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Abstract: Landslide susceptibility is a contemporary method for delineation of landslide hazard
zones and holistically mitigating the future landslides risks for planning and decision-making. The
significance of this study is that it would be the first instance when the ‘geon’ model will be attempted
to delineate landslide susceptibility map (LSM) for the complex lesser Himalayan topography as a
contemporary LSM technique. This study adopted the per-pixel-based ensemble approaches through
modified frequency ratio (MFR) and fuzzy analytical hierarchy process (FAHP) and compared it with
the ‘geons’ (object-based) aggregation method to produce an LSM for the lesser Himalayan Kalsi-
Chakrata road corridor. For the landslide susceptibility models, 14 landslide conditioning factors
were carefully chosen; namely, slope, slope aspect, elevation, lithology, rainfall, seismicity, normalized
differential vegetation index, stream power index, land use/land cover, soil, topographical wetness
index, and proximity to drainage, road, and fault. The inventory data for the past landslides were
derived from preceding satellite images, intensive field surveys, and validation surveys. These
inventory data were divided into training and test datasets following the commonly accepted
70:30 ratio. The GIS-based statistical techniques were adopted to establish the correlation between
landslide training sites and conditioning factors. To determine the accuracy of the model output, the
LSMs accuracy was validated through statistical methods of receiver operating characteristics (ROC)
and relative landslide density index (R-index). The accuracy results indicate that the object-based
geon methods produced higher accuracy (geon FAHP: 0.934; geon MFR: 0.910) over the per-pixel
approaches (FAHP: 0.887; MFR: 0.841). The results noticeably showed that the geon method constructs
significant regional units for future mitigation strategies and development. The present study may
significantly benefit the decision-makers and regional planners in selecting the appropriate risk
mitigation procedures at a local scale to counter the potential damages and losses from landslides in
the area.

Keywords: landslide susceptibility mapping; modified frequency ratio (MFR); fuzzy analytical
hierarchic process (FAHP); object-based geon method

1. Introduction

Landslide in the hilly terrain often accounts for substantial property and infrastructure
damage, impacting people’s livelihood. It is one of the most devastating complex geohaz-
ards. The fragile landscape of the Himalayan region is highly susceptible to landslides that
pose a considerable risk to socio-economic setups and the means of support for the people
residing there [1–3]. According to GSI (Geological Survey of India), about 140 thousand
km2 area in North-west Himalayas (Jammu and Kashmir, Himachal Pradesh, and Uttarak-
hand) is vulnerable to landslide hazards [4]. An estimate shows that nearly 13% of land in
India has experienced landslides that caused more than USD 4.5 million economic loss [5,6].
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Landslides in India’s Uttarakhand state are considered one of the most threatening natural
hazards, causing substantial damages and losses each year. Frequent landslides highly
impact the middle and lesser Himalayas of Uttarakhand due to steep slopes, profound
bedrock weathering, and intensive monsoon rainfall [7–11]. The anthropogenic reasons
and geo-hydrological settings are the other vital elements that intensely stimulate landslide
incidences [12,13]. Though numerous landslides occur every year in the mountainous
northern part of Uttarakhand, the Varunawat landslide of 2003 is considered a significant
event that caused a considerable loss of lives and properties [5,14]. Landslides in the
Himalayas terrains are classified based on the size of the material displaced, categorized
into debris flow, rockfall, mudflow, topples, soil creeping, and transitional slides by their
predominant occurrences [15].

The Lesser Himalayan Kalsi-Chakrata road corridor observes considerable damages
to structures and assets, road network, and occasional casualties from widespread rain-
induced landslides in the rainy season (June to September). Such events incur economic
losses and significantly impact villagers’ livelihood in those mountainous terrains of the
Lesser Himalayas. Many such landslide incidents have been published in national and local
newspapers annually [16]. Amroha is the largest landslide in this road corridor located
between Kalsi and Sahiya town. Over a decade, this landslide has recurred every year,
resulting in passenger and goods transport disruption. The available literature reveals the
absence of any in-depth scientific research on frequent landslides in this area [11]. Hence,
filling the cavities and delineating the landslide-prone areas would be essential to conduct a
detailed landslide susceptibility mapping (LSM) and analysis applying advanced geospatial
techniques. Various techniques have been adopted in different studies worldwide, revealing
other aspects of landslide prediction [17,18]. The LSM helps comprehend the distribution
of likely landslide events spatially, which is a significant phase for landslide disaster
mitigation and management in an area. The consistency and precision of LSM of a particular
geographical unit depend on the spatio-temporal occurrence of landslides and the selection
of the modeling approaches [19,20].

The advancement of satellite remote sensing (RS) and geographic information systems
(GIS) technologies have meaningfully transformed the hazard mitigation planning percep-
tion for any future events [21]. The extensive application of RS and GIS techniques has
emerged as a significant contributor for evaluating natural hazards [22–25]. RS and GIS
have been used in many analyses for analyzing landslide susceptibility [11,26–28]. Land-
slides, floods, forest fires, and earthquakes are amongst the natural hazards that have been
investigated widely using quite a few data-driven and heuristic models such as Frequency
Ratio (FR), Analytic Hierarchical Process (AHP), and Evidence Belief Function (EBF) [29–33].
In this context, the physically-based landslide prediction models formulated on determinis-
tic settings produced satisfactory results in some of the studies especially based on real-time
data [34–37]. More recently, many ‘machine learning’ techniques have been used, such as
Random Forest (RF), Support Vector Machines (SVM), Logistic Regression (LR), Dempster-
Shafer, Decision Tree, and Artificial Neural Networks (ANN) [25,38–42]. Several studies
have used FR or modified FR (MFR) model, a data-driven approach based on past landslide
events, to generate landslide susceptibility maps [16,43–45]. On the other hand, satellite
image analysis driven object-based image analysis (OBIA) has become a crucial method
in GIScience [46]. In recent times, the machine-learning methods, namely naïve Bayes,
naïve Bayes trees, were compared to MCDM (Multi-criteria Decision Making) techniques
such as VIKOR, TOPSIS, and SAW. This result indicated higher prediction accuracy of
ML techniques over the expert-based MCDM [20]. Recently, advanced ML methods with
resampling algorithms are increasingly being used for landslide susceptibility assessment
globally [35,47,48]. The ML and MCDM approach, though potent and often precise, must
be considered to exhibit specific weaknesses and uncertainties. Often the shortcoming
includes problems of overlearning, such as the appropriate selection of training sets that
may impact the outcomes. In the context of the present study, some of the significant works
on landslide susceptibility assessment in the road corridor has been carried out using
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contemporary heuristic methods, statistical techniques and machine learning approach
integrated with the Remote Sensing and GIS technique such as frequency ratio, the weight
of evidence (WoE), evidential belief functions, AHP, statistical information value (SIV),
logistic regression, random forest [49–55]. It was also noticed that many of the papers
on road corridors in India adopted the FR and AHP methods for landslide susceptibility
mapping [16,49,51,55].

