

Open access • Posted Content • DOI:10.1101/2021.01.12.426341

Predicting lifestyle and host from positive selection data and genome properties in oomycetes — Source link [2]

Daniel Gómez-Pérez, Eric Kemen

Institutions: University of Tübingen

Published on: 13 Jan 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Oomycete

Related papers:

- · Oomycete metabolism is highly dynamic and reflects lifestyle adaptations
- · Host-microbe interactions: The response of fungal and oomycete pathogens to the host environment
- · Genomes of obligate plant pathogens reveal adaptations for obligate parasitism
- · Horizontal Gene Transfer in Eukaryotic Plant Pathogens
- Seasons of change: Mechanisms of genome evolution in human fungal pathogens.

Gómez-Pérez and Kemen

RESEARCH

Predicting lifestyle and host from positive selection data and genome properties in oomycetes

Daniel Gómez-Pérez* and Eric Kemen

*Correspondence: daniel.gomezperez@uni-tuebingen.de Zentrum für Molekularbiologie der Pflanzen, Auf der Morgenstelle 32, 72076 Tübingen, Germany Full list of author information is available at the end of the article

Abstract

Background: Host and niche shifts are a source of genomic and phenotypic diversification as evidenced in parasitism. Exemplary is core metabolism reduction as parasites adapt to a particular host, while the accessory genome often maintains a high degree of diversification. However, selective pressures acting on the genome of organisms that have undergone lifestyle or host change have not been fully investigated.

Results: Here, we developed a comparative genomics approach to study underlying adaptive trends in oomycetes, a eukaryotic phylum with a broad range of economically important plant and animal parasitic lifestyles. Our analysis reveals converging evolution on biological processes for oomycetes that have similar lifestyle. Besides, we find that certain functions, in particular carbohydrate metabolism, transport, and signaling, are important for host and environmental adaption in oomycetes.

Discussion: Given the high correlation between lifestyle and genome properties in our oomycete dataset and the convergent evolution of fungal and oomycete genomes, we have developed a model that predicts plant pathogen lifestyles with high accuracy based on functional annotations. Understanding how genomes and selective pressures correlate with lifestyle may be crucial to identify new emerging diseases and pandemic threats.

Keywords: oomycetes; lifestyle; evolution

Introduction

The adaptation of organisms as they evolve to occupy different niches or adopt different lifestyles is reflected on their genome. Expansion or contraction of gene families has been cited as a general mechanism for such adaptations [1, 2]. Expansions arise mainly from gene duplication and, in some cases, from acquisition via horizontal gene transfer, whereas gene loss can happen by accumulation of loss-of-function mutations through genetic drift [3–5]. Fundamentally, both of these processes are driven by adaptive evolution, whereby beneficial mutations are selected for and deleterious removed from the gene pool, ultimately leading to phenotypic diversification [6]. More concretely, trends in the evolution of coding genes can be studied by measuring the ratio of non-synonymous (dN) to synonymous (dS) amino acid rates in the comparison to closely related sequences, usually represented as ω [7]. A ratio higher than one $(dN/dS = \omega > 1)$ implies positive selection and thus functional diversification, while a ratio lower than one $(dN/dS = \omega < 1)$ indicates the presence of purifying selection and thus a tighter constraint for the diversification of the gene sequence. Most genes in an organism are under strong purifying selection, as

Gómez-Pérez and Kemen

Page 2 of 38

a change in a key amino acid of a protein would have a detrimental effect [8]. However, a small portion of them, those that have been subject to recent diversification, show signs of an increased nonsynonymous mutation rate. Codon models that take into account statistical rate variations are commonly used in comparative genomic studies [9]. When performed on related organisms that have different lifestyles and hosts the study of positively selected genes together with their functional annotation illustrates which gene functions played important roles in the adaptation process.

Oomycetes are eukaryotic organisms belonging, together with diatoms and brown algae, to the group of Stramenopiles [10, 11]. Since their origin from a marine autotrophic common ancestor around 400 million years ago, oomycetes have adapted to multiple environments and lifestyles, and many of them are economically impactful plant and animal parasites [12-14]. Therefore, they represent a relevant and appropriate system to study the genetic impact of lifestyle and host adaptation on genetically close genomes. Four phylogenetic families, representative of oomycete's large diversity, are the target of most current research efforts: Albuginaceae, Peronosporaceae, Saprolegniaceae, and Pythiaceae. The Albuginaceae and some Peronosporaceae independently evolved the ability to survive exclusively on living host material, also known as obligate biotrophy [15]. Most Peronosporaceae are, however, hemibiotrophs, i.e., they display an initial biotrophic phase followed by a necrotrophic one, during which they feed on the decaying living matter of their host [16]. Additionally in the Peronosporaceae, the early divergent clade of Globisporangium consists of plant necrotrophs previously classified as Pythiaceae. All Albuginaceae, Peronosporaceae, and most Pythiaceae are plant parasitic organisms [17]. On the contrary, most Saprolegniaceae are capable of infecting animals, with few exceptions including plant-causing root rot Aphanomyces and the freeliving saprophyte Thraustotheca clavata, which does not need a host at any point in its life cycle [18–20].

Obligate biotrophs have a considerably reduced primary metabolism. Comparative genome studies have reported a significant and convergent loss of the enzymatic arsenal in independent lineages of the oomycetes following this lifestyle [21]. The picture is not so clear for the heterotrophs and their adaptation to different hosts. *Pythium insidiosum*, a mammal parasite responsible for pythiosis, shows a relatively recent divergence from *Pythium aphanidermatum* and *Pythium arrhenomanes*, both of which are plant pathogens [22]. There are many theories that explain how such drastic host shifts can occur in a small evolutionary timescale [23]. Particularly in oomycetes, large reservoirs of noncoding DNA material can readily evolve into small secreted proteins, known as effectors, facilitating new oomycete-host interactions [24]. Additionally, the readiness to take up genetic material through horizontal gene transfer from fungi and bacteria has been reported at multiple time points in the oomycete lineages [25–27]. However, the impact of host shifts on genomic selective pressures has not been extensively studied.

There is a high degree of convergent evolution between oomycetes and fungi [28]. Both share many of the niches mentioned, including pathogenic niches of animals and plants, as well as lifestyles, including saprotrophy, hemibiotrophy, and obligate biotrophy. Oomycetes and fungi have developed similar strategies to overcome the same challenges, including comparable filamentous and reproductive morphology, as

Gómez-Pérez and Kemen

Page 3 of 38

well as akin infection strategies [29]. As mentioned above, convergence is probably promoted by genetic exchange, as the source of many oomycete genes with a role in host adaptation can be traced back to pathogenic fungi [30]. Because of the parallels between the adaptive strategies of these two eukaryotic phyla, we can infer underlying mechanistic principles in oomycetes on the basis of those further characterized in fungi.

How genome information relates to lifestyle and host adaptation is one of the big questions in ecology, and may be relevant to predict the appearance of new emerging diseases. Understanding the genome characteristics and selective pressures in organisms that have undergone host and niche shifts may offer insights into this question. In this study, we report the first whole-genome positive selection screening of the proteome of the oomycetes phylum, including 34 representative members and an outgroup of eight non-oomycete Stramenopiles (Table 2). We compared the genes inferred as being under positive selection to the background annotated genes to identify enriched biological functions that may correlate to their adaption to different hosts and lifestyles. Additionally, we developed a method to predict with high accuracy plant pathogenic lifestyle from the genome of fungi and oomycetes, based on presence or absence of key annotated functions.

Gómez-Pérez and Kemen

Page 4 of 38

Results

Proteome annotation and clustering

We downloaded the genomes of 34 oomycete species and eight non-oomycete Stramenopiles from the NCBI and FungiDB databases and annotated their proteomes by the presence or absence of known functional signatures to get insights into the divergence of the dataset (Figure 1) [31, 32]. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on the Euclidean distance along with midpoint rooting resulted in two main groups, one corresponding to the oomycetes and the other to the remaining Stramenopiles. The main difference among them was the lack of photosynthesis-related annotations in the oomycetes, such as chlorophyll biosynthesis (Figure 9). In the oomycetes, we defined three clusters based on their distance (1-3 in Figure 1): obligate biotrophs, Saprolegniaceae, and a final one grouping most of the Perosporanaceae and Pythiaceae of the dataset. The obligate biotroph cluster consisted of the Albuginaceae and the downy mildews from the Peronosporaceae (Bremia lactucae, Plasmopara halstedii, Peronospora effusa and Hyalopernospora arabidopsidis). The most striking characteristic was an overall reduction of their metabolism, evident by the lack of many functional annotations in comparison with other oomycetes. A notable feature of this group was the lack of core biosynthetic pathways, including vitamin and cofactor biosynthesis, for which they presumably rely on their host (Figure 9). The Saprolegniaceae differed from other oomycetes mainly in the presence of steroid biosynthesis pathways (Figure 10). In the third cluster, we defined two subclusters, labeled as 3.1 and 3.2 in Figure 1. The first contained four of the *Pythium* and *Globisporangium* species of the dataset, and the second one included exclusively all *Phythophthora* in the dataset (except for *Phytophthora megakarya*. The *Pythium* and *Globisporangium* species in the dataset also had biosynthetic pathways that most other oomycetes lacked and that they often shared with the Saprolegniaceae, as a result most likely of their common facultative lifestyles. The hemibiotroph group, consisting of most of the Phytophthora species in the dataset, showed significant metabolic reduction, but not as extensive as in the obligate biotrophs [33].

These clusters and subclusters roughly reflected the lifestyles of the taxa in the dataset, mostly highlighted by the hemibiotrophs and obligate biotrophs. To a lesser extent, this was evident in the other two groups as most Saprolegniaceae in the dataset are facultative animal necrotrophs, and most *Pythium* and *Globisporangium* species facultative plant necrotrophs. Interestingly, *T. clavata*, the free-living organism in the dataset, clustered as an outgroup of the other phylogenetically close Saprolegniaceae, showing the greatest distance to its animal and plant-infecting neighbours. The most notable differences in the presence/absence of cellular pathways of this *T. clavata* assembly when compared to other Saprolegniaceae were the absence of the endopeptidase ClpXP complex and RuvB-like helicase I (Figure 10). However, there were some exceptions to this arrangement, with some taxa clustering with a different lifestyle or failing to cluster with their own lifestyle. For example, the clustering of the two plant infecting necrotrophs of the Saprolegniaceae follows the phylogeny of the *Aphanomyces* genus.

P. insidiosum, the only animal pathogen in the Pythiaceae, showed remarkably different genome properties from its peers, being placed as an outgroup of

Gómez-Pérez and Kemen

Page 5 of 38

hemibiotrophs and Pythiaceae. It shared common pathways with the other animal pathogens in the dataset, namely, a methyltransferase that is part of the pterostilbene and serotonin/melatonin biosynthesis, which other plant-infecting Pythiaceae lacked. Of note, pterostilbene has been shown to have strong immunosuppressive properties in animals [34]. Still, P. insidiosum retained some of the Pythiaceae nutrient assimilation pathways, including the Leloir pathway for the catabolism of D-galactose, as well as the methionine salvage and allantoin catabolic pathways for, respectively, sulphur and nitrogen assimilation. Another outgroup of the same cluster was represented by *Nothophytophthora*, a hybrid species of the Peronosporaceae family of which little is known about. Most interesting was the presence of thiamine and particular thiazole biosynthesis genes for the synthesis of a key moiety of this cofactor, which all other *Phytophthora* have apparently lost but are retained in the facultative necrotroph comycetes (except *Phytopythium vexans*). Based on this evidence and the prediction of necrotrophic lifestyle with the model we describe below, we speculate a facultative necrotroph lifestyle for Nothophytophthora, in contrast to the hemibiotroph neighbouring Peronosporaceae. It is not uncommon for hybridization to facilitate niche or lifestyle adaptation [35, 36]. In the Pythiaceae, the mycopathogen Pythium oligandrum clustered with plant pathogenic Pythiaceae. Notable was its lack of inositol degradation pathways and the partial presence of xanthine dehydrogenase and para-aminobenzoic acid biosynthesis from the chorismate pathway (Figure 11). In summary, our analysis indicates that loss and maintenance of metabolic and key regulatory genes in oomycetes is dependent to a larger extent on environmental and lifestyle factors than on phylogenetic evolutionary distance.

Ortholog group classification

To infer positive selection from the Stramenopile dataset of 42 genomes, we classified the proteomes into ortholog groups by taking sequence similarity and in addition gene order into account. We selected protein clusters that had at least five members from different taxa to get a good balance between a representative number of families and results that are statistically robust. This corresponded to 29,123 protein families, which cover about half (49.02%) of the total proteins in the dataset (Figure 2). The orthogroups were mainly composed of one-to-one orthologs (78.70% of families), however, we detected a significant number of paralogs in some oomycetes, particularly for Nothophytophthora sp., as well as for Phytophthora nicotianae, Globisporangium splendens and Phytophthora parasitica (Figure 12). This might be related to the reported whole genome duplications in Phytophthora species [37], as well as the recent hybridization event that gave rise to Nothophytophthora [38]. Additionally, the diatom Fistulifera solaris's large presence of gene duplications highlights its recent whole genome duplication [39].

The most abundant orthogroups had between five and nine members (Figure 13). Orthogroups corresponding to all taxa were a minority. Instead, most orthogroups were present in closely related five to ten-member clades. When looking at the number of genes not assigned to orthogroups in the oomycetes, the *Phytophthora* genus had the highest count (Figure 2). This may be related to the large arsenal of unique effectors that lack no conserved domains or homologs outside of their own species and play a large role in host adaptation. *Aphanomyces astaci* also

Gómez-Pérez and Kemen

Number of unclassified and classified proteins in orthogroups Phytophthora rubi Phytophthora cactorum Phytophthora cactorum Phytophthora parasitica Phytophthora fragariae Phytophthora cinnamomi Phytophthora sojae Nothophytophthora sp Phytophthora nicotianae Phytophthora infestans Phytophthora megakarya Phytophthora capsici Aphanomyces stellatus Saprolegnia diclina Aphanomyces astaci Aphanomyces astaci Saprolegnia parasitica Aphanomyces euteiches Aphanomyces invadans Achlya hypogyna Globisporangium ultimum Pythium oligandrum orthogroup Globisporangium irregulare Pythium brassicum not orthogroup unique Globisporangium splendens Phytopythium vexans Thraustotheca clavata Pythium aphanidermatum Plasmopara halstedii Pythium insidiosum Phytophthora kernoviae Peronospora effusa Hyaloperonospora arabidopsidis Bremia lactucae Albugo laibachi Albugo candida Fistulifera solaris Fragilariopsis cylindrus Ectocarpus siliculosus eodactylum tricornutum

Thalassiosira pseudonana

had a high amount of genes outside of the orthogroups, most likely because of the recent expansions in its genome [40]. In summary, this highlights a patchy ortholog distribution in the dataset, with most protein families conserved only in phylogenetically close members of clades (Figure 13). Despite this, a significant pool of ortholog protein families representative of the Stramenopile genomes in the dataset could be inferred from the analysis as further discussed below.

Positive selection analyses

Positive selection screening for orthologous groups was performed by using first a site-specific codon model to detect families under selection. This was followed by a branch-site-specific codon model to detect the taxa experiencing positive selection on those genes. The number of genes under selection varied for the different phylogenetic clades. Members of the Saprolegniaceae and Pythiaceae, together with the necrotrophic *Globisporangium* had a higher count and therefore more genes under selection in orthogroups (mean = 1222, std = 152) than the remaining Peronosporaceae and the Albuginaceae (mean= 577, std = 245) (Figure 14). A special case was the hybrid *Nothophytophthora* sp., which had a comparable amount of positively selected genes to Pythiaceae and Saprolegniaceae, however composed in great part by duplicated genes after speciation, 44.45% of the total (orange bar). When comparing necrotrophs, hemibiotrophs, and obligate biotrophs within the Peronosporaceae family (mean = 1344, 663, and 269, respectively), the trend was

Page 6 of 38

Page 7 of 38

bioRxiv preprint doi: https://doi.org/10.1101/201.01.12.426341; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Gómez-Pérez and Kemen

that of a decrease in the number of genes under positive selection with the increase of biotrophic potential (Figure 14).

