
Brazilian Journal

of Chemical

Engineering

ISSN 0104-6632

Printed in Brazil

www.scielo.br/bjce      

Vol. 35,  No. 03,  pp. 1081-1094,  July - September, 2018

dx.doi.org/10.1590/0104-6632.20180353s20160678

PREDICTING KAPPA NUMBER IN A KRAFT PULP 

CONTINUOUS DIGESTER: A COMPARISON OF 

FORECASTING METHODS

Flávio Marcelo Correia1,*, José Vicente Hallak d’Angelo2,

Gustavo Matheus Almeida3 and Sueli Aparecida Mingoti4

1 CENIBRA Celulose Nipo Brasileira SA
2 UNICAMP – University of Campinas, School of Chemical Engineering

3 UFMG – Federal University of Minas Gerais, Dep. of Chemical Engineering
4 UFMG – Federal University of Minas Gerais, Dep. of Statistics

(Submitted: December 16, 2016; Revised: August 24, 2017; Accepted: October 23, 2017)

Abstract - This paper discusses kappa number prediction models using Single Exponential Smoothing, Multiple 

Linear Regression Analysis, the Time Series Method of Box-Jenkins (ARIMA) and Artificial Neural Networks. 
Applying a database of an industrial eucalyptus Kraft pulp continuous digester, these four different methods were 
evaluated according to different statistical decision criteria. After fitting the parameters of the models, validations 
were performed using a new dataset. Results, advantages and limitations of the four methods were compared. 

Some statistical forecasting indexes indicate that the ARIMA model showed more accurate estimation results, 

achieving a MAPE lower than 3 % and over 90% of the prediction data deviations lower than one kappa unit.

Keywords: Kraft pulping; Continuous digester; Statistical methods; Neural network applications.

INTRODUCTION

Complex processes with significant time delays 
are difficult to optimize and control. An example of 
such a process in the Kraft pulp mill is continuous 

cooking, which is the dominant pulping method in 

modern mills (Pikka and Andrade, 2015). The role 

of the pulp digester is to remove lignin from wood 

chips. Kappa number is the most used index for 

measuring residual lignin present in the pulp (Costa 

and Colodette, 2007). It is measured either using 

online concentration analyzers, or in the laboratory 

by lignin oxidation with potassium permanganate 

under acidic conditions. The digester primary control 

objective is to produce uniform pulp with minimum 

variability, contributing to keep quality and stability 

in the following fiber line steps. A low kappa number 
affects negatively pulp strengths because of the 
carbohydrate dissolution, resulting in a substantial 

loss in pulp yield. On the other hand, the main 

production failure in a continuous digester occurs 

when a high kappa number pulp is achieved, which 

raises the bleaching chemicals costs, organic charge 

to the effluent treatment station and plugging risks 
at the screen plant as well (which forces reduction 

of the production). In recent years, regarding pulp 

yield aspects, the trend in bleachable-grade chemical 

pulping has been to push the kappa number as high as 

possible, just below the fiber liberation point (Weding, 
2012; Hart, 2014). Thereby, considering the natural 
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wood quality variations, long residence time and the 

tendency of the mills to end the cooking at a higher 

kappa number, a better accuracy in kappa number 

control is a keynote to digester operation.

Making a forecast is to predict a future observation. 

Forecasting is an important issue for manufacturing 

companies. Several decision making processes need 

accurate forecasts in order to choose proper actions 

relevant to different production aspects. For this 
reason, over the years practitioners and academics 

have devoted particular attention to how forecasting 

can be improved to increase forecast accuracy (Danese 

and Kalchschmidt, 2011).

Artificial Neural Networks and statistical methods 
are widely reported for different chemical engineering 
applications (Assidjo et al., 2008; Kazemi-Beydokhti 

et al., 2015). Kappa number prediction models 

are useful in cases where an on-line analyzer is not 

available, or as an inferential sensor to be used as an 

additional kappa number indicator, giving a warning 

to the operators when large discrepancies are observed 

(between measured and estimated values), as a 

reference model for device calibration monitoring or 

for a better understanding of the process behavior as 

well. With a kappa number inference, more information 
can be achieved and then used to determine actions to 

control the process in advance.