In the present study, the LSI mapping in the Lesser Himalayan road corridor of Kalsi-
Chakrata was conducted applying the per-pixel-based statistical/heuristic models (such as
modified frequency ratio (MFR) and fuzzy-AHP (FAHP)), and object-based ensemble geon
methods (such as geon MFR and geon FAHP) to delineate the landslide-prone areas. MFR
and AHP/FAHP are popular contemporary techniques among the researchers for LSM in
India particularly in the Himalayas. These LSM methods integrated with the use of low-cost
high-resolution satellite data, and GIS techniques have yielded significant results in the
past [44,56–59]. The MFR is a bi-variate model that helps to delineate the landslide suscep-
tible areas correlating the past landslides and landslide causative factors; therefore, it omits
the subjective biases such as knowledge-based weighted approaches [60–62]. Conversely,
in recent times, advanced statistical methods, such as the FAHP, are presumed to be an
instrumental methodology for MCDM [63]. The traditional AHP method is one of the most
reliable criteria rating methods that use nearly crisp (non-fuzzy) decisions between factors
through pairwise comparison in natural phenomena [16,64,65]. In complex natural systems,
the decision-makers subjective judgments and uncertainties may significantly influence the
process of policymaking. The fuzzy set theory integrated within the framework of AHP,
employing fuzzy membership functions, permits more accurate results through greater
flexibility for addressing the uncertainties and vagueness. We adopted the FAHP method
recommended by Chang [66] using the geospatial technique to generate the LSM, and this
method has been found significant for delineating the landslide susceptible zones in the
Lesser Himalayas [11].

The object-based classification approach such as ‘geons’ based on image segmentation,
on the contrary to the pixel-based approach, offers a more judicious answer for LSM [67,68].
Lang et al. [69] defined “Geons” as homogenous spatial units within a specific time and
space that are driven by the policy and planning requirements for a particular region. The
geon approach semi-automatically demarcates regions by incorporating the knowledge of
experts. Any model can assess natural hazards depending on suitability, however, there
are certain pros and cons associated with their accuracy and applicability over the former
models. This is because the performance of a model varies considerably because of the data
types, structures, and correctness, and hence it’s a challenge for the researchers to select the
appropriate model that can yield the best results for a specific area [70]. In this regard, it
may be noted that the geon approach may be advantageous as it is formulated devoid of
any administrative boundaries.

The study’s primary goal is to compare landslide susceptibility mapping results ob-
tained from the traditional yet straightforward per-pixel methodologies like MFR and
FAHP and the ensemble object-based geons approach. This procedure would help under-
stand which method is more suitable for LSM in the Lesser Himalayan Kalsi-Chakrata
road corridor. This work’s novelty is that it would be the first instance when the geon
model will be attempted to delineate landslide susceptibility for the complex Himalayan
topography as a contemporary LSM technique. Hence, it would be imperative to perceive
if the object-based geon approach produces superior outcomes to the regular per-pixel
approaches for the Himalayan terrain in India.

2. Study Area

The 42 km long road corridor connecting Kalsi with Chakrata lies in the Central
Himalayas. This road corridor is located in the Dehradun district Uttarakhand state in
India (Figure 1). While Chakrata (2118 m height above the mean sea level) is a well-known
tourist place, Kalsi is a tiny cantonment town near the Yamuna. The study area experiences
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three seasons namely winter (October to February), summer (March till June), and monsoon
(June continues till September) with an average annual rainfall of about 1400 cm.
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Figure 1. Location map of the study area.

The general lithology in the area mainly constitutes the Krol belt as the outer sedi-
mentary belt, while the profuse sequences of un-metamorphosed sediments constitute the
inner belt. The Himalayan main boundary fault (MBF) can easily be demarcated through
the road corridor near Kalsi town making the area seismically active. The Kalsi-Chakrata
road is passing through 33 villages and one municipal corporation (Chakrata). The study
area has a total area of about 80 km2 with a population of 19679 and a household of 3961 as
per Census of India, 2011. Cultivation, community forestry, and tourism are some of the
significant livelihoods of the villagers.

The detailed field investigations in the study area to specify debris flow, rock and debris
slide, topple and rockfall, and rock slide as the main categories of rain-induced landslides
(Figure 2a,b). Every year between June and August, due to heavy monsoon rainfall, the
surface soils and rocks become saturated, resulting in many landslides due to slope failures.
The landslides in the study area not only affect the villager’s livelihood through direct
damages to properties and infrastructure, and casualties, but eventually, influence the
economy of the villagers by means of agricultural and business losses (rotten fruits and
vegetables due to closure of transport routes). Such financial losses affect the communities’
livelihood greatly in the study area. Overall, the combined impact attributable to the
newer geologic formation, rugged terrain, heavy monsoonal rain, deep weathering, higher
seismicity, and anthropogenic activities on unstable slopes in the area probably strongly
correlate with the frequent landslides.
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Figure 2. Active landslides along the Kalsi-Chakrata road corridor, (a) Rock Fall between Chapanu
and Sahiya, (b) Amroha landslide site in 2017, retaining wall damaged.

3. Materials and Methods

For performing the LSM, the initial step is to prepare a comprehensive inventory of the
landslide database [71]. The standard methods to make such inventory include extracting
information from the available landslide records or interpreting the higher resolution
satellite data supported by intensive site exploration [7,72,73]. The next important step is
to identify the crucial conditioning factors (geo-environmental factors) that might have
triggered slope failure [74]. Terrain, slope angle, rainfall, lithology, road proximity are
some of the crucial conditioning factors behind frequent landslides [35]. Such conditioning
factors are often correlated with the landslide spatial occurrence using statistical or machine
learning techniques in the predictive landslide models. More efforts have been made in the
present study to prepare thematic conditioning layers in GIS from sources such as higher
resolution satellite data, the latest vintage secondary data, or field survey observations
captured through GPS instruments. A thorough literature review and record validation is a
prerequisite before including data in the predictive hazard models. Table 1 presents the
used in this study. The following sections present the sources of data along with resolution
and vintage and materials used for generating landslide susceptibility maps.

Table 1. Details of thematic landslide conditioning factors.