To infer potential biases in our analyses we tested for a correlation between the number of genes under positive selection and the amount of proteins classified into orthogroups for each taxa (Pearson's correlation, r = 0.50, p value < 0.01). A correlation of 0.5 suggested that there may be a larger number of positives because of more extensive testing in the oomycete species, as they have on average more members in the ortholog dataset. This bias is more evident in the non-oomycetes (Pearson's correlation, r = 0.52, p value = 0.18) than when considering just the oomycetes (Pearson's correlation, r = 0.15, p value = 0.39). As the proteomes of the non-oomycetes are overall smaller compared to oomycetes (Figure 4), we hypothesize that less extensive testing renders them more prone to this bias.

Out of the 32,661 detected genes under positive selection, 21,247 were successfully annotated with at least a gene ontology term (65%). We performed GO enrichment on the four main oomycete lifestyles in the Stramenopile dataset. The results are discussed below. As a control for the reliability of the pipeline, we performed the same analyses in a subset of 26 plant pathogens from a dataset of 65 basidiomycete fungi (Table 3). Highly enriched terms included processes known to be associated with virulence in such pathogenic fungi, like fatty acid and certain amino acid biosynthesis, ion transport, and protein targeting and transport (Table 5) [41–43].

In summary, we could identify signatures of positive selection in 4.14% of all genes analyzed in the Stramenopile dataset. A significant number could be functionally annotated and potential functions assigned.

Gómez-Pérez and Kemen

Page 8 of 38

Figure 4 Correlation between genes under positive selection and proteome size in the Stramenopile dataset. Oomycetes are in blue (Pearson's correlation, r = 0.15, p value = 0.39) and non-oomycetes in red (Pearson's correlation, r = 0.52, p value = 0.18). Pearson correlation represented as a straight line and the confidence interval represented as a lighter shade.

Enriched biological functions under selection

To gauge the selective pressures for adaptation to a parasitic lifestyle in the oomycetes, we explored the enriched GO terms that were pervasive in all oomycetes (Figure 5). Highly enriched term categories related to response to stress, signal transduction, transmembrane transport, protein modification processes (phosphorylation, in particular), and localization, as well as numerous carbohydrate, lipid, nitrogen, and sulfur metabolism-related terms. Within the metabolism, abundant terms relating to biosynthesis are present. In the cellular compartment GO category, highly enriched terms include protein-containing complexes (for which transferase complexes show the larger significance), nucleus, intracellular organelles (for which ribosome shows the largest significance), and membranes (Figure 17).

Additionally, we performed similar enrichments on the oomycete groups defined by their lifestyle. We found the largest unique GO terms to belong to the plant and animal necrotrophs (36 and 21, respectively). In the plant necrotrophs, these included terms related to ion transport, carbohydrate biosynthesis, protein modification, and gene expression regulation. In the animal necrotrophs, unique terms had to do with vitamin biosynthesis, cilium movement, and protein localization. There were three unique terms in the hemibiotrophs related to response against stress and transmembrane transport while no unique terms were identified in the obligate biotrophs. We observed the largest overlap between animal and plant facultative necrotroph groups (59 common terms). These terms related to cell communication, glycolysis, organelle assembly, protein import, regulation of response to stimulus, translation, and numerous and diverse metabolic processes. This was followed by a smaller overlap of enriched functions in all four lifestyle groups, amounting to 33

Page 9 of 38

Gómez-Pérez and Kemen

terms (Figure 6). The most significant terms for each lifestyle are listed in Tables 6-11.

We also studied the enrichment of biological functions in the expanded gene families of the dataset independently of whether the genes were under positive selection. In general, found that it reflected positive selection enrichment, however, the terms were highly variable when comparing different species (Table 12). In the ob-

Gómez-Pérez and Kemen

Page 10 of 38

ligate biotrophs, these related to phospholipid metabolism, cell wall biosynthesis, protein modification, biological regulation, and transmembrane transport. In the hemibiotrophs, they related to lipid metabolism, signaling, protein modification, and again to biological regulation, and transmembrane transport. Finally, in the plant necrotrophs, to DNA integration and localization.

Lifestyle prediction

We visualized in a heatmap all functional annotations with added information of positive selection by performing the same clustering as we did for the genome properties (Figure 16). We find that adding the positive selection data improves the clustering by lifestyle, particularly of the plant necrotrophs in the Pythiaceae and *Globisporangium*, which now form a single cluster that is closer to the other facultative necrotrophs of the dataset, the Saprolegniales, than to the obligate biotroph and hemibiotroph oomycetes in the dataset. Using the Robison-Foulds metric for clusters we find that there is a higher congruence between the phylogenetic tree and the genome properties clustering than to the positive selection one (Table 1).

Although we find that the positive selection information improves lifestyle prediction, we argue that it is impractical to implement as prediction method because it is computationally very intensive to calculate and not likely to be reproducible using different backgrounds for positive selection analyses. Therefore, we constructed a model to predict lifestyle in plant pathogenic fungi and oomycetes based on the genome properties alone. We assembled a dataset based on 115 plant pathogenic and saprotrophic fungi and oomycetes genomes (Table 4). Using this dataset, we built a deep neural network classifier with four output classes corresponding to their lifestyle consensus in the literature: saprotroph, necrotroph, hemibiotroph and biotroph. We found a high accuracy on the validation dataset for the optimized model (loss = 0.11, accuracy = 0.95), failing to predict two genomes in the hemibiotrophs and one in the biotrophs of the validation dataset (Figure 7). The model and the steps to reproduce it together with the entire dataset can be found at https://github.com/danielzmbp/lspred.

Gómez-Pérez and Kemen

Page 11 of 38

Table 1	Distance	comparisons	in the	clusterings	of the	Stramenopile	dataset.	Phylogenetic and
genome	properties	clustering is	showr	n in Figure	1 and	positive selection	on cluste	ering in Figure 16

Clustering 1	Clustering 2	Robison-Foulds distance metric
Phylogenetic	Genome properties	28
Phylogenetic	Positive selection	30
Genome properties	Positive selection	24

Discussion

Functional genome annotations largely correlate with lifestyle

Convergence of the presence/absence of key functional annotations in species that do not share the same phylogenetic history but have similar lifestyle has been shown before for different sets of organisms [44, 45]. Distant species with the same lifestyle require similar functional biological processes, which results in similar selective pressures that analogously shape their genome, often leading to convergent evolution. Comparable to the study by Rodenburg *et al.* (2020) [46], we have shown the tight clustering of some groups with a similar lifestyle, most strikingly for the obligate biotrophs and hemibiotrophs. Conversely, there are a few exceptions, such as the hemibiotroph *P. megakarya* and the necrotroph *Globisporangium splendens*, which do not clearly cluster with any of the other oomycetes. We hypothesize this may be due to the quality of their gene annotation. Both have significantly lower number of key orthologs from the reference Stramenopile dataset as compared to other *Phytophthora* and *Globisporangium* species in the dataset (Table 2).

Generalists have more genes under positive selection

A higher number of genes under selection was found for the more generalist families of Saprolegniaceae, Pythiaceae, and necrotrophic Peronosporaceae, including the *Globisporangium* and *Phytopythium* clades, when compared to the more specialists remaining Peronosporaceae and Albuginaceae (Mann-Whitney test, p < 0.01). Within the Peronosporaceae, hemibiotrophs have a lower number of genes under selection than the facultative necrotrophs, and obligate biotrophs have in turn a lower number than hemibiotrophs (ANOVA one-tailed test, p < 0.01) (Figure 14). Thus, the number of genes under selection is inversely correlated to the biotrophic potential. With biotrophic potential we refer to the capability of survival exclusively

Gómez-Pérez and Kemen

Page 12 of 38

on a living host, such that no obligate biotroph can be cultured in vitro, while for some hemibiotrophs this is the case. On the opposite side of the spectrum, facultative plant necrotrophs thrive as saprotrophs without the need for a host. This correlation cannot be explained alone by the different sizes of the proteomes in the dataset or by their phylogenetic closeness (Figure 4). However, we hypothesize that both of these factors confound our results to a large extent. Smaller proteomes in the dataset, as is the case of the non-oomycetes, show a larger correlation of their size to the number of genes under positive selection. The phylogeny influence is highlighted by the similar number of genes under positive selection of taxa within the same genus as shown in Figure 4.

While all hemibiotrophs and biotrophs are obligate plant parasites, the necrotrophs in the Peronosporacea, Pythiaceae and Saprolegniaceae families show adaptation to a variety of lifestyles. They are facultative parasites of either animals, plants, or other fungi and oomycetes. Facultative parasites can live as saprotrophs on decaying matter but also as opportunistic necrotrophs on a suitable host [47]. The higher number of potential niches they are able to succesfully occupy may drive a larger number of genes to be under positive diversifying selection. Additionally, when compared to the obligate biotrophs and hemibiotrophs, which are highly adapted to infect a particular species, e.g., lettuce for *B. lactucae* and soybean for *Phytophthora sojae*, most of the necrotrophs are able to infect a wide range of hosts. For instance, *A. astaci* is capable of infecting up to twelve genera of crayfish and is known for its ease of host jumping [48]. Having a higher number of genes under positive selection could be therefore correlated with this higher host flexibility.

Selective pressures in the ocomycetes help explain host adaptation

Biological functions under selection for all oomycetes in the Stramenopile dataset, shown in Figure 5, give insight into which of these are important for the diversification in this clade. Many biosynthetic functions, particularly related to carbohydrates, are found to be enriched. Lipid metabolism, known to be important for host adaptation in plant pathogenic fungi and oomycetes, is also enriched [49]. Transport-related proteins, and in particular cation transport, are also prominently enriched in these terms. As an example, the role of the expanded calcium transporter genes in the oomycetes has been extensively studied in the context of host interaction [50]. Overall, many of these terms allude to important virulence factors known for the oomycetes: transmembrane transport, effector protein processing and secretion, cell wall synthesis and remodeling, and lipid localization [51].

Selective pressures relate to lifestyles in oomycetes

The enriched terms common to the Albuginaceae and downy mildews greatly relate to known virulence factors for these plant pathogens, including carbohydrate metabolism, protein modification, transport, negative regulation of gene expression, and response to stimuli. This suggests that these biological functions are under selection and played a big role in the adaptation of oomycetes to an obligate biotrophic lifestyle. Some of these, particularly carbohydrate metabolism, transport, and protein modification, are common to the other plant pathogens in the hemibiotrophs and plant necrotrophs (Table 7, 8 and 9), highlighting a broader mechanism of adaptation to a plant-parasitic lifestyle.

Gómez-Pérez and Kemen

Page 13 of 38

One of the most often found terms and among the most enriched in both the obligate biotrophs and the hemibiotrophs of the dataset corresponds to regulation of biosynthetic and metabolic processes, and particularly negative regulation. This may underscore the fitness advantage for rapid growth during the hyphal stage and its need for activation or deactivation according to the circumstances. When the hyphal stage takes place after colonization, the salvaging and biosynthesis of carbohydrates, nucleic acids, and lipids with the resources obtained from the plant host is key for a successful infection. Beta-glucan, for example, is an important component of the oomycete's cell wall and is also an elicitor of the plant immune response [52]. Its biosynthesis features prominently in the enriched terms for the hemibiotrophs.

Secretion of small effector proteins, as in other fungal filamentous pathogens, is key for host adaptation in plant pathogenic oomycetes [53]. Many unique effector proteins have been characterized in the oomycetes that contribute to virulence by modulating the immune response of the plant [54]. Therefore, this dependence on the secretion machinery of the cell for successful infection and thus survival has led to high selective pressures on their genome. We observed significant enrichment of the effectors in the positively selected terms in all oomycetes of the dataset (hypergeometric test, p < 0.01). When looking at the enrichment per species, the majority of the *Phytophthora* and plant necrotrophs, which significantly depend on effector proteins for host infection, were also enriched (Figure 8). The obligate biotrophs, which also depend greatly on secreted effectors, do not show enrichment in our analysis. This may be due to the lack of orthologs on host specific effectors and thus not analyzed in the positive selection screen. There is a moderate correlation between the number of positively selected genes compared to those with predicted to be effectors (Pearson's correlation, r = 0.43, p < 0.01), so these results may be skewed due to testing bias (Figure 15). Surprisingly, most non-oomycete autotrophs show high enrichment in their predicted secreted proteins. In the GO enrichment of all oomycetes, there are several processes directly related to protein secretion under selection, including protein modification. Other secretion-related terms, although more general, also show enrichment, including those relating to microtubule-based processes in the obligate biotrophs, and transmembrane transport in the hemibiotrophs.

Another interesting term indirectly related to effector proteins is sulfur amino acid biosynthesis. This term is highly enriched in the hemibiotrophs and the necrotrophs of the dataset. This may be associated with the abundance of cysteine-rich proteins in the effector arsenal of the plant pathogens with a necrotroph phase [55]. The disulfide bonds that link cysteine residues help maintain the structural integrity of the proteins released into the extracellular space called apoplast, a hostile environment that is slightly acidic and rich in plant proteases [56].

When looking exclusively at the necrotroph groups, many terms in the plant pathogens overlap with the animal pathogens, most likely relating to their facultative saprobe lifestyle. These include glycolysis, generation of energy, cell communication, as well as amino acid, tetrapyrrole, and amide biosynthetic processes. The latter group is most likely enriched as a result of their autotrophic and more developed secondary metabolism compared to that of other oomycetes, which makes

Gómez-Pérez and Kemen

Page 14 of 38

them suited for a free-living lifestyle [57]. Interesting is also the term DNA ligation involved in DNA repair, which may be related to the defense against oxidative stress that is key of the immune response in plants and animals against such pathogens [58]

Biosynthetic repertoire is important for lifestyle adaptation

As shown on Figure 1, the biosynthetic repertoire of each taxa plays a big role in defining the lifestyle of the organisms in the Stramenopile dataset. Particularly insteresting in oomycetes is the evolutionary history of sterol *de novo* biosynthesis. It is present in Saprolegniales and absent in other oomycete lineages due to their inability to synthesize oxidosqualene [59, 60]. The squalene synthase shows hints of positive selection in *Aphanomyces* (Figure 18). Furthermore, positive selection is pervasive in the enzymes that take part in sterol biosynthesis in the Stramenopile dataset.

Vitamin biosynthesis as well plays a big role in the evolution of pathogen adaptation to its host. Vitamins are expensive to produce and often require dedicated pathways. Heterotrophs that have adapted to obligate biotrophic lifestyles, such as *Albugo* and the downy mildews, circumvent this by losing their biosynthetic capabilities and developing ways of utilizing host vitamin supply, also known as auxotrophy [61]. Meanwhile, those that live without a host at any point in their lifecycle must maintain these pathways under strong purifying selection. In our dataset we have found signatures of positive selection in several enzymes relating to tedrahydrofolate (THF) salvage and biosynthesis, namely dihydrofolate synthase and phosphoribosylglycinamide formyltransferase (Figure 19). As THF is a derivative of Vitamin

Gómez-Pérez and Kemen

B9 or folic acid, it is crucial for the synthesis of several amino acids such as serine and methionine as well as for purines and thiamine [62]. It is therefore likely that oomycetes that are not able to get THF from a living host have strong selection to maintain THF metabolism in order to ensure their own amino acid biosynthesis.

Molybdopterin cofactor is important for the production of certain detoxification enzymes [63]. In oomycete obligate biotrophs, molybdopterin-related biosynthetic pathways have been lost independently several times in the oomycetes lineage due to host adaptation [15]. Molybdopterin metabolism was found under high selective pressure in the facultative necrotrophs and autotrophs of the Stramenopile dataset, including *Saprolegniaceae* and *Pythiaceae* families, and *Phytophthora* genus (Figure 20). The biosynthesis of molybdopterin cofactor also features as an enriched GO term in the plant necrotrophs (Table 8 and 9).

Proteins relating to the glycolysis pathway and amino acid biosynthesis have a special evolutionary history in the oomycetes [64]. Many of these enzymes have originated from horizontal gene transfer from plants or bacteria. This might explain their high rate of positive selection, which is usually the case for genes recently acquired by horizontal transfer, as they need to be adapted to the new host. In the glycolysis pathway, we detected signatures of positive selection for most oomycetes in the Stramenopile dataset. Particularly in the enzymes glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase (Figure 21).