In this context, the objective of this study is to 

compare performance of different dynamic inferential 
models for kappa number prediction. Four methods 

- Single Exponential Smoothing (SES), Box-Jenkins 

(ARIMA), Multiple Linear Regression Analysis 

(MLR) and Artificial Neural Networks (ANN) were 
used to formulate and compare the kappa number 

inferential capability of a eucalyptus Kraft pulp 

continuous digester. Advantages and limitations of 

these four methods were discussed.

Kraft Pulping Continuous Digester

The kraft pulp continuous digester is a tubular 

reactor where wood chips react with an aqueous 

solution of sodium hydroxide and sodium sulfide 
(referred to as white liquor) to remove lignin from 

cellulose fibers. Most continuous digesters consist of 
three basic zones: impregnation, cooking and washing, 

where the flow of white liquor is either co-current or 
counter-current with respect to the chips flow (Smook, 
1992).

White liquor penetrates and diffuses into the wood 
chips as it flows down through the impregnation zone. 
The mix is heated to a target cooking temperature 

where bulk delignification starts, and the majority of 

lignin is removed. The cooking process is stopped 

at the beginning of the washing zone by reducing 

the temperature and then cooked pulp is washed in 

a counter-current washing zone, using wash liquor 

injected at the bottom of the digester.

Various factors affect the overall Kraft pulping 
reaction rate, including thermal and fluid dynamic 
factors, liquor and chip diffusion characteristics and the 
delignification reactions (Gullichsen, 2000; MacLeod, 
2007). Continuous Kraft pulping is a complex process 

by its nature. Some of the reasons are raw material 

variability, long time delays involved, non-linear 

behavior, complexity of chip column dynamics, 

operational disturbances, scarce availability of process 

measurements and strong interdependencies between 

process stages and variables (Kocurek et al., 1989; 

Lindstrom, 2007). Continuous cooking is one of the 

major unit operations in the pulp mill and its proper 

control determines the quality characteristics of the 

brown stock pulp and subsequent stages.

Kraft Pulping Modeling

Regardless of whether new or existing processes 

are to be modelled, the objectives of the data analyses 

may be used in monitoring the state of the process. 

Understanding the relationship between factors and 

responses, process diagnosis and optimization allows 

operators to follow the process behavior when it 

shifts from one condition to another. In this context, 

anticipating demand changes is critical in the process 

industry with high capacity utilization (Blackburn et 

al., 2015).

Models may be divided into theoretical and 

empirical ones. Theoretical models explain the nature 

of the reactions, phenomena and different process 
conditions. Empirical models are based on experimental 

data. Kraft pulping has been modeled to various levels 

of complexity. The development of chemical reaction 

rate expressions that take place during Kraft pulping 

is arduous because of the heterogeneous nature of 

the system, multivariable and interactive chemical 

and physical processes and long residence times. 

Nonetheless, modeling and simulation of pulping 

processes have become valuable tools to the pulp and 

paper industries (Dahlquist, 2008).

Some authors presented an approach for predicting 

the kappa number using chemical reaction kinetics 

(Sixta and Rutkowska, 2007; Germgård, 2017), 

physical phenomena (Rantanen, 2006; Laakso, 2008), 

Near Infrared regression models (Monrroy et al., 2008; 

Santos et al., 2014, Moral et al. 2015) or advanced 
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process predictive model control tools (Badwe, 2016; 

Rahman et al., 2017).

In contrast, some researchers have used software 

computing methods developing empirical predictive 

models for kappa number using different data-driven 
approaches. An ANN-based strategy for detection 

of feedstock variations in a continuous pulp digester 

were studied by Dufour et al. (2005). Wood chip 
moisture content and densities and alkali and sulfidity 
in the white liquor were modeled in a pilot plant. 