Thematic Layers Categories Data and Sensor (Reso-
lution/Scale/Vintage) Data Source (Vintage)

Landslide inventory Landslide records

Cartosat Satellite
Image (2.5 m)

National Remote
Sensing Centre (NRSC),

[75]

Linear Imaging
Self-Scanning System IV

(LISS-IV) (5.8 m),
Resourcesat-2

Google Earth
(2001–2017),

Secondary data

Public Works
Department (PWD),
Geological Survey of
India (GSI) portal [4]

DTM Digital terrain model
(DTM)

Cartosat 2.5 m,
LISS IV (5.8 m) NRSC (2017) [75]

Slope

Topographical DTM (10 m) NRSC (2017) [75]
Slope Aspect

Altitude/Elevation

TWI (Topographical
wetness index)

Lithology
Geology Geological map

(1:25,000)
GSI (2015) [4]

Proximity to faults



Remote Sens. 2022, 14, 1953 6 of 29

Table 1. Cont.

Thematic Layers Categories Data and Sensor (Reso-
lution/Scale/Vintage) Data Source (Vintage)

Proximity to drainages
Hydrological

DTM (10 m),
Toposheet (1:50,000)

NRSC (2017), SOI (2010)
[75]

Stream power index
(SPI) DTM (10 m) NRSC (2017) [75]

Rainfall Meteorological
Rainfall records

(past 60 years daily
rainfall data)

Indian Meteorological
Department

(IMD) (1947–2017)
[76]

Soil Soil Soil map (1:25,000)
National Bureau of Soil
Survey (NBSS) (2010)

[77]

Seismicity Seismic

Seismic Zonation map
(BIS), Average shear

wave velocity at 30 m
depth (Vs30)

Bureau of Indian
Standards (BIS) (2002)

[78]
U.S. Geological
Survey (2017)

[79]

NDVI (Normalized
Differential

Vegetation Index)
Vegetation

LISS4 (5.8 m) NRSC (2017) [75]Land-use/
Land-cover (LULC) Anthropogenic

Proximity to road

3.1. Mapping of Landslide Inventory

Mapping of Landslide inventory data presents the spatial distribution of past land-
slides and helps to identify various conditioning factors behind the incidence of a landslide.
We used two primary sources to prepare the landslide inventory in this study: (i) past land-
slide data acquired from Uttarakhand PWD and (ii) marking of historical landslide scars
from satellite images (LISS-IV and Google Earth satellite images). The collected records
were mapped precisely after substantiation through extensive field surveys using the geo-
tagged camera and GPS (Global Positioning System) device, laboratory investigations, and
expert review. The field survey was conducted several times by the author between 2016
and 2020 covering the aspects of landslide inventory validation, collection of data on past
landslide damages, investigation of possible triggering factors, socio-economic survey. The
most common types of landslides in this area include debris slide, debris flow, rock slide,
and rockfall (Figure 2). Since, there is no standard system for picking the training and test
dataset for model building and validation, respectively, however, the typically used ratio of
70/30 has been adopted for training and validation samples [65,72]. Finally, the revised
landslide inventory contained 107 landslide sites with descriptions of the past events and
attributes such as size, length, etc. (Figure 3). The records were further randomly divided
into 75 sites as a training dataset to develop the hazard model. About 71% of the training
dataset was debris slide and flow, while 18% was rock slide, 11% was rock fall and topple.
The 32 number remaining landslide inventories were considered for testing of model’s
precision, of which about 76% was debris slide and flow while the remaining 14% and 10%
were rock slide and rock fall, respectively [11,58].

3.2. Landslide Conditioning Factors

Landslide conditioning factors essentially characterize the activating mechanism that
possibly influences the landslide events in totality. Therefore, these are the factors that
trigger the landslide events in combination in a complex natural environment. Based on
specific site conditions, the number of these factors may differ, and the factors are chosen by
a thorough literature review [10,64,80–83]. Their classification system and data acquisition
process are directly associated with the nature of the conditioning factors and the related
environment, their different natures, and regional environmental characteristics [84,85]. In
this study, considering the complex hydro-geological and topographic setup of the Lesser
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Himalayas, 14 such landslide conditioning factors were carefully chosen for the hazard
models based on field investigation, literature, past experiences, and geospatial data avail-
able for the area [11,58,80]. These are slope angle, slope aspect, altitude, lithology, rainfall,
NDVI, soil, seismicity, distance from road/drainage/fault, LULC, TWI, and SPI. Some of
the above thematic layers were prepared from satellite images, while the remaining layers
were generated from secondary sources at 10 m resolution using ArcGIS 10.1 software.
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The slope angle profoundly impacts the shear strength directly as the steeper slopes
frequently generate more giant landslides as more materials are weathered and fragmented
on such slopes [16,35,58,81,86]. The slope angle thematic layer in this study was prepared
from Cartosat DTM. The slope angle layer was further divided into five distinct slope
categories (<10◦, 10–20◦, 20–35◦, 35–50◦and, >50◦) applying Jenk’s Natural Breaks method;
(Figure 4a). The slope aspect map, generated in ArcGIS by processing the Cartosat DTM,
was classified into nine distinct sub-classes (Figure 4b). The difference in elevation or
altitude may be interrelated with different environmental situations due to changes in
rainfall, vegetation types, etc. The altitude thematic layer prepared from the DTM was
categorized into five classes varying between 39 m near Kalsi and 2660 m near Chakrata
(Figure 4c). Since no rainfall station is located in the said road corridor, the daily rainfall
records for the eight surrounding district weather stations were obtained from IMD between
1947 and 2017 (past 70 years). The mean annual rainfall thematic layer was generated
using the inverse distance weighted (IDW) interpolation method and categorized into
five rainfall classes (Figure 4d). The geological map from GSI was used to prepare the
lithological thematic data layer at 1:25,000 scale having eight distinct categories. Most of
the past landslides happened in the areas under the Chandpur Formation and Mandhali-
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Chakrata Formation from the lithological data. These are the formation along the road
corridor that contains extensively weathered greywacke type of lithology (Figure 4e).