Protein family enrichment reflects lifestyle selective pressures

The large overrepresentation of paralogs as positively selected genes is evident in many of the taxa (Figure 3). After a gene duplication event occurs, there is usually an increase in the selective pressure on one of the copies that maintains the function. Meanwhile, in the other one, these constraints are relaxed, freeing it for potential divergent evolution [65]. Interestingly, many of the enriched functions in the paralogs correlated with terms under positive selection for their specific lifestyle (Table 12). In the *Phytophthora* lineages these include biological regulation, glycolipid biosynthesis, and transmembrane transport. In *Albugo* and other obligate biotrophs, protein modification, carbohydrate metabolism, biological regulation, and glutamine metabolism.

A model based on genome properties accurately predicts lifestyle

The genome convergence of phylogenetically diverse fungi and oomycetes allowed us to create a model that can predict plant pathogenic lifestyle based on annotations from both eukaryotes. Assessment of lifestyle from genomic properties in plant pathogens has been traditionally done by characterizing cell wall-degrading enzyme annotations [66]. To our knowledge, there is only another published model that attempts to predict lifestyle from genomic features [67]. This model predicts trophic categories based on principal component analysis of carbohydrate-active enzyme annotations. We find that our model, which in contrast is based on the entire genome annotations, allows for a better overall accuracy. Furthermore, having trained the model on a larger number of features per sample allows for a more accurate prediction of incompletely annotated specimens that may result from environmental sampling. Given the availability of increasing proteomic and transcriptomic data of unknown fungal and oomycete origin, such prediction tools will become crucial to identify the pathogenic potential of facultative and obligate parasites.

Gómez-Pérez and Kemen

Page 16 of 38

Conclusions

The presence/absence of metabolism-related genes is known to converge for phylogenetically distant organisms that follow the same lifestyle [46, 68]. Here, we report a similar case for our dataset of Stramenopiles. In addition, we describe a pipeline for seamless throughput analysis of positive selective pressures using genome data as input. We employ it to show that patterns of selective pressure also converge on hosts that cannot be explained by phylogeny alone. We have identified a number of GOs that are commonly found under selection for all oomycetes of different lifestyles. We explored lifestyle-specific adaptive genes that correspond to biological regulation, transport, protein modification and metabolite biosynthesis. Our results help explain the selective pressures of closely related organisms that have adapted to different lifestyles. Finally, we described a model based on genome properties that is able to accurate predict plant pathogenic lifestyle on filamentous fungi and oomycetes.

Methods

Data selection and functional annotation

We downloaded Stramenopile genetic data from the NCBI and FungiDB databases setting as cutoff assemblies with reported gene annotation, resulting in a dataset of 42 total proteomes. We screened the genomes using BUSCO for high abundance of key orthologs in the Stramenopile dataset as a form of quality control [69]. We performed functional annotation of the proteomes using InterProScan version 5.50-84.0 [70]. We annotated the effectors in the Stramenopile dataset by predicting secretion signal using the tool SignalP 5.0b followed by an annotation with the model EffectorO [71, 72]. We annotated the presence/absence of functional annotations from each genome with the Genome Properties database, performed the clustering with the Python package SciPy and visualized it with the package Seaborn [73, 74]. We compared UPGMA clusterings of the genome properties and genome properties with added positive selection information to the phylogenetic tree using the Robison-Foulds metric based on clusters with the application TreeCmp [75, 76].

Phylogeny inference

We constructed the concatenated Stramenopile tree using IQ-TREE 2 with automated partitioned model selection on inferred one-to-one orthogroups present in at least 25 of the taxa in the dataset [77]. We assessed full branch support in all nodes of the phylogenetic tree with 1,000 ultrafast bootstrap repetitions using the IQ-TREE 2 software and displayed it rooted on the outgroup of non-oomycetes.

Orthogroup classification and positive selection analyses

We developed a pipeline for whole genome positive selection analysis in Python using the Snakemake modular workflow framework [78]. It uses as input the coding nucleotide sequences as well as their corresponding predicted proteins from each proteome. The code and documentation are available at https://github.com/ danielzmbp/wsgups. The steps of the pipeline include: grouping of sequences into families, their alignment with MAFFT, phylogenetic tree inference using FastTree, codon alignment using PAL2NAL, and finally two positive selection algorithms

Gómez-Pérez and Kemen

Page 17 of 38

from the HYPHY package [79–81]. The first step, consisting of the classification of these proteomes into ortholog groups was performed with the software Proteinortho version 6, using the synteny parameter and the Diamond algorithm for homology search [82]. The first HYPHY algorithm used in the pipeline is FUBAR, a site-based program that scans the alignment for pervasive positive selection [83]. Families with at least one codon position under positive selection were subsequently analyzed on all branches with the aBSREL algorithm to relate selective pressures to specific lineages [84]. Taxa downstream of nodes with a corrected p value of less than 0.05 were considered under positive selection for this particular gene.

Enrichment analyses

We used the Gene Ontology (GO) released in 2021-02-01 [85, 86]. We performed GO enrichment using the Python package Goatools based on the InterPro database annotations [87, 88]. The background dataset corresponded to the sum of all proteome annotations for the corresponding taxa and the study dataset to the genes found to be under selection. Terms that did not have representative sequences in all analyzed taxa were filtered out. We used as a significance cutoff the negative base 10 logarithm of Holm-Bonferroni corrected p values that were higher than 1.3 (p value < 0.05). Broad and non-informative GO terms like biological or cellular processes were not included in the enrichment tables.

Machine learning model

The multilayered deep learning model was constructed using the Tensorflow version 2.3 library with the Keras API [89]. The training dataset consisted of 319 unique proteomes from fungi and oomycete plant pathogens, and saprobes. We labeled each proteome as one of the four respective plant pathogenic classes based on literature consensus: sapotroph, necrotroph, hemibiotroph and biotroph. We extracted the features of each genome and encoded them based on the presence or absence of all the identified pathways, which resulted in an array of 5024 binary features each. We performed a stratified split of the dataset into training dataset, corresponding to 60% of the total, and optimization and validation datasets, each corresponding to half of the remaining 40%. Hyperparameter optimization, namely learning rate, activating functions and dense layer units, was carried out using Keras Tuner and its implementation of the Hyperband algorithm [90, 91].

Competing interests

The authors declare that they have no competing interests.

Author's contributions

D.G.P. performed the analyses, wrote the manuscript, and designed the figures. E.K contributed suggestions and reviewed the final manuscript.

Acknowledgments

The authors would like to thank Libera Lo Presti and the anonymous reviewers for their helpful comments and suggestions. The authors acknowledge support by the High Performance and Cloud Computing Group at the Zentrum für Datenverarbeitung of the University of Tübingen, the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 37/935-1 FUGG. In addition, the authors are grateful to the DFG-funded research training group RTG 1708 'Molecular principles of bacterial survival strategies' (grant # 174858087; Y.H) for providing funding for the development of this manuscript.

Availability of Data and Materials

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Gómez-Pérez and Kemen

Page 18 of 38

References

- 1. Zhang W, Zhang X, Li K, Wang C, Cai L, Zhuang W, et al. Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi. Mycology. 2018;9(3):1–13.
- Props R, Monsieurs P, Vandamme P, Leys N, Denef VJ, Boon N. Gene Expansion and Positive Selection as Bacterial Adaptations to Oligotrophic Conditions. mSphere. 2019;4(1).
- Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature. 2006;440(7082):341–345.
- 4. Treangen TJ, Rocha EPC. Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes. PLoS Genetics. 2011;7(1):e1001284.
- 5. Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Gaze WH, et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nature Communications. 2020;11(1):5494.
- 6. Behe M. Experimental evolution, loss-of-function mutations, and "the first rule of adaptive evolution". The Quarterly Review of Biology. 2010;85(4):419–445.
- Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution. 1998 05;15(5):568–573. Available from: https://doi.org/10.1093/oxfordjournals.molbev.a025957.
- Hughes AL, Packer B, Welch R, Bergen AW, Chanock SJ, Yeager M. Widespread purifying selection at polymorphic sites in human protein-coding loci. Proceedings of the National Academy of Sciences. 2003;100(26):15754–15757.
- 9. Kosiol C, Vinař T, Fonseca RRd, Hubisz MJ, Bustamante CD, Nielsen R, et al. Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genetics. 2008;4(8):e1000144.
- Cavalier-Smith T, Chao EEY. Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista). Journal of Molecular Evolution. 2006;62(4):388–420.
- 11. Beakes GW, Thines M. Handbook of the Protists; 2017.
- 12. Matari NH, Blair JE. A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models. BMC Evolutionary Biology. 2014;14(1):101.
- Bebber DP, Gurr SJ. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology. 2015;74:62–64.
- Derevnina L, Petre B, Kellner R, Dagdas YF, Sarowar MN, Giannakopoulou A, et al. Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1709):20150459.
- Kemen E, Jones JDG. Obligate biotroph parasitism: can we link genomes to lifestyles? Trends in Plant Science. 2012;17(8):448–457.
- 16. Lee SJ, Rose JKC. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signaling & Behavior. 2010;5(6):769–772.
- Adhikari BN, Hamilton JP, Zerillo MM, Tisserat N, Lévesque CA, Buell CR. Comparative Genomics Reveals Insight into Virulence Strategies of Plant Pathogenic Oomycetes. PLoS ONE. 2013;8(10).
- Steciow MM, Lara E, Paul C, Pillonel A, Belbahri L. Multiple barcode assessment within the Saprolegnia-Achlya clade (Saprolegniales, Oomycota, Straminipila) brings order in a neglected group of pathogens. IMA Fungus. 2014;5(2):439–448.
- GAULIN E, JACQUET C, BOTTIN A, DUMAS B. Root rot disease of legumes caused by Aphanomyces euteiches. Molecular Plant Pathology. 2007;8(5):539–548.
- Misner I, Blouin N, Leonard G, Richards TA, Lane CE. The Secreted Proteins of Achlya hypogyna and Thraustotheca clavata Identify the Ancestral Oomycete Secretome and Reveal Gene Acquisitions by Horizontal Gene Transfer. Genome Biology and Evolution. 2015;7(1):120–135. Available from: https://academic.oup.com/gbe/article/7/1/120/601821.
- McGowan J, O'Hanlon R, Owens RA, Fitzpatrick DA. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms. 2020;8(5):653.
- 22. Weiblen C, Robe LJ, Azevedo Mld, Ianiski LB, Stibbe PC, Ribeiro TC, et al. New insights on evolutionary aspects of Pythium insidiosum and other peronosporaleans. Mycoses. 2020;.
- Thines M. An evolutionary framework for host shifts jumping ships for survival. New Phytologist. 2019;224(2).
- 24. Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009;461(7262):393–398.
- Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G, Paszkiewicz K, et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proceedings of the National Academy of Sciences. 2011;108(37):15258–15263.
- 26. Savory F, Leonard G, Richards TA. The Role of Horizontal Gene Transfer in the Evolution of the Oomycetes. PLOS Pathogens. 2015;11(5):e1004805. Available from:
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447370/.
- 27. Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI, Stevens DM, et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife. 2017;6:e30925.
- Money NP, Davis CM, Ravishankar JP. Biomechanical evidence for convergent evolution of the invasive growth process among fungi and oomycete water molds. Fungal Genetics and Biology. 2004;41(9):872–876.
- 29. Latijnhouwers M, Wit PJGMd, Govers F. Oomycetes and fungi: similar weaponry to attack plants. Trends in Microbiology. 2003;11(10):462–469.
- Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ. Evolution of Filamentous Plant Pathogens: Gene Exchange across Eukaryotic Kingdoms. Current Biology. 2006;16(18):1857–1864.
- Basenko E, Pulman J, Shanmugasundram A, Harb O, Crouch K, Starns D, et al. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. Journal of Fungi. 2018;4(1):39.

Gómez-Pérez and Kemen

Page 19 of 38

- O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research. 2016;44(D1):D733–D745.
- Cock AWAMd, Lodhi AM, Rintoul TL, Bala K, Robideau GP, Abad ZG, et al. Phytopythium: molecular phylogeny and systematics. Persoonia - Molecular Phylogeny and Evolution of Fungi. 2015;34(1):25–39.
- Yashiro T, Yura S, Tobita A, Toyoda Y, Kasakura K, Nishiyama C. Pterostilbene reduces colonic inflammation by suppressing dendritic cell activation and promoting regulatory T cell development. The FASEB Journal. 2020;34(11):14810–14819.
- 35. Samarasinghe H, You M, Jenkinson TS, Xu J, James TY. Hybridization Facilitates Adaptive Evolution in Two Major Fungal Pathogens. Genes. 2020;11(1):101.
- Bertier L, Leus L, D'hondt L, Cock AWAMd, Höfte M. Host Adaptation and Speciation through Hybridization and Polyploidy in Phytophthora. PLoS ONE. 2013;8(12):e85385.
- 37. Martens C, Peer YVd. The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection. BMC Genomics. 2010;11(1):353.
- Studholme DJ, Panda P, Stowasser ESV, González M, Hill R, Sambles C, et al. Genome sequencing of oomycete isolates from Chile supports the New Zealand origin of Phytophthora kernoviae and makes available the first Nothophytophthora sp. genome: Comparative genomics of Chilean oomycete isolates. Molecular Plant Pathology. 2018;20(3):423–431.
- 39. Tanaka T, Maeda Y, Veluchamy A, Tanaka M, Abida H, Maréchal E, et al. Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. The Plant cell. 2015;27(1):162–76.
- Gaulin E, Pel MJC, Camborde L, San-Clemente H, Courbier S, Dupouy MA, et al. Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation. BMC Biology. 2018;16(1):43.
- Stephenson SA, Green JR, Manners JM, Maclean DJ. Cloning and characterisation of glutamine synthetase from Colletotrichum gloeosporioides and demonstration of elevated expression during pathogenesis on Stylosanthes guianensis. Current Genetics. 1997;31(5):447–454.
- Hallen HE, Huebner M, Shiu SH, Güldener U, Trail F. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genetics and Biology. 2007;44(11):1146–1156.
- Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K. Fatty acids and early detection of pathogens. Current Opinion in Plant Biology. 2013;16(4):520–526.
- McCutcheon JP, Moran NA. Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution. Genome Biology and Evolution. 2010;2:708–718.
- Shang Y, Xiao G, Zheng P, Cen K, Zhan S, Wang C. Divergent and Convergent Evolution of Fungal Pathogenicity. Genome Biology and Evolution. 2016;8(5):1374–1387.
- Rodenburg SYA, Ridder Dd, Govers F, Seidl MF. Oomycete metabolism is highly dynamic and reflects lifestyle adaptations. bioRxiv. 2020;p. 2020.02.12.941195.
- LEWIS DH. CONCEPTS IN FUNGAL NUTRITION AND THE ORIGIN OF BIOTROPHY. Biological Reviews. 1973;48(2):261–277.
- Svoboda J, Mrugała A, Kozubíková-Balcarová E, Petrusek A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci : a review. Journal of Fish Diseases. 2016;40(1):127–140.
- 49. Wang E, Schornack S, Marsh J, Gobbato E, Schwessinger B, Eastmond P, et al. A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Current Biology. 2012;22(23):2242–2246.
- Zheng L, Mackrill JJ. Calcium Signaling in Oomycetes: An Evolutionary Perspective. Frontiers in Physiology. 2016;7:123.
- Judelson HS. Dynamics and Innovations within Oomycete Genomes: Insights into Biology, Pathology, and Evolution. Eukaryotic Cell. 2012;11(11):1304–1312.
- Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, et al. Linear β-1,3 Glucans Are Elicitors of Defense Responses in Tobacco. Plant Physiology. 2000;124(3):1027–1038.
- 53. Rocafort M, Fudal I, Mesarich CH. Apoplastic effector proteins of plant-associated fungi and oomycetes. Current Opinion in Plant Biology. 2020;56:9–19.
- 54. Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annual Review of Microbiology. 2019;73(1):1–30.
- 55. Raffaele S, Win J, Cano LM, Kamoun S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics. 2010;11(1):637.
- Idänheimo N, Gauthier A, Salojärvi J, Siligato R, Brosché M, Kollist H, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochemical and Biophysical Research Communications. 2014;445(2):457–462.
- 57. Dahlin P, Srivastava V, Ekengren S, McKee LS, Bulone V. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans. PLOS ONE. 2017;12(2):e0170873.
- Fones H, Preston GM. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiology Letters. 2012;327(1):1–8.
- Gottlieb D. Differences in the Sterol Synthesizing Pathways of Sterol-Producing and Non-Sterol-Producing Fungi. Phytopathology. 1978;68(8):1168.
- Gaulin E, Bottin A, Dumas B. Sterol biosynthesis in oomycete pathogens. Plant Signaling & Behavior. 2010;5(3):258–260.
- Ah-Fong AMV, Kagda MS, Abrahamian M, Judelson HS. Niche-specific metabolic adaptation in biotrophic and necrotrophic oomycetes is manifested in differential use of nutrients, variation in gene content, and enzyme evolution. PLOS Pathogens. 2019;15(4):e1007729.
- Huennekens FM. Folic Acid Coenzymes in the Biosynthesis of Purines and Pyrimidines. Vitamins & Hormones. 1969;26:375–394.