Ahvenlampi and Kortela (2005) developed a kappa 

number prediction model and fault diagnostics of 

continuous digesters using clustering techniques.The 

results showed the usability of the combined hybrid 

system in the monitoring of the process and the kappa 

number prediction. Halmevaara (2009) developed a 

novel method using multivariate regression to capture 

the dependencies among the system parameters and 

quality measures for large industries, presenting 

results of regression adjustments as an interactive case 

study simulation of a double vessel softwood pulp 

continuous digester. Araneda et al. (2009) adapted 

the Purdue model to the physical characteristics of 

a Kamyr digester. This model was able to represent 

satisfactorily both dynamic and steady states of the 

digester operation, improving information from 

previous models. Predicted data obtained from 

this model were compared to measured ones from 

mills, such as blow-line kappa number, yield, free 

liquor temperature profile, and pulp production rate. 
Saavedra (2011) selected 29 cooking variables from 

his experience with a continuous digester, and used a 

MLR and ANN for predictive models, concluding that 

the ANN presented better results. Galicia et. al (2012) 

applied soft sensors using secondary measurements 

based on multivariate regression techniques. They 

developed a software sensor in order to reduce the 

number of regressor variables and also to provide 

superior prediction performance of kappa number 

applied in both simulated and industrial continuous 

Kamyr digester case studies. Kraft pulping has been a 

widely studied subject, especially concerning softwood 

pulp. Nevertheless, there are only a few references 

to kappa number prediction techniques concerning 

statistical and artificial neural network models from 
industrial hardwood pulping data. In this sense, this 

work brings an important contribution to the studies 

involving hardwood processing.

METHODS

Time series analysis and forecasting has become 

a valuable tool in different applications. The ability 

to forecast optimally, understanding the dynamic 

relationships between variables, is of great practical 

importance (Hair et al. 2009). If physical interpretation 

is less important and a complex system needs to be 

described by a simple input-output model, a data 

driven approach may be applied. This observed 

behavior is mapped by a mathematical representation 

that does not have a physical basis. Much statistical 

methodology is concerned with models in which 

the observations are assumed to vary independently. 

In many applications the dependence between the 

observations is regarded as a challenge, and in planned 

experiments, randomization of the experimental 

design is introduced to validate analysis conducted as 

if the observations were independent. However, many 

data in engineering and industries occur in the form of 

time series (a set of observation generated sequentially 

in time), where observations are dependent and where 

the nature of this dependence itself is of interest (Chase 

Jr., 2013). The body of techniques available for the 

analysis of such series of dependent observations is 

called time series analysis, which may be classified as 
linear or nonlinear. In this paper two univariate (SES 

and ARIMA) and two multivariate methods (MLR and 

ANN) are evaluated and they are briefly described as 
follows.

Single Exponential Smoothing (SES)

Single Exponential Smoothing is a method used 

to smooth and forecast a time series without fitting 
parameters of a model. It is based on a recursive 

computing scheme, where the forecasts are updated 

for each new incoming observation. Exponential 

smoothing is considered a simple prediction 

technique, yet it is used in practice where it shows 

good performance (Makridakis et al., 1983). It is 

used for short-range forecasting, usually just one step 

into the future. The model requires a large number of 

observations, assumes that the data fluctuate around a 
reasonably stable mean, i.e., it is not appropriate for 

data that has a seasonal component, trend or consistent 

pattern of growth (Holt, 2004). The formula for simple 

exponential smoothing is expressed as:

       (1)

When applied recursively to each successive 
observation in the series, each new smoothed value 

(forecasted Ŷ
t
) is computed as the weighted average 

(given by α) of the current observation (Y
t-1

) and the 

previous smoothed observation (Y
t-1

). The previous 

smoothed observation was computed in turn from 

( )Y Y Y1t t t1 1a a= + -- -
t t
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the previous observed value and the smoothed value 

before the previous observation, and so on.

Multiple Linear Regression (MLR)

Multiple Regression analysis is one of the most 

popular statistical estimation procedures. It is an 

extremely powerful tool that enables the researcher 

to learn more about the relationships between the data 

being studied (Ryan, 2011). The optimal input variable 

set will contain the minimum input variables required 

to properly describe the behavior of the output variable, 

with a minimum degree of redundancy and with no 

uninformative (noise) variables. The compromise 

between these extremes is what is usually called 

"selecting the best regression equation" (Draper and 

Smith, 1998).

To estimate the coefficients in the regression model, 
usually an Ordinary Least Squares (OLS) method is 

used due to both its mathematical convenience and the 

ability to provide explicit expressions for the model 

(Fox, 1997). If there are a number of data points (Y
i
, 

X
1i
, X

2i
 ,..., X

1ni
; i = 1,p), with one dependent variable Y 

and q dependent variables X
j
 (where j = 1, 2, 3 ...p), an 

equation may be written as:

       (2)

In this instance, multiple linear regression was 

used to determine the statistical relationship between 

the response (kappa number) and the explanatory 

variables (digester process variables).