NDVI can significantly influence the occurrence of landslides as the steeper slopes lack-
ing vegetation cover is more susceptible to erosion and slope failures [11,16,18]. The NDVI
thematic layer in this study was prepared in ArcGIS software from LISS-IV satellite data.
The NDVI thematic layer was then classified into five categories: −0.24–0.19, 0.19–0.31,
0.31–0.39, 0.39–0.48 and 0.48–0.77 (Figure 4f). The soil map of NBSS, India, was used to
generate the thematic layer for soil. Four soil categories were generated as thematic layers
based on the soil characteristics (soil texture, morphology, drainage condition). The analysis
of the soil thematic layer indicates that the areas covered by coarse loamy soils on steep
slopes (medium shallow, highly drained) experience more frequent landslides than the
other classes (Figure 4g). Following the NRSC classification scheme, the LULC thematic
layer was prepared after due validation and categorized into 14 LULC classes for the study
area (Figure 4h). The road spatial data for the area was captured from LISS-IV data in
ArcGIS software. It was the distance from the road that was calculated using ArcGIS soft-
ware at every 100 m interval between 0 m and >500 m distance categories (Figure 4i) [11].
Similarly, to determine the effect of streams on the slopes, five drainage proximity cate-
gories were identified, each 100 m wide (Figure 4j). The tectonically active Himalayan Main
Boundary Fault (MBF) has been observed to pass through the Kalsi-Chakrata road corridor.
We have captured the major faults from the GSI geological map. The nearness to such
a great fault zone may have a significant impact on the landslide occurrence. Five fault
buffer zones (each 100 m wide) were generated (Figure 4k). The influence of seismicity on
landslides is another critical factor considered in the Lesser Himalayas’ landslide hazard
models [11]. The seismicity thematic layer was generated by capturing details from BIS
Seismic Zonation atlas in GIS, modified after USGS Vs30 data. Based on Jenk’s natural
break method, the seismicity layer was categorized into five classes showing peak ground
acceleration values ranging from 3.5 m/s2 to 3.84 m/s2 (Figure 4l). TWI describes the effect
of topography by detecting the water saturation areas having low slope gradient larger
catchment. The output TWI was divided into 0–4, 4–8, 8–12, and 12–14 (Figure 4m). SPI
data represents the erosive power of the streams. This thematic layer was calculated from
the DTM and classified into two classes of 0–10 and 10–15 (Figure 4n) [11,16].

3.3. Landslide Susceptibility Mapping (LSM)

The index weights for selected landslide conditioning factors in this study were cal-
culated through the Modified Frequency Ratio (MFR), and the fuzzy Analytic Hierarchy
Process (FAHP) models applying geospatial techniques. Figure 5 illustrates the landslide
susceptibility assessment methodology adopted along the Kalsi-Chakrata road corridor
at 10 m × 10 m grid cells. The first step towards developing the landslide hazard models
involves inventorying the past landslide events. Next, based on a thorough literature
survey, the thematic layers were generated for the landslide conditioning factors. The
thematic layers for 14 landslide conditioning factors were generated fusing GIS techniques
for topographic, hydrologic, geologic, and anthropogenic elements. Using the selected
contemporary statistical models, i.e., the MFR model and FAHP model, the LSI was cal-
culated in GIS software following Equation (1), and finally, the validation of the landslide
susceptibility maps of both the analysis was performed through ROC (Receiver Operating
Characteristic) method using the training datasets.

LSI =
n

∑
1

W and W = (w f j × wcij) (1)

where, LSI = Landslide susceptibility index, W = Score of each class of a conditioning factor,
′w f ′ = Landslide factor criteria weight for factor ′j′, and ′wc′ = Criteria weight of class ′i′
under conditioning factor ′j′.

Using integrated RS and GIS technique, the LSI mapping for the models were carried
out through the following steps:
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(1) Landslide inventory preparation
(2) Identification of conditioning factors for landslide and generation of thematic layers
(3) Overlay of raster layers, conditioning factors, and past landslide events
(4) Calculation of FR values weightages/Computation of AHP weightages for the condi-

tioning factors based on landslide cells and non-landslide occurrence cells.
(5) Calculation of MFR by normalizing the FR values/Computation of FAHP normalized

weightages at the per-pixel level
(6) Generation of LSI maps by aggregating MFR/FAHP values
(7) Image segmentation using geons and aggregation of landslide susceptible zones
(8) Generation of object-based landslide susceptible zones applying geons approach
(9) Validation of the model results (refer to Section 5 for details)
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(i) rainfall, (j) seismicity, (k) distance to road, (l) distance to faults, (m) TWI and (n) SPI.

3.3.1. Weighting Approaches
Modified Frequency Ratio (MFR) Model

The Frequency Ratio is frequently and effectively applied leading probability model
for Landslide Susceptibility Index (LSI) mapping [58,65,86]. The FR model is advantageous
over many other LSI models as it can be implemented quickly, and its result shows a close
resemblance with the actual situation on the ground [16]. The FR model is built on observed
spatial associations between landslide conditioning factors and the occurrence of landslides
in the past. Anticipating the hillside instability, the determination of the dependent variable
is greatly influenced by the more independent variables [87].

In this study, the prejudice issue of the traditional FR approach has been rectified
using a modified method that radically increases the continuity of the FR weighted values.
The modified frequency ratio or MFR model is based on the factor value that can reveal
the fluctuation of frequency ratio values due to categorization and can smoothen the
spatial discontinuities [88].
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Figure 5. Methodology adopted for this study.

First, the calculation for FR values is carried out using the conventional method
following Equation (2). For every landslide conditioning factor, FR value is calculated by
the following formula after [72]:

FRm,n =
Tp(Sm,n)/ ∑ Tp(Sm,n)

Tp(Nm,n)/ ∑ Tp(Nm,n)
(2)

where, FRm,n = FR value of class n in factor m; Tp(Sm,n) is the pixel count of landslide
occurrence within class n in factor m; Tp(Nm,n) is the pixel count of class n in factor m.

Now, applying the concept of MFR as shown in Equation (5), the ratios obtained in
Equation (2) above are normalized to a range of 0–1. The RF (relative frequency) has been
estimated using the following method for the ith class [89,90]:

RFi =
FRi

∑ FR
=

The FR o f the ith class
∑ FR o f the class

(3)

Finally, the landslide susceptibility index (LSI) map was calculated using the MFR
model applying the following equation by aggregating RF values of each factor [16,29]
(Equation (4)). In an area, the higher landslide susceptibility is indicated by higher LSI and
vice versa.