Gómez-Pérez and Kemen

Page 20 of 38

- Schwarz G, Mendel RR. MOLYBDENUM COFACTOR BIOSYNTHESIS AND MOLYBDENUM ENZYMES. Plant Biology. 2006;57(1):623–647.
- Judelson HS. Metabolic Diversity and Novelties in the Oomycetes. Annual Review of Microbiology. 2016;71(1):1–19.
- Zhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proceedings of the National Academy of Sciences. 1998;95(7):3708–3713.
- 66. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnology for Biofuels. 2011;4(1):4.
- Hane JK, Paxman J, Jones DAB, Oliver RP, Wit Pd. "CATAStrophy," a Genome-Informed Trophic Classification of Filamentous Plant Pathogens – How Many Different Types of Filamentous Plant Pathogens Are There? Frontiers in Microbiology. 2020;10:3088.
- Torruella G, de Mendoza A, Grau-Bové X, Antó M, Chaplin M, del Campo J, et al. Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi. Current Biology. 2015;25(18):2404–2410.
- Seppey M, Manni M, Zdobnov EM. Gene Prediction, Methods and Protocols. Methods in Molecular Biology. 2019;1962:227–245.
- Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–1240.
- Petersen TN, Brunak S, Heijne Gv, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011;8(10):785–786.
- Nur M, Wood K, Michelmore R. EffectorO: motif-independent prediction of effectors in oomycete genomes using machine learning and lineage specificity. bioRxiv. 2021;Available from: https://www.biorxiv.org/content/early/2021/03/20/2021.03.19.436227.
- Richardson LJ, Rawlings ND, Salazar GA, Almeida A, Haft DR, Ducq G, et al. Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes. Nucleic Acids Research. 2018;47(D1):D564–D572.
- 74. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 2020;17:261–272.
- 75. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Mathematical Biosciences. 1981;53(1-2):131-147.
- Goluch T, Bogdanowicz D, Giaro K. Visual TreeCmp: Comprehensive Comparison of Phylogenetic Trees on the Web. Methods in Ecology and Evolution. 2020;11(4):494–499.
- Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haeseler Av, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution. 2020;37(5):1530–1534.
- Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2522.
- Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods in molecular biology (Clifton, NJ). 2009;537:39–64.
- Price MN, Dehal PS, Arkin AP. FastTree 2 Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE. 2010;5(3):e9490.
- Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research. 2006;34(suppl_2):W609–W612.
- Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011;12(1):124.
- Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Pond SLK. Less Is More: An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection. Molecular Biology and Evolution. 2015;32(5):1342–1353.
- Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, et al. FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Molecular Biology and Evolution. 2013;30(5):1196–1205.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nature Genetics. 2000;25(1):25–29.
- Carbon S, Douglass E, Dunn N, Good B, Harris NL, Lewis SE, et al. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research. 2018;47(D1):gky1055–.
- Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Vesztrocy AW, Naldi A, et al. GOATOOLS: A Python library for Gene Ontology analyses. Scientific Reports. 2018;8(1):10872.
- Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the integrative protein signature database. Nucleic Acids Research. 2009;37(suppl_1):D211–D215.
- Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems; 2015. Software available from tensorflow.org. Available from: http://tensorflow.org/.
- O'Malley T, Bursztein E, Long J, Chollet F, Jin H, Invernizzi L, et al.. Keras Tuner; 2019. https://github.com/keras-team/keras-tuner.
- Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research. 2018;18(185):1–52. Available from: http://jmlr.org/papers/v18/16-558.html.
- 92. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010;465(7298):617–621.
- Mock T. Extensive genetic diversity and differential bi-allelic expression in a Southern Ocean diatom. In: EUROPEAN JOURNAL OF PHYCOLOGY. vol. 50. TAYLOR & FRANCIS LTD 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON ...; 2015. p. 75–75.
- 94. Seddiki K, Godart F, Cigliano RA, Sanseverino W, Barakat M, Ortet P, et al. Sequencing, De Novo Assembly, and Annotation of the Complete Genome of a New Thraustochytrid Species, Strain CCAP_4062/3. Genome

Gómez-Pérez and Kemen

Page 21 of 38

Announcements. 2018;6(11):e01335-17.

- 95. Ohan JA, Hovde BT, Zhang XL, Davenport KW, Chertkov O, Han C, et al. Nuclear Genome Assembly of the Microalga Nannochloropsis salina CCMP1776. Microbiology Resource Announcements. 2019;8(44).
- Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456(7219):239–244.
- Lommer M, Specht M, Roy AS, Kraemer L, Andreson R, Gutowska MA, et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biology. 2012;13(7):R66.
- Jiang RHY, Bruijn Id, Haas BJ, Belmonte R, Löbach L, Christie J, et al. Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica. PLoS Genetics. 2013;9(6):e1003272.
- Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, et al. Gene Gain and Loss during Evolution of Obligate Parasitism in the White Rust Pathogen of Arabidopsis thaliana. PLoS Biology. 2011;9(7):e1001094. Available from:
- http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001094. 100. Fletcher K, Gil J, Bertier LD, Kenefick A, Wood KJ, Zhang L, et al. Genomic signatures of somatic hybrid
- vigor due to heterokaryosis in the oomycete pathogen, Bremia lactucae. bioRxiv. 2019;p. 516526. 101. Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector
- repertoire. Genome Biology. 2010;11(7):R73.
 102. Reghu RJ, Chellappan BV, Beena SH, Sasi A, Vasudevan SE, Nair AS. Draft Genome Sequence of the Oomycete Globisporangium splendens Strain rgcb-1. Microbiology Resource Announcements. 2020;9(16).
- Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, et al. Signatures of Adaptation to Obligate Biotrophy in the Hyaloperonospora arabidopsidis Genome. Science. 2010;330(6010):1549–1551.
- Armitage AD, Lysøe E, Nellist CF, Lewis LA, Cano LM, Harrison RJ, et al. Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLOS ONE. 2018;13(10):e0202305.
- Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, et al. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici. Molecular Plant-Microbe Interactions[®]. 2012;25(10):1350–1360.
- Studholme DJ, McDougal RL, Sambles C, Hansen E, Hardy G, Grant M, et al. Genome sequences of six Phytophthora species associated with forests in New Zealand. Genomics Data. 2016;7:54–56.
- Adams TM, Armitage AD, Sobczyk MK, Bates HJ, Tabima JF, Kronmiller BA, et al. Genomic Investigation of the Strawberry Pathogen Phytophthora fragariae Indicates Pathogenicity Is Associated With Transcriptional Variation in Three Key Races. Frontiers in Microbiology. 2020;11:490.
- Ali SS, Shao J, Lary DJ, Kronmiller BA, Shen D, Strem MD, et al. Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms. Genome Biology and Evolution. 2017;9(3):536–557.
- 109. Liu H, Ma X, Yu H, Fang D, Li Y, Wang X, et al. Genomes and virulence difference between two physiological races of Phytophthora nicotianae. GigaScience. 2016;5(1):3.
- Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, et al. ji¿Phytophthoraj/i¿ Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science. 2006;313(5791):1261–1266.
- Rujirawat T, Patumcharoenpol P, Lohnoo T, Yingyong W, Lerksuthirat T, Tangphatsornruang S, et al. Draft Genome Sequence of the Pathogenic Oomycete Pythium insidiosum Strain Pi-S, Isolated from a Patient with Pythiosis. Genome Announcements. 2015;3(3):e00574–15.
- Faure C, Veyssière M, Boëlle B, San Clemente H, Bouchez O, Lopez-Roques C, et al. Long-Read Genome Sequence of the Sugar Beet Rhizosphere Mycoparasite Pythium oligandrum. G3: Genes, Genomes, Genetics. 2020;10(2):431–436.

Supplementary Figures

Supplementary tables

Gómez-Pérez and Kemen

Page 22 of 38

Table 2 Stramenopile genomes dataset used for positive selective analyses.