Time Series Method of Box-Jenkins (ARIMA)

A time series is a set of observations generated 

sequentially in time, in a continuous or discrete 

way, which may be classified as linear or nonlinear 
(Bowerman, 2005). Examples of linear methodologies 

are the Auto Regressive Integrated Moving Average 

models, generally indicated as the ARIMA (p,d,q) 

model where the parameters p, d, and q are non-

negative integers that refer to the order of the 

autoregressive, integrated, and moving average 

parts of the model, respectively. ARIMA models are 

a class of models that have capabilities to represent 

stationary (the process remains in equilibrium around 

a constant level or mean, variance, and autocorrelation 

through time) as well as non-stationary time series to 

produce accurate forecasts based on a description of 

historical data of a single variable. The time series data 

is examined to check for the most appropriate class 

of ARIMA processes through selecting the order of 

the consecutive and seasonal differencing required to 
make the series stationary, as well as specifying the 

order of the regular and seasonal auto regressive and 

moving average polynomials necessary to adequately 

represent the time series model. The Autocorrelation 

Function (AC) and the Partial Autocorrelation 

Function (PAC) are elements of time series analysis 

and forecasting. AC measures the amount of linear 

dependence between observations in a time series that 

are separated by a lag k. A PAC plot helps to determine 

how many auto regressive terms are necessary to 

reveal one or more of the following characteristics: 

time lags where high correlations appear, seasonality 

of the series, trend either in the mean level or in the 

variance of the series (Adhikari and Agrawal, 2013). 

Time series and the ARIMA method have been useful 

in the chemical industry (Balasko and Abonyi, 2007; 

Ng and Srinivasan, 2009; Hill, 2014) and in different 
fields of the applied sciences (Pankratz, 2008; Khashei 
and Bijari, 2011; Fung 2014).

The methodology to adjust ARIMA models uses an 

iterative steps approach, namely model identification, 
model selection and model checking, described in Box 

and Jenkins (1976).

When the time series is stationary the model is 
called ARMA (p,d) and maybe expressed by:

       (3)

If the time series is not stationary, it must be be 

transformed into a stationary series.

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) have been 
successfully applied not only for chemical engineering 

purposes (Himmelblau 2000), but also in many other 

different fields. Indeed, in any situation that offers 
difficulties for predicting the behavior, classification 
or control of a system or a process, neural networks 

have been used successfully. Power and ease of use 

(although using sophisticated modeling techniques) 

are the ANN key success factors. Using representative 

process data and training algorithms, the network 

may learn the data structure. They are applicable 

to situations in which a relationship between input 

and output variables exists, but this relationship 

is too complex to be described in an explicit or 

phenomenological way (Patterson, 1996). An ANN is 

a parametric model composed of process units called 

nodes (or neurons), ordered in layers and fully or 

...Y x x x xt p p q q t0 1 1 2 2b b b b b f= + + + + +

Y Y Y Yt t t p t p1 1 2 2 $$$d z z z i= + + + + -- - -

t t q t q t1 1 2 2 $$$i f i f i f f- - - - +- - -
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partially interconnected. The Multi-Layer Perceptrons 

(MLP) is the most popular neural network architecture 

in use today, where information travels exclusively 

from input to output nodes. This is discussed at length 

in most ANN books (Haykin, 1994).

In general, one hidden layer using sigmoidal-type 

activation functions is enough for approximating any 

continuous non-linear function (Hornik et al., 1989). 

The number of input and output units is directly defined 
by the problem. The definition of the number of hidden 
units to be used is part of a search procedure being 

defined experimentally. Once the number of layers 
and number of units in each layer have been selected, 

the network's weights must be set by minimizing a 

prediction error function. This is the role of the training 

algorithms.

ANN are data intensive, needing a considerable 

amount of data to get reliable results, and great care 

should be taken in designing and testing networks, 

using separated datasets. Briefly, the ability of direct 
input-output nonlinear mapping, robustness, and 

the possibility of working with multiple inputs and 

outputs, make ANN an efficient tool for modelling 
complex processes.