LSI = ∑ RF (4)

Fuzzy Analytic Hierarchy (FAHP) Process

The FAHP technique is an advanced MCDM statistical technique that implants the
fuzzy theory within the framework of the traditional Analytic Hierarchy Process (AHP)
developed by Saaty [65,91,92]. The concept of FAHP was first introduced by Laarhoven and
Pedrycz [93]. The AHP method is primarily deployed in nearly crisp (non-fuzzy) decisions
and does not consider the uncertainties associated with selecting pairwise comparisons.
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In contrast, the FAHP model, in its place of AHP based definite ratings, allows picking
intermediate pairwise comparison ratings for factors [94–96]. FAHP has been observed
to depict better human skills, decisions, and rationale considering the complications in
the natural systems [63,97]. The Chang’s method of FAHP [66] was adopted to assess the
landslide susceptibility through the following steps-

(1) Development of hierarchical structure: A judgment matrix was constructed for pair-
wise comparison of the linguistic variables on a scale of 1 to 9 where value 1 signifies
‘equally important, while values of 3, 5, 7 and 9 denote ‘slightly important, ‘important,
‘strongly important’ and ‘extremely important’ hierarchies, respectively. The scale
values, i.e., 2, 4, 6, 8, represented intermediate values between 1 and 3, 3 and 5, 5 and 7,
7 and 9, respectively. The decision-makers/scholars provided their judgments on
a fuzzy triangular scale for selected criteria [11,98]. The consistency of the matrix
judgments was thoroughly checked.

(2) Degree of membership and fuzzy matrix calculation: In this step, the scores of pairwise
comparisons were converted into linguistic variables for determining the alternatives
under the fuzzy environment.

(3) Computation of degree of possibility value: The fuzzy index weights, also known as
degree of possibility value, were calculated at this step.

(4) Normalized fuzzy decision matrix: The normalized weights were calculated based on
the maximum likelihood function.

3.3.2. Aggregation Approaches for Landslide Susceptibility Mapping
Geons (Object-Based Aggregation)

The resultant weights for various landslide factors were added at the pixel level in
GIS software to determine the weighted LSI sum using the following equation,

LSI =
n

∑
t=1

Wt wst (5)

where, n shows the number of parameters; for conditioning factor ‘t’, Wt and wst depict the
normalized FAHP value and sub-class ′s′ weighted value.

The word “geon” comes from the Greek gē (Γ
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) = lan, earth, and the suffix -on for
anything existing. Geons, according to Lang et al., are a form of territory that is delineated
semi-automatically using expert knowledge. These zones are scaled and uniform in re-
sponse to a phenomenon that is a source of policy concern in space [69]. Geons are generally
separate spatial units with varied space-time occurrences that are homogeneous [65]. It
defines geon as a spatial entity that is scale-dependent. Through vector encoding, such an
object has stability qualities such as decreased inherent variance and gradients towards
the outside [69,99].

To accomplish domain-specific (i.e., based on experts) and semi-automatic regionaliza-
tion, the geon approach operates in a bipartite course. In general, geons use a complex map-
ping method to create composite objects, which includes data analytic and taxonomic proce-
dures [69,100]. Image segmentation based on spatial continuousness and certain homogene-
ity criteria is used in the geon technique to conduct multi-component regionalization [65].

Multi-resolution segmentation (MRS) is a widely used approach in object-based anal-
ysis (OBIA) that constructs homogeneous picture segments inside a tiered hierarchy of
scaled representations [101,102]. MRS starts at the pixel level and aggregates into objects of
various forms, sizes, and attributes until it reaches a homogeneity threshold determined
by the user. The accumulation of spectral information in this manner helps to reduce the
loss of details [103]. Making geons has the goal of preparing a geographical phenomena
that are connected to policy and adaptively validated by experts. As a result, they make it
easier to see, forecast, and comprehend the geographical distribution of landslide suscepti-
bility in a given area, as well as help in improved mitigation planning [104]. eCognition
software was used to segment and parameterize the images, and the landslide conditioning
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factors were transformed to 8-bit data (GeoTIFF format) with cell values standardized
between 0 and 255. The normalization was carried out based on Equation (6):

Vi =
V−Vmin

Vmax−Vmin
∗ 255 (6)

where, Vi is the normalized 8-bit value, V is the landslide conditioning factor value, Vmin
and Vmax present the minimum value and the maximum value of the entire data range for
the V layer.

In this regard, it should be highlighted that the scaling parameter (SP) choices are the
primary source of concern in MRS. The Assessment of Scale Parameter tool (ESP) uses a
single layer to find the optimum scales produced on a local variance graph [104]. This ESP2
is a fully automated approach for selecting multiple-layer scale settings [105]. In this study,
we used the eCognition Developer software to acquire the optimal scale values applying
the MRS concept. The finest scale was used for generating the geons.

3.4. Model Validation and Evaluation

In any LSM analysis, model validation and analysis of the results are crucial [21].
Therefore, the resulting LSM from the selected models was compared against the landslide
test data (30% validation datasets) to determine correctness. This method intends to assess
the effectiveness of each LSM model, particularly whether those can correctly predict the
landslide susceptible areas [65,106].

3.4.1. Receiver Operating Characteristics (ROC)

We validated the four LSM output derived from the MFR, FAHP, geon MFR and geon
FAHP models through the ROC curve by means of validation or test data by correlating the
false alarm probability against the detected probability [27,107]. The AUC (area under the
curve) analysis specifies the degree that indicates the model’s LSM output precision. More
the AUC values entitle a higher accuracy of the model adopted and vice versa [11,65].

3.4.2. R-Index (Relative Landslide Density)

The model’s prediction capability in this study was also verified through the R-
index method. This validation method indicates the spatial correlation between land-
slide test records and the LSI values [11,27]. The R-index was calculated through the
following equation-

R = (ai/Ai)/∑(ai/Ai) × 100 (7)

where,
Ai = the % of landslide susceptibility area in each LSM class;
ai = the % of landslide counts in each LSM class.

4. Results and Analysis
4.1. Per-Pixel Based MFR and FAHP Analysis

As illustrated in the methodology, the final weightages for the MFR and FAHP were
calculated for each conditioning factor after normalization (Table 2). By integrating the final
factor weightages for MFR and FAHP at the per-pixel level in ArcGIS software, the LSM
was generated. (Figure 5). The main focus of adopting the MFR and FAHP approaches
is to emphasize the spatial LSM for the study area for future developmental planning
and mitigation.

In the absence of a standard taxonomy for classifying the LSI values, the output of
both MFR and FAHP models were mapped through Jenk’s Natural Breaks method into
Very Low, Low, Moderate, High, and Very High landslide susceptibility classes. Higher LSI
values contain the areas falling into higher landslide susceptibility zones and vice versa. To
better predict the probability of future landslides spatially, this study indicates the landslide
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conditioning factors and their connection with each other in triggering the landslides in the
study area.

The landslide susceptibility assessment obtained from the MFR approach shows that
very high and high landslide susceptible zones cover about 9.9 km2 (12%) and 20.9 km2

(25%) of the road corridor, respectively (Table 2). Further, it has also been noted that LSI
zones having moderate landslide susceptibility probability cover about 22.4 km2 (27%)
of the total area. Therefore, future landslides may be more likely in similar areas with
moderate susceptibility without intermittent observations, sustainable approach, and future
investigation.