Ectocarpus siliculosus GCA.00310025.1 Autotroph 97 97 0 92 Non-oomycete Fistulifera solaris GCA.0021780085.1 Autotroph 95 95 0 93 Hondaea fermentalgian GCA.0021780085.1 Autotroph 95 90 2 96 Phaeadcatylum tricomutum GCA.002685275.1 Autotroph 97 95 2 96 Thalassiosira oceanica GCA.000286195.2 Autotroph 97 95 2 96 Achlya hypogyna GCA.000280195.1 Animal necrotroph 97 95 2 96 Aphanomyces ataci GCA.000280155.1 Animal necrotroph 99 98 1 20 Saprolegnia decima GCA.000283175.1 Plant necrotroph 97 96 1 20 Saprolegnia dicima GCA.00028175.1 Animal necrotroph 99 98 1 20 Albuginaceae Aphanomyces stellatus GCA.00020175.1 Freelining sportoph 99 98 1 20 <th>Phylogenetic family</th> <th>Species name</th> <th>Accession</th> <th>Lifestyle</th> <th>Complete BUSCOs</th> <th>Complete and single-copy BUSCOs</th> <th>Complete and duplicated BUSCOs</th> <th>Reference</th>	Phylogenetic family	Species name	Accession	Lifestyle	Complete BUSCOs	Complete and single-copy BUSCOs	Complete and duplicated BUSCOs	Reference
Fistulifera solaris GCA.00221785.1 Autotroph 97 14 83 [39] Non-oomycete Fragilariopsis cylindrus GCA.001750085.1 Autotroph 95 95 00 5 94 Microchloropsis salina GCA.002897355.1 Autotroph 95 90 2 95 Phaeodactylum tricornutum GCA.00050052.2 Autotroph 97 95 2 96 Thalassiosira oceanica GCA.000261095.2 Autotroph 90 90 0 97 Achiya hypogyna GCA.000261095.1 Animal necrotroph 90 98 1 201 Aphanomyces exteiches GCA.000850075.1 Animal necrotroph 99 99 0 Saprolegnia ceasi GCA.000850015.1 Animal necrotroph 97 96 1 201 Aphanomyces exteleties GCA.000831025.1 Animal necrotroph 97 96 1 201 Aphanomyces exteleties GCA.000831025.1 Animal necrotroph 99 90 0 8		Ectocarpus siliculosus	GCA_000310025.1	Autotroph	97	97	0	[92]
Fragilariopsis cylindrus GCA.001750085.1 Autotroph 95 95 0 931 Non-oomycete Hordaea fermentalgiana GCA.00289755.1 Autotroph 95 90 5 944 Microchloropsis salina GCA.0028155.2 Autotroph 97 95 2 996 Thalassiosira oceanica GCA.000296195.2 Autotroph 90 0 0 1971 Aphanomyces sataci GCA.000201595.1 Autotroph 97 95 2 1961 Aphanomyces sataci GCA.000201751.1 Animal necrotroph 99 98 1 201 Saprolegnia diclina GCA.000281051.51 Animal necrotroph 97 96 1 1 201 Albuginaceae Albugo candida GCA.000281051.52 Animal necrotroph 99 98 1 201 Albugio candida GCA.000281051.51 Animal necrotroph 99 98 1 201 Albugo candida GCA.000387351.0 Diligate biotroph 95 82 13 </td <td></td> <td>Fistulifera solaris</td> <td>GCA_002217885.1</td> <td>Autotroph</td> <td>97</td> <td>14</td> <td>83</td> <td>[39]</td>		Fistulifera solaris	GCA_002217885.1	Autotroph	97	14	83	[39]
Non-oomycete Microchloropsis salina Thalassiosira occanica CA.00455257.1 Autotroph Autoroph GCA.00455757.1 Autotroph Autoroph 9 95 90 5 [94] Manomycete Thalassiosira occanica CA.000159955.2 Autotroph 97 95 2 [96] Anhanomyces of CA.000159955.2 Autotroph 97 95 2 [96] Anhanomyces ataci Aphanomyces ataci Aphanomyces invadans Saprolegnia diclina Saprolegnia diclina Saprolegnia diclina Saprolegnia parsitica GCA.000281058.1 Animal necrotroph 97 96 1 Muginaceae Albugo tandida CCA.000281058.1 Plant necrotroph 97 96 1 Saprolegnia parsitica GCA.000281057.1 Animal necrotroph 99 98 1 200 Mbuginaceae Albugo tandida GCA.00028157.1 Free-living saprotroph 99 98 1 201 Mbuginaceae Albugo tandida GCA.00028157.1 Free-living saprotroph 99 98 1 201 Muginaceae Albugo tandida GCA.000137325.1 Obligate biotroph 96 90 6 1001 Globiaporangium splendens GCA.00013725.2 Obligate biotroph 98 82 7 1003 Nothophytophthroa catorum GCA.0001		Fragilariopsis cylindrus	GCA_001750085.1	Autotroph	95	95	0	[93]
Microchloropsis salina GCA.004565275.1 Autotroph 92 90 2 95 Phaedcatxlum tricornutum GCA.0010955.2 Autotroph 97 95 2 96 Thalassiosira oceanica GCA.001296195.2 Autotroph 97 95 2 96 Achiya hypogyna GCA.00129405.2 Autotroph 97 95 2 96 Achiya hypogyna GCA.00129405.2 Autotroph 99 98 1 201 Aphanomyces attaci GCA.0002081951.1 Animal necrotroph 99 99 0 100 83 17 Saprolegnia parasitica GCA.0002115.1 Animal necrotroph 97 96 1 201 Albuginaceae Albugo candida GCA.000281575.1 Paint necrotroph 98 98 1 201 Albugo alabachii PRIEA5219 Obligate biotroph 98 86 12 Albugo andida GCA.000378255.1 Obligate biotroph 96 90 6 100 <t< td=""><td>Non comvicate</td><td>Hondaea fermentalgiana</td><td>GCA_002897355.1</td><td>Autotroph</td><td>95</td><td>90</td><td>5</td><td>[94]</td></t<>	Non comvicate	Hondaea fermentalgiana	GCA_002897355.1	Autotroph	95	90	5	[94]
Phaeodactylum tricornutum GCA.000159955.2 Autotroph 97 95 2 [96] Thalassiosira pseudonana GCA.000290195.2 Autotroph 97 95 2 [96] Achipa hypograna GCA.000281055.1 Animal necrotroph 97 95 2 [96] Aphanomyces astaci GCA.000281015.1 Animal necrotroph 90 82 18 Aphanomyces invadans GCA.000281015.1 Animal necrotroph 90 83 17 Saprolegnia parasitica GCA.000281057.1 Plant necrotroph 97 96 1 Saprolegnia parasitica GCA.000281057.1 Animal necrotroph 99 98 1 Albugi alabchii PRIEAS219 Obligate biotroph 98 86 12 Albugo laibachii PRIEAS219 Obligate biotroph 96 90 6 100] Globisporangium irregulare GCA.000287315.1 Plant necrotroph 96 90 6 100] Globisporangium uitimum GCA.000178352.2 Obligate biotroph	Non-oomycete	Microchloropsis salina	GCA_004565275.1	Autotroph	92	90	2	[95]
Thalassioira oceanica GCA.000296195.2 Autotroph 90 90 90 97 Thalassioira oceanica GCA.000281595.1 Animal necrotroph 99 98 1 [20] Achiya hypogyna GCA.000281595.1 Animal necrotroph 90 98 1 [20] Aphanomyces ataci GCA.000280151.1 Animal necrotroph 90 99 0 Saprolegnia diclina GCA.000281051.1 Animal necrotroph 97 96 1 Saprolegnia diclina GCA.000281051.1 Animal necrotroph 99 98 1 Saprolegnia diclina GCA.000281054.2 Animal necrotroph 99 98 1 Albuginaceae Albugo candida GCA.00028157.5 Free-living saportoph 98 86 12 Albuginaceae GCA.000387452.2 Plant necrotroph 96 90 6 100 Globisporangium splendens GCA.0004387451.2 Obligate biotroph 96 2 101 Hypotphthora capsic GCA.0004387452.2 Plant necrotroph<		Phaeodactylum tricornutum	GCA_000150955.2	Autotroph	97	95	2	[96]
Thalassioira pseudonana CGA.000149405.2 Autotroph 97 95 2 96 Achlya hypogyna GGA.000520075.1 Animal necrotroph 99 98 1 20 Aphanomyces astaci GGA.000520075.1 Animal necrotroph 99 99 0 Aphanomyces streiches GGA.000820115.1 Animal necrotroph 99 99 0 Saprolegnia parasitica GGA.00082015.1 Animal necrotroph 99 98 1 Saprolegnia parasitica GGA.000281045.1 Animal necrotroph 99 98 1 Albuginaceae Albugo candida GGA.001078535.1 Obligate biotroph 95 82 13 Bremia lactucae GGA.001078535.1 Obligate biotroph 95 82 13 199 Bremia lactucae GGA.000387425.2 Plant necrotroph 96 96 2 101 Globisporangium irregulare GGA.000387452.5 Plant necrotroph 91 74 17 102 Globisporangium blendens GGA.00173235.2		Thalassiosira oceanica	GCA_000296195.2	Autotroph	90	90	0	[97]
Achlya hypogyna GCA.002815951 Animal necrotroph 99 98 1 [20] Saprolegniaceae Aphanomyces extelicites GCA.0008351751 Plant necrotroph 90 99 0 Aphanomyces invadans GCA.0008351751 Plant necrotroph 90 98 1 Saprolegnia diclina GCA.0002810451 Animal necrotroph 97 96 1 Saprolegnia diclina GCA.0002810451 Animal necrotroph 99 98 1 Albugo candida GCA.000281575.1 Free-living saportoph 99 98 1 20 Albugo candida GCA.00281575.1 Free-living saportoph 98 86 12 Albugo candida GCA.002850215.1 Obligate biotroph 96 90 6 100 Globisporangium irregulare GCA.00387452.2 Plant necrotroph 98 86 12 Hyaloperonospora arabidopsidis GCA.00178252.5 Obligate biotroph 96 90 6 100 Globisporangium utitimum GCA.00172655.2		Thalassiosira pseudonana	GCA_000149405.2	Autotroph	97	95	2	[96]
Aphanomyces astaci GCA.000520075.1 Animal necrotroph 100 82 18 Saprolegniaceae Aphanomyces uteiches GCA.00083175.1 Plant necrotroph 190 83 17 Saprolegnia diclina GCA.00083175.1 Animal necrotroph 97 96 1 Saprolegnia parastica GCA.00028155.1 Animal necrotroph 99 98 1 Albugio candida GCA.00028157.5.1 Animal necrotroph 99 98 1 Albugio candida GCA.00028157.5.1 Free-living saprotroph 99 98 1 Albugio candida GCA.00038157.5.1 Poligate biotroph 95 82 13 99 Bremia lactucae GCA.000387452.2 Plant necrotroph 96 96 2 101 Globisporangium ultimum GCA.000173252.2 Obligate biotroph 98 96 2 101 Globisporangium ultimum GCA.000387455.1 Plant necrotroph 94 93 1 101 Hyophtrophytophthora sapo. GCA.00172352.2		Achlya hypogyna	GCA_002081595.1	Animal necrotroph	99	98	1	[20]
Aphanomyces euteiches GCA.009835175.1 Plant necrotroph 99 99 0 Saprolegniaceae Aphanomyces stellatus GCA.000520115.1 Plant necrotroph 97 96 1 Saprolegnia dicina GCA.000281045.1 Plant necrotroph 99 98 1 Saprolegnia parasitica GCA.000281045.1 Animal necrotroph 99 98 1 Albugo candida GCA.000151545.2 Animal necrotroph 99 98 1 [20] Albugo candida GCA.000178355.1 Free-living saprotroph 98 86 12 Albugo candida GCA.000178352.1 Obligate biotroph 95 82 13 [9] Globisporangium irregulare GCA.000381045.1 Plant necrotroph 96 90 6 100 Globisporangium ultimum GCA.001712635.2 Obligate biotroph 94 93 1 [101] Hyaloperonspora arbidopsidis GCA.001712635.2 Obligate biotroph 94 93 1 [103] Peronospora effusa		Aphanomyces astaci	GCA_000520075.1	Animal necrotroph	100	82	18	
Saprolegniaceae Aphanomyces invadans GCA.000520115.1 Animal necrotroph 100 83 17 Saprolegnia diclina GCA.000835185.1 Plant necrotroph 97 96 1 Saprolegnia parasitica GCA.000281545.2 Animal necrotroph 99 98 1 [20] Albugic candida GCA.000281575.1 Obligate biotroph 98 86 12 Albugic labachii PREA53219 Obligate biotroph 98 86 12 Bremia lactucae GCA.000387425.2 Plant necrotroph 98 96 2 [10] Globisporangium irregulare GCA.000387425.2 Plant necrotroph 98 96 2 [101] Globisporangium ultimum GCA.000387435.1 Plant necrotroph 94 93 1 [101] Hyaloperonospora arabidopsidis GCA.00017335.2 Obligate biotroph 96 2 [101] Globisporangium ultimum GCA.000387495.1 Plant necrotroph 94 93 1 [101] Hyaloperonospora fabidopsidis <td></td> <td>Aphanomyces euteiches</td> <td>GCA_009835175.1</td> <td>Plant necrotroph</td> <td>99</td> <td>99</td> <td>0</td> <td></td>		Aphanomyces euteiches	GCA_009835175.1	Plant necrotroph	99	99	0	
Shipologinaceae Aphanomyces stellatus GCA.00983185.1 Plan herotroph 97 96 1 Saprolegnia jarasitica GCA.0002810451 Animal necrotroph 99 98 1 Albugo candida GCA.0002810451.5 Animal necrotroph 99 98 1 [20] Albugo candida GCA.0001785351.1 Obligate biotroph 98 86 12 Albugo candida GCA.000387425.2 Plan tecrotroph 95 82 13 [99] Globisporangium regulare GCA.000387425.2 Plant necrotroph 91 74 17 [102] Globisporangium splendens GCA.000133051.1 Plant necrotroph 91 74 17 [102] Nothophytophthora sp. GCA.000133051.1 Plant necrotroph 94 93 1 [101] Hyaloperonospora aflusa GCA.000133051.1 Plant necrotroph 94 93 1 Peronospora effusa GCA.000328351.5 Obligate biotroph 96 94 2 [104] Phytophthora catorum <td>Sanralagniagoaa</td> <td>Aphanomyces invadans</td> <td>GCA_000520115.1</td> <td>Animal necrotroph</td> <td>100</td> <td>83</td> <td>17</td> <td></td>	Sanralagniagoaa	Aphanomyces invadans	GCA_000520115.1	Animal necrotroph	100	83	17	
Saprolegnia diclina GCA.000281045.1 Animal necrotroph 99 98 1 Saprolegnia parasitica GCA.00015154.2 Animal necrotroph 99 99 0 [98] Albugo candida GCA.001015154.5 Free-living saprotroph 99 98 1 [20] Albugo laibachii PRIEA53219 Obligate biotroph 98 86 12 Albugo laibachii PRIEA53219 Obligate biotroph 96 90 6 [100] Globisporangium splendens GCA.000387425.2 Plan necrotroph 98 96 2 [101] Globisporangium splendens GCA.00013345.1 Plan necrotroph 94 93 1 [102] Globisporangium ultinum GCA.000173252.2 Obligate biotroph 98 82 7 [103] Notnophytophthora cactorum GCA.00134305.1 Hemibiotroph 94 93 1 [104] Phytophthora castorum GCA.003287351.5 Hemibiotroph 96 94 2 [104] Phytophthora ca	Saprolegillaceae	Aphanomyces stellatus	GCA_009835185.1	Plant necrotroph	97	96	1	
Saprolegnia parasitica GCA.000151545.2 Animal necrotroph 99 99 0 [98] Albugi acadida GCA.00208157.51 Free-living saprotroph 99 98 1 [20] Albugi albachii PRJEA53219 Obligate biotroph 98 86 12 Bernia lactucae GCA.004359215.1 Obligate biotroph 96 90 6 [100] Globisporangium irregulare GCA.004359215.1 Obligate biotroph 98 96 2 [101] Globisporangium ultimum GCA.00038745.2 Plant necrotroph 94 93 1 [101] Hyaloperonospora arabidopsidis GCA.000173235.2 Ubligate biotroph 99 28 62 [38] Peronospora effusa GCA.0003287315.1 Hemibiotroph 96 94 2 [104] Phytophthora capsici GCA.0001712635.2 90 28 62 [38] Peronosporaceae Phytophthora capsici GCA.0001712635.1 Hemibiotroph 96 94 2 [106] <t< td=""><td></td><td>Saprolegnia diclina</td><td>GCA_000281045.1</td><td>Animal necrotroph</td><td>99</td><td>98</td><td>1</td><td></td></t<>		Saprolegnia diclina	GCA_000281045.1	Animal necrotroph	99	98	1	
Thraustotheca clavata GCA.002081575.1 Free-living saprotroph 99 98 1 [20] Albugo candia GCA.001078535.1 Obligate biotroph 98 86 12 Albugo laibachii PRJEA5219 Obligate biotroph 95 82 13 [99] Bremia lactucae GCA.004359215.1 Obligate biotroph 96 90 6 [100] Globisporangium splendens GCA.00037452.2 Plant necrotroph 98 92 7 [101] Globisporangium titimum GCA.000143045.1 Plant necrotroph 94 93 1 [101] Hyaloperonospora arabidopsidis GCA.000172325.2 Obligate biotroph 89 82 7 [103] Peronospora arabidopsidis GCA.001712635.2 90 28 62 [38] Peronospora fifusa GCA.00132515.1 Hemibiotroph 96 94 2 [104] Phytophthora carbid GCA.0032585.1 Hemibiotroph 96 94 2 [106] Phytophthora ringariae<		Saprolegnia parasitica	GCA_000151545.2	Animal necrotroph	99	99	0	[98]
Albugo candida Albugo laibachii GCA.001078535.1 Obligate biotroph Obligate biotroph 98 86 12 Bremia lactucae Globisporangium irregulare Globisporangium splendens Globisporangium ultimum GCA.000359215.1 Obligate biotroph 96 90 6 [100] Globisporangium ultimum GCA.000387425.2 Plant necrotroph 98 96 2 [101] Globisporangium ultimum GCA.000173235.2 Plant necrotroph 94 93 1 [101] Hyaperonospora arabidopsidis GCA.0001712355.2 Obligate biotroph 90 28 62 [38] Peronospora effusa GCA.003287315.1 Hemibiotroph 98 97 1 [105] Phytophthora capsici GCA.003287315.1 Hemibiotroph 98 97 1 [105] Phytophthora capsici GCA.003287315.1 Hemibiotroph 98 97 1 [106] Phytophthora capsici GCA.003287315.1 Hemibiotroph 98 97 1 [106] Phytophthora infestans GCA.001712645.2 Hemibiotroph		Thraustotheca clavata	GCA_002081575.1	Free-living saprotroph	99	98	1	[20]
Abbginaceae Abbginaceae Obligate biotroph 95 82 13 [99] Bremia lactucae GCA.004359215.1 Obligate biotroph 96 90 6 [100] Globisporangium irregulare GCA.000387425.2 Plant necrotroph 98 96 2 [101] Globisporangium ultimum GCA.000387425.2 Plant necrotroph 94 93 1 [101] Globisporangium ultimum GCA.000173235.2 Obligate biotroph 89 82 7 [103] Nothophytophtora sp. GCA.001712635.2 90 28 62 [38] Peronospora effusa GCA.0034395.1 Obligate biotroph 98 97 1 [105] Phytophtora capsici GCA.003287315.1 Hemibiotroph 96 94 2 [106] Phytophtora capsici GCA.003287315.1 Hemibiotroph 96 94 2 [106] Phytophtora infestans GCA.00172645.2 Hemibiotroph 96 94 2 [106] Phytophtora moria	Alburingeses	Albugo candida	GCA_001078535.1	Obligate biotroph	98	86	12	
Bremia lactucae GCA.004359215.1 Obligate biotroph 96 90 6 [100] Globisporangium nutimum GCA.000386115.1 Plant necrotroph 98 96 2 [101] Globisporangium splendens GCA.000386115.1 Plant necrotroph 94 93 1 [102] Globisporangium splendens GCA.000143045.1 Plant necrotroph 94 93 1 [101] Hyaloperonospora arabidopsidis GCA.001712635.2 90 28 62 [38] Peronospora effusa GCA.001712635.1 Obligate biotroph 94 93 1 Phytophthora cactorum GCA.001712635.2 90 28 62 [38] Phytophthora catorum GCA.00325885.1 Hemibiotroph 94 93 1 [105] Phytophthora fragariae GCA.00112455.1 Hemibiotroph 96 94 2 [106] Phytophthora fragariae GCA.001712645.2 Hemibiotroph 91 90 1 [107] Phytophthora megakarya GCA.0	Albuginaceae	Albugo laibachii	PRJEA53219	Obligate biotroph	95	82	13	[99]
Globisporangium irregulareGCA.000387425.2Plant necrotroph98962[101]Globisporangium ultimumGCA.000386115.1Plant necrotroph917417[102]Globisporangium ultimumGCA.000143045.1Plant necrotroph94931[101]Hyaloperonospora arabidopsidisGCA.000173235.2Obligate biotroph89827[103]Nothophytophthora sp.GCA.001712635.2902862[38]Peronospora effusaGCA.003287315.1Hemibiotroph94931Phytophthora cactorumGCA.003287315.1Hemibiotroph96942[106]Phytophthora fagariaeGCA.00032885.1Hemibiotroph96942[106]PeronosporaceaePhytophthora fragariaeGCA.000314365.1Hemibiotroph96942[106]PeronosporaceaePhytophthora infestansGCA.00142945.1Hemibiotroph96960[38]Phytophthora negakaryaGCA.00215365.1Hemibiotroph91901[108]Phytophthora negakaryaGCA.00247585.2Hemibiotroph988711Phytophthora nuctianaeGCA.000373145.1Hemibiotroph988711Phytophthora nuctianaeGCA.000247585.2Hemibiotroph988711Phytophthora nuctianaeGCA.000247585.2Hemibiotroph988711Phytophthora nuctianaeGCA.000247585.2Hemibiotroph98<		Bremia lactucae	GCA_004359215.1	Obligate biotroph	96	90	6	[100]