DATA ACQUISITION

The data used in this work were collected from a 

eucalyptus Kraft pulp continuous digester, as indicated 

in Figure 1. The equipment under study is a Kamyr 

single vessel vapor phase digester using the Extended 

Modified Continuous Cooking EMCC process (Sixta, 

2006), from a market pulp mill of 500,000 air dried 

metric tons (admt)/year capacity, located in Minas 

Gerais state in Brazil.

Considering the author's experience working 

with the process control of this pulp mill, seventeen 

process variables that influence the delignification 
reactions were selected, which are: chip bulk 

density, chip consistency, chip bin retention time, 

chip bin temperature, chip meter speed, liquor/wood 

relation, effective alkaline charge, sulfidity, top 
digester temperature, top digester pressure, upper 

cooking screen alkali concentration, upper cooking 

screen temperature, lower cooking screen alkali 

concentration, lower cooking screen temperature, 

lower extraction percentual flow, washing liquor flow/
chip speed relation and previous kappa number.

Next, these variables were properly adjusted 

according to the retention time delay as presented in 

Figure 1. To exemplify this adjustment, a chip sample 

collected at 00:00 (hh:min) at the chip bin conveyor 

entrance is compared to a kappa number measured 

in a sample collected from the blow digester at 03:30 

(hh:min). A temperature at the top of the digester (and 

others located in the top digester) is compared to the 

kappa number measured in a sample collected from 

the blow-line digester at 03:00h later and so forth.

Initially, data samples containing missing data, 

dubious values, and evident outliers were removed, 

as well those below 50% of the normal running 

production. All the process data are relative to 30 

minutes frequency, and were obtained from the 

DCS (Digital Control System). The kappa number 

Figure 1. Continuous Digester Flow sheet.
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data were obtained from an on-line kappa number 

analyzer (KappaQ- supplied by Metso Automation), 

which uses an automatic sample collecting system and 

makes analysis by optical properties using a previous 

calibration curve.

The working dataset was divided into two 

independent groups (months of January and February). 

The first one (with 1471 observations) was used as 
reference for model identification, that is, to estimate 
the model parameters, whereas the second (with 1343 

observations) was used to verify the generalized 

forecasting capacity of the previously identified 
models.

A variable selection process helps to decrease the 

risk of overfitting the model by reducing the number 
of independent variables in the model. This task 

is also important when identifying neural models 

since redundant variables may worsen its general 

performance. Besides, one consideration in the 

choice of predictor variables is the extent to which a 

chosen variable contributes to reducing the remaining 

variation in the response after allowance is made for 

the contributions of other predictor variables that 

have tentatively been included in the model. Other 

considerations include the importance of the variable 

as a causal agent in the process under analysis; the 

degree to which observations on the variable can be 

obtained more accurately, or quickly, or economically 

than those on competing variables; and the degree to 

which the variable can be controlled (Kutner et al., 

2005). Therefore, the stepwise method was carried out 

in order to eliminate variables that do not affect the 
kappa number significantly, with significance levels α 
of 0.1 for both variable inclusion and removal (Correia 

et al., 2014). As a result, 11 independent variables were 

selected as variable inputs to the MLR (a linear model) 

and ANN (nonlinear model), as used in different 
approaches (Heiat, 2002; Couto, 2009; May et al., 

2011). The variable subset is listed in Table 1, with 

the respective time delays in relation to the dependent 

variable kappa number (output).

As described above, because SES and ARIMA are 

univariate models, the process variables from Table 1 

were not used in such analyses.

RESULTS AND DISCUSSION

Due to confidentiality reasons, the kappa number 
dataset was standardized, i.e., auto scaled to unit 

variance and mean centered, according to Equation 4 

(Johnson and Wichern, 2002):

       (4)

Figure 2 presents the time series evolution from the 

first dataset (used for modeling), and Figure 3 presents 
the time series evolution from the second dataset (used 

to test generalization capacity). In Figure 2 there are 

some long peaks around observations 350 and 850, 

while in Figure 3 they are present around observations 

380 and 820. These peaks occurred due to wood 

density variations.

Both figures indicate that the proposed empirical 
models were validated within the range for which 

they were estimated (without extrapolations) and the 

kappa number results have a similar behavior over 

time. These datasets represent major time operation 

characteristics.

Table 1. Digester Selected Variables.