The output of the FAHP model shows that the areas under high and very high sus-
ceptibility cover about 45.23 km2 (55% of the study area). In contrast, 17.7 km2 (21%) of
the total area falls under the very high LSI category. The moderate landslide susceptible
zone covers about 17.6% (14.5 km2) of the total village areas. In particular, the moderately
susceptible zones without appropriate mitigation measures may have a higher possibility
of future landslides (Figure 6).

Further, the spatial assessment at the village level was performed to recognize the
nature of the landslide hazard (. Such an approach helps to mitigate landslide hazard risks
and minimize the damages and losses locally. The analysis of the MFR model showed that
Dadhau village and Jhutaya village in the study area are the utmost vulnerable to potential
landslide hazards, with about 65% and 53% of their respective areas being contained by
very high LSI zone. Apart from these, the villages having greater exposure to very high
landslide susceptibility are Chapanu (64%), Pajiya (52%), Malaitha (39%), and Alsi (38%).
Considering combined areas under both very high and high landslide susceptibility zones,
Dadhau village has more than 90% of its geographical area under higher landslide hazards,
followed by Chapanu (88%), Pajiya (87%), Sakani (85%), and Bantar (81%). For the FAHP
model, it was observed that Nevi village is most susceptible to landslides. This village
is near Sahiya town, with 62% of its areas under very high landslide hazard. Chapanu,
Kanbua, Pajiya, and Kakari are among the other villages with a higher percentage of village
areas under the very high landslide hazard zones. Considering both the MFR and FAHP
models, the analysis showed that Dadhau, Nevi, Jhutaya, Chapanu, Pajiya, and Dhaira
villages are more susceptible to very high landslide hazards.

4.2. Per-Pixel and Object-Based Geons Result Analysis

As described in the methodology section of this paper, the output LSI from the MFR
and FAHP approaches were processed using the segmentation algorithm of “geons” to
generate the homogenous LSM units in eCognition software. Figures 7 and 8 presents the
spatial analysis of the MFR geons and FAHP geons output for the Kalsi-Chakrata road
corridor. Similar to the LSM classification from the per-pixel approach, the thematic LSM
layer from geon was also categorized into five distinct classes based on Jenk’s natural
break technique.

The landslide susceptibility assessment obtained from the geon MFR approach shows
that about 5.69 km2 (6.9%) and 25.56 km2 (30.9%) fall in very high and high out of the
whole study area LSI zones, respectively. Further, it has been noted that the moderately
susceptible zone accounts for about 21.55 km2 (26%) of the total area. Therefore, these
areas might experience landslide events in the future without appropriate developmental
planning, sustainable approach, and in-depth investigation (Figure 7).

The output of the geon FAHP approach shows that out of the whole study area, about
13.74 km2 (16.6%) and 20.70 km2 (25%) areas have been categorized into higher landslide
susceptibility (under very high and highly susceptible zones), respectively. Further, about
22.36 km2 (27%) area falls within moderately susceptible zones as per the geon FAHP model
(Figure 7). It has also been observed that both geon MFR and geon FAHP approaches depict
similarity in the delineation of very low landslide susceptible areas (9.2% of the whole areas
for MFR and 8.6% of the entire study area for FAHP).
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Table 2. Normalized weightages for MFR and FAHP models.

Factor Unit Class
Class Landslide Frequency

Ratio (FR) MFR
FAHP Consistency

Ratio% % Weights Factor Weights

Slope Degree

0–10 34% 1% 0.03 0 0

0.11 0.0067

10–20 29% 7% 0.23 0.02 0.01

20–35 4% 2% 0.56 0.06 0.03

35–50 27% 46% 1.74 0.18 0.03

50–89 6% 44% 7.26 0.74 0.04

Aspect Class

Flat 5% 0% 0 0 0.003

0.093 0.003

North 13% 0% 0 0 0.01

NE and NW 33% 1% 0.02 0 0.014

S and SW 5% 54% 10.18 0.82 0.025

E and SE 23% 9% 0.38 0.03 0.018

SE 20% 37% 1.8 0.15 0.023

39–500 8% 0% 0.014 0 0.006

Altitude Meter

500–1000 21% 44% 2.056 0.64 0.008

0.055 0.002
1000–1500 51% 56% 1.103 0.34 0.013

1500–2000 8% 0% 0.032 0.01 0.013

2000–2660 12% 0% 0 0 0.015

Road Buffer Meter

<100 53% 60% 1.12 0.15 0.03

0.09 0.004

100–200 6% 21% 3.54 0.49 0.03

200–300 7% 16% 2.28 0.31 0.02

300–400 9% 3% 0.33 0.05 0.01

400–500 11% 0% 0 0 0

>500 14% 0% 0.02 0 0
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Table 2. Cont.

Factor Unit Class
Class Landslide Frequency

Ratio (FR) MFR
FAHP Consistency

Ratio% % Weights Factor Weights

Drainage Buffer Meter

<100 31% 17% 0.539 0.1 0.031

0.077 0.003

100–200 14% 24% 1.704 0.31 0.026

200–300 16% 20% 1.22 0.22 0.016

300–400 18% 17% 0.96 0.17 0.004

>400 20% 22% 1.079 0.2 0

Seismicity m/s2

3.5–3.58 17% 16% 0.96 0.18 0

0.03 0.002

3.59–3.64 19% 53% 2.76 0.52 0

3.65–3.71 19% 11% 0.59 0.11 0.01

3.72–3.77 20% 20% 0.98 0.19 0.01

3.78–3.84 25% 0% 0 0 0.01

SPI Ratio
10–20 86% 93% 1.08 0.67 0.007

0.01 0.002
0–10 14% 7% 0.53 0.33 0.003

Distance to
faults(m) Meter

300–400 32% 21% 0.66 0.14 0.03

0.069 0.003

<100 7% 5% 0.72 0.16 0.024

100–200 15% 2% 0.13 0.03 0.013

200–300 23% 8% 0.37 0.08 0.002

>400 23% 63% 2.73 0.59 0

Rainfall mm

1297–1325 24% 0% 0 0 0.002

0.104 0.003

1326–1350 17% 6% 0.37 0.07 0.011

1351–1374 20% 19% 0.94 0.19 0.022

1375- 1397 17% 14% 0.81 0.17 0.032

1398–1419 22% 61% 2.8 0.57 0.037

TWI Ratio

0–4 71% 83% 1.16 0.51 0.019

0.029 0.004
4–8 25% 16% 0.65 0.29 0.01

8–12 2% 1% 0.29 0.13 0

12–16 2% 0% 0.16 0.07 0
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Table 2. Cont.