Globisporangium splendens Globisporangium ultimumGCA.000130415.1 GCA.00013235.2Plant necrotroph917417[102]Hyaloperonospora arabidopsidis Nothophytophthora sp.GCA.00013235.2Obligate biotroph89827[103]Peronospora effusaGCA.0003287315.1Hemibiotroph94931[104]Phytophthora cactorumGCA.003287315.1Hemibiotroph94931[104]Phytophthora cactorumGCA.003287315.1Hemibiotroph96942[106]Phytophthora capsiciGCA.001314365.1Hemibiotroph96942[106]Phytophthora innamomiGCA.00132585.1Hemibiotroph96942[106]Phytophthora infestansGCA.001324365.1Hemibiotroph96960[38]Phytophthora infestansGCA.001712645.2Hemibiotroph919011Phytophthora naciaraeGCA.001712645.2Hemibiotroph919011Phytophthora anaicaraeGCA.001712645.2Hemibiotroph919011Phytophthora anaicaraeGCA.00174285.2Hemibiotroph9887111Phytophthora anaicaraeGCA.00174285.2Hemibiotroph919011108]Phytophthora anaicaraeGCA.00174285.2Hemibiotroph9887111109]Phytophthora anaicaraeGCA.0017855.2Hemibiotroph9887111		Globisporangium irregulare	GCA_000387425.2	Plant necrotroph	98	96	2	[101]
Globisporangium ultimum GCA.00143045.1 Plant necrotroph 94 93 1 [101] Hyaloperonospora arabidopsidis GCA.00173235.2 Obligate biotroph 89 82 7 [103] Nottophytophthora sp. GCA.001712635.2 90 28 62 [38] Peronospora effusa GCA.003843895.1 Obligate biotroph 94 93 1 Phytophthora cactorum GCA.00325885.1 Hemibiotroph 100 98 2 [104] Phytophthora capsici GCA.001314365.1 Hemibiotroph 96 94 2 [106] Peronosporaceae Phytophthora fragariae GCA.001314365.1 Hemibiotroph 96 94 2 [106] Peronosporaceae Phytophthora infestans GCA.001712645.1 Hemibiotroph 96 96 0 [38] Phytophthora anegakarya GCA.00247585.2 Hemibiotroph 98 87 11 Phytophthora assitica GCA.00247585.2 Hemibiotroph 98 87 11 Phyt		Globisporangium splendens	GCA_006386115.1	Plant necrotroph	91	74	17	[102]
Hyaloperonospora arabidopsidis Nothophytophthora sp.GCA.000173235.2 GCA.00173235.2Obligate biotroph89827[103]Peronospora effusaGCA.00173235.2 GCA.003843895.1Obligate biotroph902862[38]Peronospora effusaGCA.003843895.1 GCA.00325885.1Obligate biotroph94931Phytophthora cactorumGCA.00325885.1 HemibiotrophHemibiotroph98971[105]Phytophthora cinnamomiGCA.001712645.1 Hemibiotroph96942[106]PeronosporaceaePhytophthora infestansGCA.0001729455.1 Hemibiotroph96960[38]Peronospora arabidopsidisGCA.001712645.2 HemibiotrophHemibiotroph901[108]Phytophthora nicestansGCA.001712645.2 HemibiotrophHemibiotroph901[108]Phytophthora nicestansGCA.001483015.1 HemibiotrophHemibiotroph901[108]Phytophthora nicestansGCA.001483015.1 Hemibiotroph91901[108]Phytophthora rubiGCA.00247585.2 HemibiotrophHemibiotroph988711Phytophthora sojaeGCA.000373145.1 HemibiotrophHemibiotroph982[107]Phytophthora rubiGCA.0003755.2 HemibiotrophPiant necrotroph94922[117]Phytophthora sojaeGCA.000373145.1 HemibiotrophHemibiotroph90901[107]Phytophthora sojaeGCA.000374		Globisporangium ultimum	GCA_000143045.1	Plant necrotroph	94	93	1	[101]
Nothophytophthora sp.GCA.001712635.2902862[38]Peronospora effusaGCA.003287315.1Obligate biotroph94931Phytophthora cactorumGCA.003287315.1Hemibiotroph100982[104]Phytophthora capsiciGCA.003287315.1Hemibiotroph98971[105]Phytophthora cannamomiGCA.001314365.1Hemibiotroph98971[107]Phytophthora fragariaeGCA.000729455.1Hemibiotroph94931[107]Phytophthora infestansGCA.001712645.2Hemibiotroph96960[38]Phytophthora infestansGCA.001712645.2Hemibiotroph96960[38]Phytophthora infestansGCA.001712645.2Hemibiotroph901[108]Phytophthora aregakaryaGCA.001712635.1Hemibiotroph998613[109]Phytophthora negakaryaGCA.001483015.1Hemibiotroph998613[109]Phytophthora nubiGCA.00147585.2Hemibiotroph988711Phytophthora sojaeGCA.0014755.2Hemibiotroph982[107]Phytophthora sojaeGCA.0014755.2Hemibiotroph99981[110]Phytophthora sojaeGCA.000387455.2Plant necrotroph94922[17]Phytophthora sojaeGCA.00038745.2Plant necrotroph94931[17]Pythium brassicum		Hyaloperonospora arabidopsidis	GCA_000173235.2	Obligate biotroph	89	82	7	[103]
Peronospora effusaGCA.003843895.1Obligate biotroph94931Phytophthora cactorumGCA.003287315.1Hemibiotroph100982[104]Phytophthora capsiciGCA.00032585.1Hemibiotroph98971[105]Phytophthora cinnamomiGCA.001314365.1Hemibiotroph96942[106]PeronosporaceaePhytophthora fragariaeGCA.00142945.1Hemibiotroph94931[107]Phytophthora infestansGCA.001712645.2Hemibiotroph96960[38]Phytophthora nicotianaeGCA.001215365.1Hemibiotroph91901[108]Phytophthora nicotianaeGCA.000247585.2Hemibiotroph988711Phytophthora rubiGCA.000247585.2Hemibiotroph988711Phytophthora rubiGCA.00024755.2Hemibiotroph982[107]Phytophthora sojaeGCA.00038745.2Plant necrotroph99981[110]Phytophthora sojaeGCA.00038745.2Plant necrotroph99991[110]Pythium brassicumGCA.00038745.2Plant necrotroph94922[17]Pythium brassicumGCA.00038745.2Plant necrotroph94931[17]Pythium aphanidermatumGCA.00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA.00038745.2Plant necrotroph94931[17]		Nothophytophthora sp.	GCA_001712635.2		90	28	62	[38]
Phytophthora cactorumGCA.003287315.1Hemibiotroph100982[104]Phytophthora capsiciGCA.000328885.1Hemibiotroph98971[105]Phytophthora cinnamomiGCA.001314365.1Hemibiotroph96942[106]Phytophthora infestansGCA.001314365.1Hemibiotroph94931[107]Phytophthora infestansGCA.00142945.1Hemibiotroph90991Phytophthora kernoviaeGCA.00211365.1Hemibiotroph96960[38]Phytophthora nicetiansGCA.002215365.1Hemibiotroph91901[108]Phytophthora nicetianaeGCA.001483015.1Hemibiotroph998613[109]Phytophthora parasiticaGCA.00247585.2Hemibiotroph98871111Phytophthora sojaeGCA.000149755.2Hemibiotroph99981[110]Phytophthora sojaeGCA.000387455.2Plant necrotroph94922[17]Pythium brassicumGCA.000387455.2Plant necrotroph94922[17]Pythium aphanidermatumGCA.000387455.2Plant necrotroph94931[17]Pythium aphanidermatumGCA.000387455.2Plant necrotroph94931[17]Pythium oligandrumGCA.000387455.2Plant necrotroph94931[17]Pythium oligandrumGCA.000387455.2Plant necrotroph94 <td< td=""><td></td><td>Peronospora effusa</td><td>GCA_003843895.1</td><td>Obligate biotroph</td><td>94</td><td>93</td><td>1</td><td></td></td<>		Peronospora effusa	GCA_003843895.1	Obligate biotroph	94	93	1	
Phytophthora capsiciGCA.000325885.1Hemibiotroph98971[105]Phytophthora cinnamomiGCA.01314365.1Hemibiotroph96942[106]Phytophthora fragariaeGCA.009729455.1Hemibiotroph94931[107]Phytophthora infestansGCA.001712645.2Hemibiotroph96960[38]Phytophthora kernoviaeGCA.002215365.1Hemibiotroph91901[108]Phytophthora nicotianaeGCA.001483015.1Hemibiotroph998613[109]Phytophthora parasiticaGCA.00247585.2Hemibiotroph988711Phytophthora sojaeGCA.0004733145.1Hemibiotroph99981[110]Phytophthora sojaeGCA.0003733145.1Hemibiotroph99981[110]Phytophthora sojaeGCA.00037355.2Hemibiotroph99981[110]Phytophthum vexansGCA.0003755.2Hemibiotroph99981[110]Phytophthum vexansGCA.00038745.2Plant necrotroph94922[17]Pythium abasicumGCA.0003715.1Obligate biotroph10010001Pythium abasicumGCA.00038745.2Plant necrotroph94931[17]Pythium abanidermatumGCA.00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA.00038745.2Plant necrotroph94931		Phytophthora cactorum	GCA_003287315.1	Hemibiotroph	100	98	2	[104]
PeronosporaceaePhytophthora cinnamomiGCA.001314365.1Hemibiotroph96942[106]Phytophthora fragariaeGCA.009729455.1Hemibiotroph94931[107]Phytophthora infestansGCA.000142945.1Hemibiotroph100991Phytophthora kernoviaeGCA.00112645.2Hemibiotroph96960[38]Phytophthora negakaryaGCA.002215365.1Hemibiotroph91901[108]Phytophthora nicotianaeGCA.001483015.1Hemibiotroph998613[109]Phytophthora aprasiticaGCA.00247585.2Hemibiotroph988711Phytophthora sojaeGCA.00047955.2Hemibiotroph981[110]Phytophthora sojaeGCA.00149755.2Hemibiotroph99981[110]Phytophthur avansGCA.00387455.2Plant necrotroph94922[17]Pythium brassicumGCA.00387455.1Plant necrotroph94931[17]PythiaceaePythium aphanidermatumGCA.00387445.2Plant necrotroph94931[17]PythiaceaePythium oigandrumGCA.00387445.2Plant necrotroph94931[17]Pythiane oigandrumGCA.00387445.2Plant necrotroph998712[111]Pythium oigandrumGCA.00387455.1Fungal necrotroph94931[17]Obligate biotroph1001000 <td< td=""><td></td><td>Phytophthora capsici</td><td>GCA_000325885.1</td><td>Hemibiotroph</td><td>98</td><td>97</td><td>1</td><td>[105]</td></td<>		Phytophthora capsici	GCA_000325885.1	Hemibiotroph	98	97	1	[105]
PeronosporaceaePhytophthora fragariaeGCA.009729455.1Hemibiotroph94931[107]Phytophthora infestansGCA.000142945.1Hemibiotroph100991Phytophthora kernoviaeGCA.00112645.2Hemibiotroph96960[38]Phytophthora megakaryaGCA.002215365.1Hemibiotroph91901[108]Phytophthora nicotianaeGCA.00247585.2Hemibiotroph988711Phytophthora parasiticaGCA.000247585.2Hemibiotroph988711Phytophthora sparasiticaGCA.000149755.2Hemibiotroph988711Phytophthora sojaeGCA.000149755.2Hemibiotroph99981[110]Phytophthora sojaeGCA.000387545.2Plant necrotroph94922[17]Pythium brassicumGCA.00087155.1Plant necrotroph94931[17]Pythium phanidermatumGCA.00038745.2Plant necrotroph94931[17]Pythium aphanidermatumGCA.00038745.2Plant necrotroph94931[17]Pythium aphanidermatumGCA.00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA.00038745.2Plant necrotroph94931[17]Pythium aphanidermatumGCA.00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA.00038745.2Plant necrotroph9987 <t< td=""><td></td><td>Phytophthora cinnamomi</td><td>GCA_001314365.1</td><td>Hemibiotroph</td><td>96</td><td>94</td><td>2</td><td>[106]</td></t<>		Phytophthora cinnamomi	GCA_001314365.1	Hemibiotroph	96	94	2	[106]
Phytophthora infestansGCA_000142945.1Hemibiotroph100991Phytophthora kernoviaeGCA_001712645.2Hemibiotroph96960[38]Phytophthora megakaryaGCA_00215365.1Hemibiotroph91901[108]Phytophthora nicotianaeGCA_001483015.1Hemibiotroph998613[109]Phytophthora nicotianaeGCA_000247585.2Hemibiotroph988711Phytophthora rubiGCA_000247585.2Hemibiotroph99982[107]Phytophthora sojaeGCA_000149755.2Hemibiotroph99981[110]Phytopthtur vexansGCA_000387545.2Plant necrotroph94922[17]Pythium brassicumGCA_008271595.1Plant necrotroph1009901Pythium abanidermatumGCA_000387445.2Plant necrotroph94931[17]PythiaceaePythium abanidermatumGCA_00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA_00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA_00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA_00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA_00038745.2Plant necrotroph94931[17]Pythium oligandrumGCA_005966545.1Fungal necrotroph9493	Peronosporaceae	Phytophthora fragariae	GCA_009729455.1	Hemibiotroph	94	93	1	[107]
Phytophthora kernoviae GCA.001712645.2 Hemibiotroph 96 96 0 [38] Phytophthora megakarya GCA.00215365.1 Hemibiotroph 91 90 1 [108] Phytophthora nicotianae GCA.001483015.1 Hemibiotroph 99 86 13 [109] Phytophthora nicotianae GCA.001483015.1 Hemibiotroph 98 87 11 Phytophthora rubi GCA.00247585.2 Hemibiotroph 90 98 2 [107] Phytophthora sojae GCA.00149755.2 Hemibiotroph 99 98 1 [110] Phytophthora sojae GCA.00038745.2 Plant necrotroph 94 92 2 [17] Phytophthora sojae GCA.000387455.2 Plant necrotroph 94 92 2 [17] Phytophthora sojae GCA.000387455.2 Plant necrotroph 100 99 1 [17] Pythium brassicum GCA.000387455.2 Plant necrotroph 94 93 1 [17] Pythium aphanidermat		Phytophthora infestans	GCA_000142945.1	Hemibiotroph	100	99	1	
Phytophthora megakarya GCA.002215365.1 Hemibiotroph 91 90 1 [108] Phytophthora nicotianae GCA.001483015.1 Hemibiotroph 99 86 13 [109] Phytophthora nicotianae GCA.000247585.2 Hemibiotroph 98 87 11 Phytophthora parasitica GCA.000247585.2 Hemibiotroph 98 87 11 Phytophthora sojae GCA.000247585.2 Hemibiotroph 100 98 2 [107] Phytophthora sojae GCA.000149755.2 Hemibiotroph 99 98 1 [110] Phytophthora sojae GCA.000387545.2 Plant necrotroph 94 92 2 [17] Pythium brassicum GCA.000387455.2 Plant necrotroph 100 99 1 Plasmopara halstedii GCA.00038745.2 Plant necrotroph 100 100 0 17] Pythium aphanidermatum GCA.00038745.2 Plant necrotroph 94 93 1 [17] Pythium asidiosum GCA.00038745.2 </td <td></td> <td>Phytophthora kernoviae</td> <td>GCA_001712645.2</td> <td>Hemibiotroph</td> <td>96</td> <td>96</td> <td>0</td> <td>[38]</td>		Phytophthora kernoviae	GCA_001712645.2	Hemibiotroph	96	96	0	[38]
Phytophthora nicotianae GCA.001483015.1 Hemibiotroph 99 86 13 [109] Phytophthora parasitica GCA.00247585.2 Hemibiotroph 98 87 11 Phytophthora parasitica GCA.000247585.2 Hemibiotroph 98 87 11 Phytophthora rubi GCA.009733145.1 Hemibiotroph 100 98 2 [107] Phytophthora sojae GCA.00149755.2 Hemibiotroph 99 98 1 [110] Phytophthum vexans GCA.00387455.2 Plant necrotroph 94 92 2 [17] Pythium brassicum GCA.008271595.1 Plant necrotroph 100 99 1 Plasmopara halstedii GCA.00038745.2 Plant necrotroph 100 100 0 Pythium aphanidermatum GCA.00038745.2 Plant necrotroph 94 93 1 [17] Pythiaceae Pythium aphanidermatum GCA.00129375.1 Animal necrotroph 94 93 1 [17] Pythiaceae Pythium ingiodusu		Phytophthora megakarya	GCA_002215365.1	Hemibiotroph	91	90	1	[108]
Phytophthora parasitica GCA.000247585.2 Hemibiotroph 98 87 11 Phytophthora rubi GCA.000247585.2 Hemibiotroph 100 98 2 [107] Phytophthora rubi GCA.000733145.1 Hemibiotroph 100 98 2 [107] Phytophthora sojae GCA.000149755.2 Hemibiotroph 99 98 1 [110] Phytopythium vexans GCA.000387545.2 Plant necrotroph 94 92 2 [17] Pythium brassicum GCA.008271595.1 Plant necrotroph 100 99 1 Plasmopara halstedii GCA.000387445.2 Plant necrotroph 100 100 0 Pythium aphanidermatum GCA.000387445.2 Plant necrotroph 94 93 1 [17] Pythiaceae Pythium insidosum GCA.00129375.1 Animal necrotroph 94 93 1 [17] Pythium oligandrum GCA.005966545.1 Fungal necrotroph 94 93 1 [17] Optimizera G		Phytophthora nicotianae	GCA_001483015.1	Hemibiotroph	99	86	13	[109]
Phytophthora rubi GCA.009733145.1 Hemibiotroph 100 98 2 [107] Phytophthora sojae GCA.000149755.2 Hemibiotroph 99 98 1 [110] Phytophthora sojae GCA.000387545.2 Hemibiotroph 94 92 2 [17] Phytopythium vexans GCA.000387545.2 Plant necrotroph 94 92 2 [17] Pythium brassicum GCA.008271595.1 Plant necrotroph 100 99 1 Plasmopara halstedii GCA.00038745.2 Plant necrotroph 100 100 0 Pythium aphanidermatum GCA.00038745.2 Plant necrotroph 94 93 1 [17] Pythium aphanidermatum GCA.00038745.2 Plant necrotroph 94 93 1 [17] Pythium aphanidermatum GCA.001029375.1 Animal necrotroph 94 93 1 [17] Pythium oligandrum GCA.005966545.1 Fungal necrotroph 99 87 12 [111] Pythium oligandrum		Phytophthora parasitica	GCA_000247585.2	Hemibiotroph	98	87	11	
Phytophthora sojae GCA.000149755.2 Hemibiotroph 99 98 1 [110] Phytopythium vexans GCA.000387545.2 Plant necrotroph 94 92 2 [17] Pythium brassicum GCA.008271595.1 Plant necrotroph 100 99 1 Plasmopara halstedii GCA.008271595.1 Plant necrotroph 100 100 0 Plasmopara halstedii GCA.000387445.2 Plant necrotroph 94 93 1 [17] Pythium aphanidermatum GCA.00387445.2 Plant necrotroph 94 93 1 [17] Pythium organdrum GCA.000387445.2 Plant necrotroph 94 93 1 [17] Pythium organdrum GCA.001029375.1 Animal necrotroph 94 93 1 [17] Pythium organdrum GCA.005966545.1 Fungal necrotroph 99 87 12 [111]		Phytophthora rubi	GCA_009733145.1	Hemibiotroph	100	98	2	[107]
Phytopythium vexans GCA_000387545.2 Plant necrotroph 94 92 2 [17] Pythium brassicum GCA_000387545.2 Plant necrotroph 100 99 1 Plasmopara halstedii GCA_00000015.1 Obligate biotroph 100 100 0 Pythium aphanidermatum GCA_000387445.2 Plant necrotroph 94 93 1 [17] Pythium aphanidermatum GCA_000387445.2 Plant necrotroph 94 93 1 [17] Pythium insidiosum GCA_00038745.2 Plant necrotroph 94 93 1 [17] Pythium ongandrum GCA_000596545.1 Animal necrotroph 99 87 12 [111] Pythium oligandrum GCA_005966545.1 Fungal necrotroph 100 0 [112]		Phytophthora sojae	GCA_000149755.2	Hemibiotroph	99	98	1	[110]
Pythium brassicum GCA_008271595.1 Plant necrotroph 100 99 1 Plasmopara halstedii GCA_0008271595.1 Obligate biotroph 100 100 0 Pythium aphanidermatum GCA_0008745.2 Plant necrotroph 94 93 1 [17] Pythium insidosum GCA_00038745.2 Plant necrotroph 99 87 12 [111] Pythium oligandrum GCA_005966545.1 Fungal necrotroph 100 0 [112]		Phytopythium vexans	GCA_000387545.2	Plant necrotroph	94	92	2	[17]
Plasmopara halstedii GCA_90000015.1 Obligate biotroph 100 100 0 Pythium aphanidermatum GCA_000387445.2 Plant necrotroph 94 93 1 [17] Pythiaceae Pythium insidiosum GCA_001029375.1 Animal necrotroph 99 87 12 [111] Pythium oligandrum GCA_005966545.1 Fungal necrotroph 100 0 [112]		Pythium brassicum	GCA_008271595.1	Plant necrotroph	100	99	1	
Pythium aphanidermatum GCA_000387445.2 Plant necrotroph 94 93 1 [17] Pythiaceae Pythium insidiosum GCA_001029375.1 Animal necrotroph 99 87 12 [111] Pythium oligandrum GCA_005966545.1 Fungal necrotroph 100 0 [112]		Plasmopara halstedii	GCA_900000015.1	Obligate biotroph	100	100	0	
Pythiaceae Pythium insidiosum GCA_001029375.1 Animal necrotroph 99 87 12 [111] Pythium oligandrum GCA_005966545.1 Fungal necrotroph 100 0 [112]	-	Pythium aphanidermatum	GCA_000387445.2	Plant necrotroph	94	93	1	[17]
Pythium oligandrum GCA_005966545.1 Fungal necrotroph 100 0 [112]	Pythiaceae	Pythium insidiosum	GCA_001029375.1	Animal necrotroph	99	87	12	[111]
		Pythium oligandrum	GCA_005966545.1	Fungal necrotroph	100	100	0	[112]