 Variable     Unit Delay (h)

01. CBRT     Chip Bin Retention Time min -3.5

02. RPM       Chip Meter Speed RPM -3.5

03. EA          Effective Alkali Charge % -3.0

04. TOPT     Top Digester Temperature ºC -3.0

05. UPCA     
Upper Cooking Alkali 

Concentration
g/L -2.5

06. UPCT     Upper Cooking Temperature ºC -2.5

07. LOCA     
Lower Cooking Alkali 

Concentration
g/L -1.5

08. LOCT Lower Cooking Temperature ºC -1.5

09. LEPF      Lower Extraction Percentual Flow % -0.5

10. WFRPM
Relation Washing Liquor Flow/

RPM
m3/RPM -0.5

11. PKAPPA Previous Kappa number kappa Unit -0.5

12. KAPPA Blow Flow Kappa number kappa Unit 0.0

k
s

k k
s i

n

k

i

1=
-

=

r
/
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Single Exponential Smoothing

According to Figure 2, the industrial dataset is 

a non-seasonal time series exhibiting a constant 

trend. Thus, the α parameter (Equation 1) was tested 

iteratively seeking a minimum RMSE, choosing 

α=0.9 (after some trials) to be used at validation of the 
model. The first three average observations were used 
as the initialization value. A histogram of residuals is 

presented in Figure 4, which presents a visual evidence 

of a normal distribution, with a mean around zero, but 

some undesirable residuals points beyond ± 4.

Figure 2. First Dataset Standardized Kappa Number Evolution.

Figure 3. Second Dataset Standardized Kappa Number Evolution.

The performance of the forecasting methodologies 

was calculated onto the second dataset according to 

Equations 5-7, where n is the number of observations:

MAD: Mean absolute deviation:

       (5)

MAPE: Mean absolute percentage error:

       (6)

RMSE: Root mean square error

       (7)

Reliability was measured by the MAD and the 

MAPE. Accuracy was measured by the RMSE. A 

benefit of the RMSE is that it is measured in the same 
units as the original data, while its drawback is that 

large errors can dominate the value (Makridakis and 

Hibon, 1995). These forecasting indexes from the 

four methods are summarized in Table 5. In addition, 

the residuals (predicted(observed values) were also 

considered by means of the residuals histogram. The 

results for each approach are depicted in the following.

MAD n

Y Y, ,observed i predicted i
i

n

1
=

-
=
/

/
MAPE n

Y Y Y, , ,observed i predicted i
i

n

observed i1=
-

=
/

RMSE n

Y Y, ,observed i predicted i
i

n 2

1
=

-
=
Q V/

Figure 4. Histogram of SES Model Residuals.

Multiple Linear Regression

Selected variables shown in Table 1 were used for 

identification of the MLR model (Equation 2). Using 

the software EViews (Econometric Views v.5), OLS 

was applied in order to obtain a relationship between 

the dependent variable (kappa number) and the eleven 

regression variables. As a result, Table 2 indicates the 

estimated parameters for kappa number estimation 

(variables are described in Table 1).

This model was used to perform forecasting from 

the second dataset. The histogram of residuals is 

presented in Figure 5, with a visual evidence of normal 

distribution, with no residuals points beyond ± 4. This 

provides a better result of such model in comparison to 

the previous SES approach.

Time Series Method of Box-Jenkins

Besides indexes MAD, MAPE, and RMSE 

described in Equations 5-7, models were selected 

using others statistical decision criteria, like the Akaike 

Information Criterion (AIC), Schwarzs Bayesian 

Criterion (SBC), Durbin-Watson (DW), and Theil 
Inequality Coefficient (TIC). Except for DW, a lower 
mean is considered better in the evaluation of all these 
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Table 2. Estimated parameters for regression equation.

Variable Coefficient Std.Error p value

TOPT     -0.0306 0.0082 0.000

LOCT       -0.0410 0.0077 0.000

UPCT          -0.0193 0.0080 0.015

UPCA     -0.0524 0.0153 0.000

LOCA     -0.0940 0.0094 0.000

CONSTANT     15.7238 1.5751 0.000

EA 0.0398 0.0161 0.013

LEPF 0.0092 0.0032 0.003

PKAPPA 0.8832 0.0098 0.000

WFRPM 0.0590 0.0260 0.023

CBRT -0.0177 0.0084 0.034

RPM 0.0128 0.0039 0.000

Figure 5. Histogram of MLR Residuals.

criteria. The DW metric is an error pattern indicator 
(if the pattern is random, the DW will be around 2). 
These and related scalar measures to choose between 

alternative models in a class are discussed in some 

texts on statistics (Gujarati, 2004; Makridakis et al., 

1995). The EViewsv.5 software was used to estimate 

the parameters for the ARIMA models and subsequent 

statistical analysis. Based on both the autocorrelation 

function (AC) and the partial correlation function 

(PAC), ARMA models were identified (from 
Equation 3).