Factor Unit Class
Class Landslide Frequency

Ratio (FR) MFR
FAHP Consistency

Ratio% % Weights Factor Weights

NDVI Ratio

0.50–0.76 11% 0% 0.02 0 0

0.099 0.005

0.40–0.50 21% 0% 0.02 0 0.011

0.3–0.40 36% 9% 0.26 0.02 0.021

0.2–0.3 28% 57% 2.01 0.16 0.03

<0.20 3% 33% 10.52 0.82 0.037

Soil Class

Moderately shallow loamy
skeletal soils (excessively

drained found on moderately
steep slopes)

14% 0% 0.02 0.01 0.001

0.047 0.002

Moderately deep loamy
skeletal soils (excessively

drained found on moderately
steep slopes)

18% 0% 0 0 0.009

Moderately deep coarse loamy
soils (well drained found on

moderate slopes)
3% 3% 0.89 0.37 0.016

Moderately shallow coarse
loamy soils (excessively

drained found on steep slopes)
65% 97% 1.5 0.62 0.021

Lithology Class

Slates (carbonaceous),
Quartzite, Stomatolite,

Dolomite, and Limestone,
micaceous sand with pebbles

9% 3% 0.29 0.15 0.028

0.104 0.004
Carbonaceous shale, Slate,

Greywacke, Clay, Sand, Gravel
and Boulders

29% 6% 0.2 0.1 0.007

Greywacke, Quartzite,
Dolomite, Shale,

Dolerite, Limestone,
greywacke Conglomerate

62% 92% 1.48 0.75 0.069
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Table 2. Cont.

Factor Unit Class
Class Landslide Frequency

Ratio (FR) MFR
FAHP Consistency

Ratio% % Weights Factor Weights

LULC Class

River 0% 0% 0 0 0

0.083 0.007

Sandy area 0% 0% 0 0 0.001

Settlement 1% 0% 0 0 0

Dense Veg 34% 0% 0.01 0 0.007

Plantation 0% 0% 0 0 0.008

Agriculture 9% 0% 0 0 0.003

Sparse Veg 17% 13% 0.76 0.02 0.013

Rocky and Barren land 0% 5% 22.1 0.63 0.019

Mining 0% 0% 9.95 0.29 0.02

Open and Scrub land 39% 82% 2.08 0.06 0.012
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The village-level landslide susceptibility analysis for the geon MFR model showed
that Bantar village is the most susceptible to potential landslides, with 88.34% of its area
within the very high LSI class. The next highly susceptible village on the list is Thurau
village, with 50.58% of its area within a very high LSI class. On the other hand, the village
level landslide hazard analysis of the geon FAHP model showed that Dhaira village and
Sairi village, located between Kalsi and Sahiya, are very highly susceptible, with 77.86%
and 73.81% of respective village areas falling in that zone.

The geon MFR model output elucidates that among the other villages, Malaitha (47%),
Pajiya (47%), and Bhugtari (21%) villages have a greater susceptibility to landslide hazards.
Considering collective areas contained by both high and very high LSI zones, Bantar, Pajiya,
Thurau, and Alsi have entire village geographical area (100%) under this hazard category,
followed by Sakani (99%), Malaitha (91%), and Dadhau (90%). On the other hand, the
geon FAHP model output reveals six villages, namely Dhaira, Sairi, Chapanu, Jhutaya,
Thurau, and Amroha, where the entire village comes under high and very high LSI zones.
Among the other villages having higher landslide susceptible areas are Dadhau, River
Range and Bantar.

4.3. Model Validation and Evaluation
4.3.1. Receiver Operating Characteristics (ROC)

As discussed in the Methodology section of this paper, we validated the four LSM
output derived from the MFR, FAHP, geon MFR and geon FAHP models through the
ROC curve determining the AUC (area under the curve) for each model. The AUC value
from the pixel-based MFR model and the FAHP model was 84.1% and 91.0%, respectively,
while geon-based MFR and FAHP models show an AUC value of 88.7% and 93.4%, re-
spectively, at 95% confidence level. The validation results indicate higher accuracy of the
geon-based models over the MFR and FAHP models in classifying the areas of existing
landslides (Figure 9).
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4.3.2. R-Index (Relative Landslide Density)

The model’s prediction capability was also verified through the R-index method.
Figure 10 below shows the analysis of the R-index plotted as a bar chart to graphically
show the consistency of the model’s vulnerability assessment. The analysis indicates good
consistency of the model results for the defined LSI classes in the present study.
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5. Discussion

This section presents the potential of using the geons concept for LSI mapping in the
Lesser Himalayas, applying the per-pixel and object-based aggregation approach. The
primary compulsion was to delineate the landslide susceptible areas that are unrestricted by
any definite administrative boundaries. As a result, the output susceptibility maps would
generate reduced biases developed from artificial (false) limits in an area. Specifically, it
indicates the capability of geons to transform continuous spatial data into discrete entities
to monitor changes in a specific area. Furthermore, to better understand the mechanism
behind the incidence of landslides at a local/regional scale, it is imperative to be familiar
with the influence of the landslide conditioning factors at each site.

To better understand the objective of the present study and its adaptability, it would
be imperative to briefly overview the landslide studies especially the rainfall-induced
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landslides investigations in the Himalayas. A study by [108] indicated that about 15% of
the global rainfall-induced significant landslides occurred in Indian Himalayas between
2004–2017. Over the years, a large number of landslide research works have been car-
ried out by scientists and researchers applying techniques ranging from conventional to
advanced machine learning methods [109]. Some of these studies focused on the investi-
gation of the main landslide events especially in the Uttarakhand and Himachal Pradesh
regions [110–114]. Further, the studies on land-slide were extended to landslide identifi-
cation, landslide forecasting, lake damming landslides, and, landslides under the impact
of climate change by some of the authors [109]. The majority of the studies on the Hi-
malayas in recent years carried out landslide susceptibility mapping (also commonly called
landslide hazard zonation mapping) applying qualitative, deterministic, and quantitative
techniques. Among these studies, some of the notable ones include knowledge-based qual-
itative methods [113,115], the deterministic analysis of physical and mechanical properties
of the landslide conditioning factors [116,117]. There are also popular semi-quantitative
methods based on weights such as AHP (one of the most used methods for Himalayan
terrain), weighted linear approaches applied for LSM studies in the Himalayas [118]. As
mentioned in the Introduction section of this paper, the quantitative techniques ranging
from bi-variate (e.g., frequency ratio, weight of evidence, statistical information value, etc.),
multivariate statistical models (e.g., logistic regression) to recent machine learning (ML),
support vector machine (SVM) and, artificial neural network (ANN) were adopted by
several scholars in their research on the Himalayan landslides. In the past two decades,
there has been a few remarkable papers on LSM applying the quantitative techniques
published in various journals [5,27,65,119–127].