Table 3 Summary of basidiomycete dataset.

Species name	Plant pathogen	Accession
Acaromyces ingoldii	no	GCA_003144295.1
Anthracocystis flocculosa	no	GCA_000417875.1
Apiotrichum porosum	no	GCA_003942205.1
Ceraceosorus bombacis	yes	GCA_900000165.1
Ceraceosorus guamensis	no	GCA_003144195.1
Ceratobasidium theobromae	yes	GCA_009078325.1
Cryptococcus amylolentus	no	GCA_001720205.1
Cryptococcus gattii	no	GCA_000855695.1
Cryptococcus neoformans	no	GCA_000149245.3
Cryptococcus wingfieldii	no	GCA_001720155.1
Cutaneotrichosporon oleaginosum	no	GCA_001027345.1
Fomitiporia mediterranea	yes	GCA_000271605.1
Jaapia argillacea	no	GCA_000697665.1
Jaminaea rosea	no	GCA_003144245.1
Kalmanozyma brasiliensis	no	GCA_000497045.1
Kockovaella imperatae	no	GCA_002102565.1
Kwoniella bestiolae	no	GCA_000512585.2
Kwoniella dejecticola	no	GCA_000512565.2
Kwoniella pini	no	GCA_000512605.2
Leucosporidium creatinivorum	no	GCA_002105055.1
Malassezia globosa	no	GCA_000181695.1
Malassezia restricta	no	GCA_003290485.1
Malassezia sympodialis	no	GCA_000349305.2
Meira miltonrushii	no	GCA_003144205.1
Melampsora larici-populina	yes	GCA_000204055.1
Microbotryum lychnidis-dioicae	yes	GCA_000166175.1
Mixia osmundae	yes	GCA_000708205.1
Moesziomyces antarcticus	no	GCA_000747765.1
Moesziomyces aphidis	no	GCA_000517465.1
Moniliophthora roreri	yes	GCA_001466705.1
Paxillus involutus	no	GCA_000827475.1
Peniophora sp	no	GCA_900536885.1
Piloderma croceum	no	GCA_000827315.1
Pseudomicrostroma glucosiphilum	no	GCA_003144135.1
Pseudozyma hubeiensis	no	GCA_000403515.1
Puccinia coronata	yes	GCA_002873125.1
Puccinia graminis	yes	GCA_000149925.1
Puccinia sorghi	yes	GCA_001263375.1
Puccinia striiformis	yes	GCA_002920065.1
Puccinia triticina	yes	GCA_000151525.2
Rhizoctonia solani	yes	GCA_000524645.1
Rhodotorula graminis	no	GCA_001329695.1
Rhodotorula toruloides	no	GCA_000320785.2
Saitozyma podzolica	no	GCA_003942215.1
Serendipita indica	no	GCA_000313545.1
Serendipita vermifera	no	GCA_000827415.1
Sporisorium graminicola	no	GCA_005498985.1
Sporisorium reilianum	yes	GCA_900162835.1
Sporisorium scitamineum	yes	GCA_001243155.1
Testicularia cyperi	yes	GCA_003144125.1
Tilletia controversa	yes	GCA_001645045.2
Tilletia laevis	yes	GCA_009428275.1
Tilletia walkeri	yes	GCA_009428295.1
Tilletiaria anomala	yes	GCA_000711695.1
Tilletiopsis washingtonensis	yes	GCA_003144115.1
Trichosporon asahii	no	GCA_000293215.1
Ustilago bromivora	yes	GCA_900080155.1
Ustilago hordei	yes	GCA_000286035.1
Ustilago maydis	yes	GCA_000328475.2
Ustilago trichophora	yes	GCA_900323505.1
Violaceomyces palustris	no	GCA_003144235.1
Wallemia hederae	no	GCA_004918325.1
Wallemia ichthyophaga	no	GCA_000400465.1
Wallemia mellicola	no	GCA_000263375.1
		CCA 001007165 0

Gómez-Pérez and Kemen

Page 24 of 38

Species name	Number of proteomes	Lifestyle
Agaricus bisporus	1	S
Albugo species	2	В
Alternaria species	14	N
Aphanomyces species	2	N
Ascochyta rabiei	1	N
Aspergillus species	34	S
Bipolaris species	(N/H
Biumeria graminis Retrutia cinerca	4	B
Botrytis cinerea	3	
Celletetrichum energies	14	
Colletotrichum species	14	П с
Debaryomyces nansenii Dethictroma contocnorum	1	<u>з</u>
Envirbe necator	1	B
	1	N
Europa lata Europium species	1	ы
Gigaspora margarita	1	B
Gigaspora marganta Globisporongium species	1	N
Gloeophyllum trabeum	1	S
Hyaloperonospora arabidonsidis	1	B
Komagataella nhaffii	5	S
l eptosphaeria maculans	1	н
Macrophomina phaseolina	1	н
Marssonina brunnea	1	н
Melampsora laricis-populina	1	B
Microbotryum violaceum	1	B
Monilinia laxa	1	N
Moniliophthora species	3	Н
Neurospora crassa	2	S
Oidium neolycopersici	1	В
Parastagonospora nodorum	1	N
Peronospora effusa	2	В
Phytophthora species	38	Н
Plasmodiophora brassicae	2	В
Plasmopara halstedii	1	В
Pleurotus ostreatu	1	S
Pseudocercospora fijiensis	1	н
Puccinia species	10	В
Pyrenophora species	18	N
Pyricularia oryzae	4	н
Pythium species	2	N
Ramularia collo-cygni	1	Н
Rhizoctonia solani	7	N
Rhizopus delemar	1	S
Saccharomyces cerevisiae	60	S
Schizosaccharomyces pombe	1	S
Sclerotinia species	3	N
Serpula lacrymans	2	S
Setosphaeria turcica	1	Н
Sphaerobolus stellatus	1	S
Sporisorium reilianum	2	В
Stereum hirsutum	1	S
Synchytrium endobioticum	2	В
Taphrina deformans	1	В
I hraustotheca clavata	1	S
l illetia indica	3	Н
I Illetiaria anomala	1	В
Irametes versicolor	1	5
Iremella mesenterica	2	В
Irichoderma species	7	S
Uncinocarpus reesii	1	5
Ustilaginoidea virens	2	В
Ustilago species	3	В
Venturia inaequalis	4	Н
verticillium danliae	10	н
Yarrowia lipolytica	13	5
Zymoseptoria species	6	н

 Table 4 Summary of genomes used for the lifestyle model construction.

S: saprotroph, N: necrotroph, H: hemibiotroph, B: biotroph

Page 25 of 38

GO number	Name	Ratio in study	Ratio in population	Depth	-log10 of p value
GO:0009064	glutamine family amino acid metabolic process	140/13729	458/237259	8	57.33
GO:0006165	nucleoside diphosphate phosphorylation	99/13729	320/237259	8	40.37
GO:0006096	glycolytic process	80/13729	266/237259	12	31.2
GO:0006399	tRNA metabolic process	239/13729	1881/237259	8	25.41
GO:1901607	alpha-amino acid biosynthetic process	138/13729	830/237259	8	24.68
GO:0006525	arginine metabolic process	54/13729	157/237259	9	23.51
GO:0006546	glycine catabolic process	40/13729	86/237259	10	22.7
GO:0001510	RNA methylation	56/13729	211/237259	8	18.2
GO:0006750	glutathione biosynthetic process	29/13729	56/237259	8	17.46
GO:0034470	ncRNA processing	186/13729	1549/237259	8	16.55
GO:0008033	tRNA processing	130/13729	991/237259	9	13.87
GO:1901606	alpha-amino acid catabolic process	62/13729	359/237259	8	10.58
GO:0006418	tRNA aminoacylation for protein translation	109/13729	880/237259	10	9.59
GO:0009435	NAD biosynthetic process	34/13729	145/237259	11	8.46
GO:0016579	protein deubiquitination	59/13729	393/237259	9	7.36
GO:0009150	purine ribonucleotide metabolic process	119/13729	1092/237259	9	6.92
GO:0015693	magnesium ion transport	28/13729	123/237259	8	6.23
GO:0006633	fatty acid biosynthetic process	35/13729	219/237259	8	4.08
GO:0015031	protein transport	179/13729	2051/237259	8	3.95
GO:0006355	regulation of transcription, DNA-templated	337/13729	4376/237259	9	3.6
GO:0009165	nucleotide biosynthetic process	123/13729	1368/237259	8	2.48
GO:0006605	protein targeting	38/13729	288/237259	10	2.38
GO:0001522	pseudouridine synthesis	35/13729	260/237259	8	2.28
GO:0006364	rRNA processing	57/13729	515/237259	9	2.22
GO:0006511	ubiguitin-dependent protein catabolic process	86/13729	934/237259	8	1.37

 Table 5
 Significant GO terms with a depth higher than 7 found enriched in the positively selected proteins in plant fungal pathogens.

 Table 6 Significantly enriched terms relating to biological processes in the positively selected obligate biotroph proteins.