As indicated in Figure 6, the correlogram of the 

first dataset shows a slow continuous decay from 
Autocorrelation, and significant bars from Partial 
Correlation until second-third order. The correlogram 

also indicates that the kappa number exerts a strong 

influence on the next value.

Figure 6. Model Dataset Correlogram.

This way, ARMA (1,2), ARMA (2,1), ARMA 

(2,2) and ARMA (1,1) parameter subsets were tested, 

presenting good results (in this order) as shown in 

Table 3.

Table 3. Results from the statistical criteria for the selected models.

Model ARMA(1,1) ARMA(2,1) ARMA(2,2)
ARMA 

(1,2)

MAD 0.4036 0.3890 0.3871 0.3868

RMSE 0.5841 0.5553 0.5500 0.5500

MAPE 2.4314 2.3537 2.3412 2.3389

AIC 1.7652 1.6665 1.6491 1.6473

SBC 1.7722 1.6806 1.6666 1.6614

DW 1.9052 2.0387 2.0042 1.9963

Considering accuracy and parsimony properties, 

ARMA (1,2) was chosen as the best forecasting model 

and its estimated parameters are displayed in Table 4, 

where C is the constant term, AR(1) the autoregressive, 

MA(1) and MA(2) the moving average terms.

Table 4. ARMA (1,2) model estimated parameters.

Variable Coefficient Standard Error p Value

C 16.14181 0.15600 0.000

AR (1) 0.85180 0.01552 0.000

MA (1) 0.36187 0.02742 0.000

MA (2) 0.27356 0.02699 0.000

AC and PAC functions from residuals are 

presented in Figure 7, indicating a white noise and 

homoscedasticity of residuals.

Applying the coefficients indicated in Table 4 
at Equation3, the fitted model was applied to the 
validation data set to perform predictions. A histogram 

of the residuals is presented in Figure 8, which presents 

no values beyond ± 3, with a significant frequency 
between -1 and 1, indicating a better description 

of the kappa number in comparison to the first two 
approaches.
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Artificial Neural Networks (ANN)

Using the modeling data subset, the neural 

network model was constructed following the steps 

of specification, selection and final model estimation. 
Matlab (MATrix LABoratory) v.7.9.0 was used to 

estimate the ANN parameters.

In the ANN model, the MLP architecture was used; 

11 input variables (Table 1); 1 output variable (kappa 

number); 1 hidden layer; hyperbolic tangent as the 

transfer function; 750 epochs (after some trials); 75% 

in the training dataset; 25% in the validation dataset; 

Identity Output Layer Transfer Function. To select the 

optimum neural network model, the number of hidden 

neurons was varied from 1 up to 23 (each value ran 

30 times), according to the correlation coefficient, 
RMSE (Root Mean Squared Error), angular and linear 

coefficient. The average degree of association between 
collected and estimated kappa number was calculated 

on the validation data subset. Figure 9 summarizes 

results of correlation coefficient (where the vertical 
bar means the average confidence interval) from 1 to 
23 hidden neurons. The selected model was the one 

containing three hidden neurons.

A re-estimation of the weights matrix for the ANN 

model, using both the training and the validation 

datasets, was carried out. Figure 10 depicts the final 
neural network model with eleven inputs and three 

hidden neurons.

Figure 7. ARMA (1,2) Residuals Correlogram.

Figure 8. Histogram of ARMA (1,2) Residuals.

Figure 9. Hidden neurons evaluation.

Figure 10. Final neural network model.

The error can be determined by running all the 

training cases through the network, comparing the 

actual output generated with the desired or target 

outputs. The algorithm therefore progresses iteratively, 

through a number of epochs. In each epoch, each 

training case is submitted in turn to the network, and 

the target (collected in the mill) and actual (model 

estimates) outputs are compared to the error calculated. 

