calibration and Alert Thresholds may be different from
those used in the general population due to the increased event
rate. The thresholds may also require future tuning to suit the
needs of individual units.

Conclusion
The PICTURE early warning system accurately predicts adverse
patient outcomes including ICU transfer, mechanical ventilation,
and death at Michigan Medicine. The ability to consistently

anticipate these events may be especially valuable when
considering a potential impending second wave of COVID-19
infections. The EDI is a widespread deterioration model, which
has recently been assessed in a COVID-19 population. Both
PICTURE and the EDI were trained using approximately
130,000 non–COVID-19 encounters for general deterioration
and thus are not overfit to the COVID-19 population [11,12].
Using a head-to-head comparison, we demonstrated that
PICTURE has higher performance than the EDI at a statistically
significant level (α=5%) for both COVID-19 positive and
non–COVID-19 patients. In addition, PICTURE was capable
of accurately predicting adverse events as far as 24 hours before
the event occurred. Lastly, PICTURE has the ability to explain
individual predictions to clinicians by displaying those variables
that most influenced its prediction using Shapley values.
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