The geons model in a contemporary quantitative LSM model that allows the users
to understand the impact of the conditioning factors on the output LSI values. Hence,
geons enable better landslide susceptibility management by distinguishing spatial imple-
mentation measures for planners and decision-makers. To make a fair judgment about
the efficacy of the LSM models selected for a particular area, comparative studies must
evaluate the model performance under the same condition [65,128]. The ROC validation
results for LSM output from the MFR, FAHP, geon MFR, and geon FAHP models stipulate
that the Geons approach based on the ensemble concept produced better accuracy than the
pixel-based LSM techniques. The FAHP approach indicates better predictability than the
MFR approach, even when using the ensemble geons method [11]. The inclusion of the
fuzzy technique in AHP reduced the biases in the AHP model and enhanced the overall
predictability of the model, at least in the present study. Indeed, among the per-pixel
models adopted, the FAHP model shows better prediction capability over the MFR model.
While the MFR approach is directly based on the correlation between the dependent and
independent variables, the FAHP approach is more multifaceted. It needs in-depth subject
understanding and skillful judgments to decide the factor weights. In fact, the FAHP model
allows the evaluation of the incessant independent variables [65,129].

Studies focus on various approaches and models for LSM in diverse regions, and the
outcome of the models vary considerably, resulting in diverse outputs and performances.
This study selected the MFR and FAHP models such as the two advanced versions of
the traditional per-pixel-based weightage methods to better compare the state-of-the-art
ensemble aggregation models as geons (object-based). While the data-oriented MFR method
is easier to apply and a simpler approach, the MCDM-based FAHP involves more domain
expertise and expert judgement to assign weightages for each landslide conditioning factor.
The MFR approach evaluates the relationship between the landslide conditioning factors in
a discrete form (comparing the connection between one dependent variable with several
independent variables). On the other hand, in addition to the distinct forms, the FAHP
approach allows evaluation of continuous independent variables. The same may have
attributed to the quite diverse spatial distribution of the landslide susceptibilities in the
study area (Figures 6 and 7).
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As presented in Table 2, most of the weightages assigned for the sub-criteria in both
MFR and FAHP models are diverse in absolute expressions, but they depict likenesses in
some classes. For example, the result obtained from the FAHP model describes slope as
the utmost influential factor that influences the occurrence of landslides in the study area,
having a FAHP weight of 0.110 (Table 2). Based on the obtained weights in descending
order, the priorities next to slope are (ii) rainfall, (iii) lithology, (iv) NDVI, (v) aspect, (vi)
road proximity, (vii) LULC, (viii) drainage proximity, (ix) fault proximity, (x) altitude, (xi)
soil, (xii) seismicity, (xiii) TWI, and (ix) SPI. Indeed, the FAHP indicates that slope angle
greater than 50◦ is amongst the most significant conditioning factors used in the model
building. Similarly, some of the significant conditioning factors sub-factors as per their
weightages are—NDVI value < 0.2, average annual rainfall >1450 mm, road/drainage/fault
proximity within 100 m distance and, lithology sub-class (L1) containing the higher volume
of greywacke materials.

The methods adopted in this study may be adopted in different geographical settings
with a suitable set of landslide conditioning factors. Such a study will help to compare
and assess the model’s applicability spatially. Since the performance of a model often
varies with the resolution and detailing of the conditioning factors for a region, it may be
needed to select a higher resolution and more significant conditioning factors for superior
model predictability [16,65,130]. The current geons-based landslide susceptibility approach
adopted here can be extended to use in other areas of the globe to test the influence of
the conditioning factors under varying conditions that may affect the technique used and
its accuracy. The findings of the present work can be utilized by various government
and non-government organizations responsible for the development, management, and
mitigation of landslide vulnerability in hilly terrains. In the future, the geons method may
be integrated with artificial intelligence, and machine learning methods to inspect if the
performance of the combined models yield better performance over the other geons based
approach adopted in other similar studies.

6. Conclusions

The present study is the first instance of the object-based ensemble geons approach
for LSM in the Himalayas mountain range. To date, no in-depth landslide susceptibility
analysis has been carried out using ensemble techniques for the mountainous Lesser
Himalayan Kalsi-Chakrata road corridor. Therefore, referring to the output of the geon-
based models, the decision-makers and regional planners may significantly benefit in
selecting the appropriate risk mitigation procedures to counter the potential damages and
losses from landslides. The study reveals that the advanced statistical models integrated
with RS and GIS methods may be substantial in the spatial prediction of potential landslide
occurrence in the said road corridor. The results assessed in the study indicated that
all the four models of MFR, FAHP, geon MFR, and geon FAHP performed reasonably
well in restricting the landslide susceptible zones. The AUC value in the ROC analysis
predicts 93.4% accuracy of the geon FAHP model, which is superior to the three other
selected models in this study. The overlay analysis indicates about 41% of the total area
within very high and high landslide hazard zones. The validation outcomes indicate
that the object-based models can yield higher accuracy compared to the per-pixel based
MFR and FAHP approaches, and geon represents meaningful units from planning and
mitigation perspective.

Furthermore, by correlating the landslide inventory with the landslide conditioning
or influencing factors, we may conclude that rocky and barren areas (covered with sparse
vegetation) on the steeper slopes (usually more than 50◦) with greywacke type of rocks
are more prone to future landslides. Moreover, the heavy torrential rain in the Lesser
Himalayan terrain combined with the increased construction activities and vehicular
movements has undoubtedly intensified landslides along the road corridor.

The output LSI map in this study was generated from the selected models based on
the point location of landslides marked in the field; however, the result might differ if we
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consider the landslide inventory drawn as polygon (area). In the future, the geon approach
can be integrated with machine learning methods and deep learning techniques.

The present study presents the use of geon as an object-based ensemble approach for
landslide susceptibility mapping in the Lesser Himalayas. Hence, the results of this research
may be valuable for the planners and local authorities in selecting suitable mitigation
measures to minimize the potential landslide hazard damages and losses. This study may
offer a substantial prediction procedure for the decision-makers and disaster management
officials, and this research may be extended to other road corridors in the Lesser Himalayas
similar to the Kalsi-Chakrata area of Uttarakhand.
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