This error is used to adjust the weights, and then the 

process repeats. The initial network configuration is 
at random, and training usually stops when a given 

number of epochs elapse or when the error stops 

increasing.

After defining the architecture model, the second 
dataset was used for validation. To maintain the same 

criteria for comparison with the 3 methods (SES, MLR 
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and ARIMA), a specific algorithm was developed 
in a Matlab code to use the parameters obtained in 

modeling data from the validation dataset, considering 

that the ANN default of the software uses the same 

dataset for training, selection, and validation of model 

parameters. Thus, a conjunct of residuals (predicted-

observed) was obtained, for which the histogram is 

indicated in Figure 11.

scope of the present study, could be used to determine 

the influence of the inputs over the output kappa 
number.

Complementing the results, Figure 12 illustrates the 

modeled versus observed values for all the methods 

(for confidentiality reasons the axis data are omitted).
In a general way, setting aside SES (the simplest), 

all the methods present good accuracy. Moreover, 

ARIMA showed better values in all forecast indexes. 

Likewise, more than 90% of the prediction data is 

lower than 01 kappa unit of deviation in the ARIMA 

model, confirming it to be the best option among the 
analyzed models.

CONCLUSIONS

This paper discusses kappa number estimation 

using different modeling approaches in a continuous 
cooking process. Data from an industrial continuous 

digester were used to compare the performance of 

these kappa number predicting methods. Four different 
methods were compared considering accuracy of the 

results. SES and ARIMA methodology were developed 

in dynamic models using the observed and predicted 

kappa number values. MLRA and ANN Models 

were done with 11 process input cooking variables. 

Considering that none of the data points included in the 

validation subset were used in the training phase, it is 

possible to conclude that the ANN, MLR and ARIMA 

models are quite acceptable considering practical 

application in predicting kappa number, providing 

digester operators with an accurate on-line estimation 

to be used as an inferential sensor. These models 

presented a desirable normal distribution with zero 

mean in residuals. Considering the results obtained in 

this study, the ARIMA model showed better accuracy 

when compared to the others, according to all statistical 

forecasting indexes evaluated, followed by MLR, 

ANN and SES. With these measurements it is possible 
to estimate the blow-line kappa number before the 

end of the cooking process, allowing the operating 

personnel to make faster corrections concerning kappa 

number deviations. ARIMA methodology may be a 

useful tool for pulp mills, since it can be applied to 

optimize and control the cooking process and may be 

easily included in any electronic spreadsheet, updated 

from time to time as more data become available.

These four methods can be adapted to any 

continuous reactor, turning this manuscript of interest 

for the pulp and paper industry audience and for 

different chemical industries as well.

Figure 11. Histogram of ANN residuals.

Table 5 summarizes some forecasting indexes from 

the four methods studied, as expressed in Equations 

5, 6 and 7. Also included is the percentage of absolute 

deviation value lower than 1 kappa unit (which is 

considered an acceptable value for mill applications).

Table 5. Summary of Forecasting Indexes.

MODEL   SES    ARIMA       MLR      ANN

MAD   1.0261 0.4552 0.5540 0.6150

MAD<1 

(%)
64.1102 90.7713 86.0883 81.7216

RMSE   1.4052 0.4130 0.7681 0.8549

MAPE   6.2220 2.7327 3.3373 3.6740

ARIMA presented the lowest MAD, followed by 

MLR, ANN and SES. ARIMA obtained more than 

90% of MAD points lower than 1 kappa unit, which 

is very appreciable, giving reliability to digester 

operation. Concerning the RMSE and MAPE, ARIMA 

presented the best result as well, followed by MLR, 

ANN and SES. Similar results may be observed for 

the MLR and the ANN models, and also in the residues 

histogram (Figures 5 and 11). In a general way, the 

kappa number is driven by its past value, as indicated 

in Figure 6. Then, for this case, the complexity of a 

neural network modeling would not compensate for its 

use. A sensitivity analysis study, which is beyond the 
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Figure 12. Modeled versus Observed Kappa Number.

NOMENCLATURE

ANN Artificial Neural Networks

ARIMA
Auto Regressive Integrated Moving 
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ARMA Auto Regressive Moving Average

MLR Multiple Linear Regression
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