CO mumber	Nama	Ratio in	Ratio in	Denth	-log10 of
GO number	Name	study	population	Depth	p value
GO:2000113	negative regulation of cellular macromolecule biosynthetic process	12/2535	54/75580	7	3.44
GO:0043648	dicarboxylic acid metabolic process	16/2535	77/75580	6	3.3
GO:0051253	negative regulation of RNA metabolic process	11/2535	47/75580	7	3.18
CO:0031324	negative regulation of cellular metabolic process	14/2535	70/75580	5	2.08
CO:0009022	+PNA processing	22/2525	290/75590	0	2.90
GO.000000000000000000000000000000000000	conversion and biosymptotic and and	20/2535	452/75500	4	2.09
GO:0010055	organic acid biosynthetic process	30/2535	455/75500	4	2.09
GO:0018193	peptidyl-amino acid modification	29/2535	315/75580	<i>'</i>	2.03
GO:0010605	negative regulation of macromolecule metabolic process	21/2535	172/75580	5	2.52
GO:0006399	trina metabolic process	49/2535	597/75580	8	2.49
GO:0009064	glutamine family amino acid metabolic process	16/2535	118/75580	8	2.35
GO:0007018	microtubule-based movement	35/2535	407/75580	3	2.35
GO:0006082	organic acid metabolic process	79/2535	1249/75580	3	2.34
GO:0006396	RNA processing	80/2535	1217/75580	7	2.3
GO:0006468	protein phosphorylation	97/2535	1582/75580	7	2.26
GO:0034637	cellular carbohydrate biosynthetic process	16/2535	120/75580	5	2.26
GO:0016310	phosphorylation	110/2535	1819/75580	5	2.17
GO:0043412	macromolecule modification	206/2535	3434/75580	4	2.13
GO:0019752	carboxylic acid metabolic process	72/2535	1134/75580	5	2.13
GO:0060255	regulation of macromolecule metabolic process	67/2535	1054/75580	4	2.13
GO:0007017	microtubule-based process	41/2535	556/75580	2	2.1
GO:0006725	cellular aromatic compound metabolic process	212/2535	4200/75580	3	2.08
GO:1901360	organic cyclic compound metabolic process	220/2535	4285/75580	3	2.08
GO:0006464	cellular protein modification process	178/2535	3032/75580	6	2.08
GO:0009058	biosynthetic process	168/2535	3331/75580	2	2.00
GO:00044267	cellular protein metabolic process	208/2535	3721/75580	5	2.07
CO:0046483	beterocycle metabolic process	215/2535	4214/75580	3	2.07
CO:0024470	neterocycle metabolic process	41/2525	F60/75590	0	2.07
CO:0034470	ncNNA processing	41/2000 57/2525	990/75590	7	2.05
GO.0034000	nertina metabolic process	160/0525	2100/75500	5	2.05
GO:0090304	nucleic acid metabolic process	245/2535	3199/75500 4960/7EE90	5	2.05
GO:0019536	protein metabolic process	245/2555	4009/75500	4	2.04
GO:0050789	regulation of biological process	111/2535	2041/75580	2	2.04
GO:0044249	cellular biosynthetic process	151/2535	3012/75580	3	2.01
GO:0006139	nucleobase-containing compound metabolic process	192/2535	3938/75580	4	2.0
GO:0016070	RNA metabolic process	122/2535	2310/75580	6	1.97
GO:0044260	cellular macromolecule metabolic process	302/2535	5672/75580	4	1.95
GO:1901566	organonitrogen compound biosynthetic process	91/2535	1648/75580	4	1.94
GO:0034641	cellular nitrogen compound metabolic process	245/2535	4998/75580	3	1.93
GO:1901564	organonitrogen compound metabolic process	340/2535	6708/75580	3	1.92
GO:0043170	macromolecule metabolic process	432/2535	8280/75580	3	1.89
GO:0006807	nitrogen compound metabolic process	500/2535	9762/75580	2	1.87
GO:0044237	cellular metabolic process	541/2535	10414/75580	2	1.86
GO:0071704	organic substance metabolic process	610/2535	11484/75580	2	1.84
GO:0044238	primary metabolic process	554/2535	10641/75580	2	1.84
GO:0008152	metabolic process	643/2535	12234/75580	1	1.83
GO:0046394	carboxylic acid biosynthetic process	31/2535	376/75580	6	1.83
GO:0031323	regulation of cellular metabolic process	58/2535	932/75580	4	1.77
GO:0045892	negative regulation of transcription. DNA-templated	9/2535	43/75580	10	1.69
GO:2000112	regulation of cellular macromolecule biosynthetic process	52/2535	816/75580	6	1.59
CO:0010468	regulation of gene expression	58/2535	036/75580	5	1.59
CO:0065007	biological regulation	113/2535	2204/75580	1	1.50
CO:1001576	organic substance biocurthetic process	150/2535	2124/75590	2	1.57
CO-0005075	carbohydrate metabolic process	10/2535	755/75580	3	1.54
CO-0050704	regulation of collular process	-9/2000	1997/75500	2	1.04
GO:0050794	regulation of cellular process	39/2000 7/0505	1001/1000	3 10	1.40
GO:0009086	methonine biosynthetic process	1/2535	20/75580	10	1.47
GO:0006520	cellular amino acid metabolic process	51/2535	803/75580	0	1.47
GO:0080090	regulation of primary metabolic process	57/2535	927/75580	4	1.44
GO:0044283	small molecule biosynthetic process	45/2535	674/75580	3	1.42
GO:0008652	cellular amino acid biosynthetic process	25/2535	291/75580	7	1.41
GO:1901605	alpha-amino acid metabolic process	29/2535	364/75580	7	1.35

GO-0060255

GO:0060255 GO:0033554 GO:0051716 GO:0050896

GO:0031323 GO:0005975 GO:0050789 GO:0048519

GO:0050794 GO:0044249 GO:0065007

GO:0016070

GO:0016070 GO:0006468 GO:0016310 GO:0009058

GO:0006793 GO:0043412 GO:0006464 GO:00044267

GO:00047207 GO:0006796 GO:0019538 GO:0034645

GO:1901576 GO:0044260

GO:0044280 GO:1901564 GO:0043170 GO:0044237

GO:0006807

GO:0008807 GO:0044238 GO:0071704 GO:0008152

GO:0055085

GO:00055085 GO:0006813 GO:0045892

GO:0009059

regulation of macromolecule metabolic process cellular response to stress cellular response to stimulus

response to stimulus regulation of cellular metabolic process carbohydrate metabolic process regulation of biological process negative regulation of biological process regulation of cellular process cellular biosynthetic process biological regulation BNA metabolic process

biosynthetic process phosphorus metabolic process macromolecule modification cellular protein modification process

cellular protein metabolic process

phosphate-containing compound metabolic process protein metabolic process cellular macromolecule biosynthetic process

transmembrane transport potassium ion transport negative regulation of transcription, DNA-templated

organic substance biosynthetic process cellular macromolecule metabolic process

cellular metabolic process nitrogen compound metabolic process primary metabolic process organic substance metabolic process

macromolecule biosynthetic process

metabolic process

organonitrogen compound metabolic process macromolecule metabolic process

response to stimulus

RNA metabolic process

protein phosphorylation phosphorylation

Page 26 of 38

		Ratio in	Ratio in		-log10 of
GO number	Name	study	population	Depth	p value
GO:0009086	methionine biosynthetic process	13/6255	64/222540	10	3.38
GO:0051274	beta-glucan biosynthetic process	18/6255	104/222540	8	3.31
GO:0051253	negative regulation of RNA metabolic process	16/6255	91/222540	7	3.26
GO:0043648	dicarboxylic acid metabolic process	20/6255	150/222540	6	3.25
GO:0009082	branched-chain amino acid biosynthetic process	18/6255	81/222540	5	3.06
GO:0010605	negative regulation of macromolecule metabolic process	34/6255	300/222540	5	2.96
GO:0034637	cellular carbohydrate biosynthetic process	29/6255	226/222540	5	2.94
GO:0031324	negative regulation of cellular metabolic process	20/6255	129/222540	5	2.79
GO:0009312	oligosaccharide biosynthetic process	19/6255	146/222540	5	2.74
GO:2000113	negative regulation of cellular macromolecule biosynthetic process	15/6255	101/222540	7	2.7
GO:0044262	cellular carbohydrate metabolic process	35/6255	455/222540	4	2.67
GO:0016051	carbohydrate biosynthetic process	37/6255	333/222540	4	2.61
GO:0000097	sulfur amino acid biosynthetic process	15/6255	121/222540	5	2.46
GO:0007017	microtubule-based process	72/6255	1355/222540	2	2.39
GO:0006355	regulation of transcription, DNA-templated	75/6255	1176/222540	9	2.39
GO:2000112	regulation of cellular macromolecule biosynthetic process	84/6255	1307/222540	6	2.39
GO:0051273	beta-glucan metabolic process	19/6255	190/222540	7	2.37
GO:0006396	RNA processing	95/6255	1887/222540	7	2.33
GO:0016071	mRNA metabolic process	52/6255	831/222540	7	2.32
GO:0051171	regulation of nitrogen compound metabolic process	95/6255	1522/222540	4	2.31
GO:0006974	cellular response to DNA damage stimulus	68/6255	1193/222540	4	2.29
GO:0010468	regulation of gene expression	104/6255	1526/222540	5	2.28
GO:0006950	response to stress	88/6255	1528/222540	2	2.27
GO:0006397	mRNA processing	42/6255	664/222540	8	2.27
GO:0019222	regulation of metabolic process	118/6255	1794/222540	3	2.27
GO:0051252	regulation of RNA metabolic process	81/6255	1206/222540	6	2.26

117/6255

72/6255 73/6255

96/6255

100/6255 156/6255 172/6255

35/6255

154/6255 208/6255 178/6255

148/6255

215/6255 235/6255 230/6255

292/6255 366/6255 327/6255

372/6255

291/6255 459/6255 92/6255

209/6255 524/6255

558/6255 713/6255

841/6255

788/6255 941/6255 1007/6255

1069/6255

202/6255 25/6255

11/6255

99/6255

1749/222540

1253/222540 1254/222540

1605/222540

1555/222540

2565/222540 3715/222540

527/222540

3447/222540 5071/222540 4153/222540

3483/222540

4156/222540 4699/222540

5732/222540

6981/222540 7831/222540 7218/222540

8250/222540

6936/222540 11568/222540 1977/222540

5300/222540

13650/222540

15181/222540 15181/222540 19213/222540

22391/222540

22412/222540

25043/222540 26763/222540

28228/222540

5180/222540 336/222540 82/222540

2252/222540

3 6 4

3 2

3

 $\begin{array}{c} 3\\ 3\\ 1\\ 6\\ 7\\ 5\\ 2\\ 3\\ 4\\ 6\\ 5\\ 4\\ 4\\ 5\end{array}$

3 4

1

4

. 6 10

4

2 25

2.24 2.24 2.24

2.22

2.21

2.19 2.12

2.11

2.05 2.01

2.01

2.01

2.0 2.0

1.96

1.94 1.94 1.94

1.92

1.9 1.84

1.82

1.82 1.81

1.79 1.74

1.71

1.69 1.67

1.67

1.66 1.6 1.43

1.39

17

Table 7	Significantly	enriched	terms	relating to	biological	processes	in the	positively	selected
hemibiot	roph proteins	5.							

Gómez-Pérez and Kemen

GO number	Name	Ratio in study	Ratio in nonulation	Depth	-log10 of
GO:0006190	inosine salvage	8/9880	8/129511	11	3.63
GO:0009088	threonine biosynthetic process	8/9880	8/129511	10	3.63
GO:10006425	giutaminyi-trink aminoacylation regulation of response to reactive oxygen species	9/9880	8/129511	6	3.03
GO:0046168	glycerol-3-phosphate catabolic process	13/9880	18/129511	7	3.47
GO:0072350	tricarboxylic acid metabolic process	17/9880	32/129511	6	3.28
GO:0006537	glutamate biosynthetic process	14/9880	15/129511	10	3.23
GO:0009084	glutamine family amino acid biosynthetic process	27/9880	25/129511 86/129511	9	3.14
GO:0005992	trehalose biosynthetic process	26/9880	73/129511	7	3.13
GO:0009082	branched-chain amino acid biosynthetic process	31/9880	67/129511	5	3.1
GO:0060271	cilium assembly	30/9880	122/129511	7	3.06
GO:0009064	glutamine family amino acid metabolic process	47/9880	153/129511	8	2.99
GO:0006144	purine nucleobase metabolic process	18/9880	50/129511	7	2.90
GO:0006555	methionine metabolic process	19/9880	56/129511	9	2.96
GO:0006536	glutamate metabolic process	22/9880	39/129511	9	2.96
GO:0033014	tetrapyrrole biosynthetic process	29/9880	109/129511	5	2.95
GO:0016573	histone acetvlation	22/9880	75/129511	11	2.93
GO:0003341	cilium movement	25/9880	75/129511	4	2.93
GO:0001522	pseudouridine synthesis	45/9880	154/129511	8	2.93
GO:0071897	DNA biosynthetic process	18/9880	34/129511	7	2.92
GO:0006102	isocitrate metabolic process	9/9880	16/129511	7	2.91
GO:0000097	sulfur amino acid biosynthetic process	21/9880	82/129511	5	2.89
GO:0032012	regulation of ARF protein signal transduction	16/9880	45/129511	9	2.88
GO:0030488	tRNA methylation	17/9880	51/129511	11	2.85
GO:0007154	cell communication	28/9880	76/129511	2	2.83
GO:0010205	protein import	33/9880	133/129511	0 0	2.02
GO:0006606	protein import into nucleus	25/9880	83/129511	10	2.8
GO:0051056	regulation of small GTPase mediated signal transduction	28/9880	70/129511	7	2.78
GO:0006414	translational elongation	28/9880	90/129511	6	2.78
GO:0006075	(1->3)-beta-D-glucan biosynthetic process	22/9880	64/129511	9	2.75
GO:0009080 GO:0034637	cellular carbohydrate biosynthetic process	56/9880	165/129511	10	2.74
GO:0006525	arginine metabolic process	19/9880	58/129511	9	2.72
GO:0016051	carbohydrate biosynthetic process	61/9880	238/129511	4	2.72
GO:0001510	RNA methylation	43/9880	205/129511	8	2.72
GO:0000400	glucan biosynthetic process	30/9880	84/129511	7	2.71
GO:0051273	beta-glucan metabolic process	30/9880	150/129511	7	2.69
GO:0006096	glycolytic process	41/9880	150/129511	12	2.69
GO:2000113	negative regulation of cellular macromolecule biosynthetic proces	s 20/9880	71/129511	7	2.69
GO:0070925 GO:0043648	organelle assembly dicarboxylic acid metabolic process	41/9880	120/129511	5	2.08
GO:0043547	positive regulation of GTPase activity	15/9880	21/129511	6	2.67
GO:0010605	negative regulation of macromolecule metabolic process	52/9880	240/129511	5	2.64
GO:0009312	oligosaccharide biosynthetic process	31/9880	106/129511	5	2.63
GO:0006073	cellular glucan metabolic process	31/9880	159/129511	6 7	2.62
GO:1901615	organic hydroxy compound metabolic process	35/9880	190/129511	3	2.59
GO:0006091	generation of precursor metabolites and energy	57/9880	294/129511	3	2.55
GO:0006401	RNA catabolic process	38/9880	181/129511	7	2.53
GO:0072330	monocarboxylic acid biosynthetic process	28/9880	138/129511	1	2.48
GO:0006418	tRNA aminoaculation for protein translation	56/9880	328/129511	10	2.46
GO:0048583	regulation of response to stimulus	51/9880	300/129511	3	2.46
GO:0016052	carbohydrate catabolic process	51/9880	261/129511	4	2.45
GO:0032259	methylation	72/9880	386/129511	2	2.45
GO:0008033 GO:0034472	snRNA 3'-end processing	96/9880	403/129511 22/129511	10	2.45
GO:0072594	establishment of protein localization to organelle	43/9880	251/129511	6	2.44
GO:0006457	protein folding	60/9880	404/129511	2	2.43
GO:0044262	cellular carbohydrate metabolic process	66/9880	330/129511	4	2.43
GO:0046034	ATP metabolic process	43/9880	227/129511	2	2.43
GO:0072521 GO:0031324	perative regulation of cellular metabolic process	22/9880	466/129511 95/129511	4	2.42
GO:0043414	macromolecule methylation	52/9880	320/129511	5	2.34
GO:0008652	cellular amino acid biosynthetic process	79/9880	427/129511	7	2.33
GO:0032787	monocarboxylic acid metabolic process	81/9880	463/129511	6	2.32
GO:0034470 GO:0006813	ncriva processing	140/9880	735/129511 300/120511	8	2.3
GO:0018193	peptidyl-amino acid modification	85/9880	518/129511	7	2.28
GO:0046394	carboxylic acid biosynthetic process	107/9880	573/129511	6	2.28
GO:1901605	alpha-amino acid metabolic process	87/9880	557/129511	7	2.26
GO:0009451	RNA modification	120/9880	540/129511	7	2.26
GO:0010055	DNA recombination	40/9880	233/129511	4	2.23
GO:0034660	ncRNA metabolic process	201/9880	1090/129511	7	2.22
GO:0034613	cellular protein localization	44/9880	274/129511	4	2.22
GO:0006399	tRNA metabolic process	157/9880	748/129511	8	2.21
GO:0007018	microtubule-based movement	116/9880	839/129511	3	2.21
GO:0006520	cellular amino acid metabolic process	167/9880	1097/129511	0 6	2.19
GO:0006355	regulation of transcription, DNA-templated	145/9880	1045/129511	9	2.18
GO:0044283	small molecule biosynthetic process	179/9880	1074/129511	3	2.18
GO:0006812	cation transport	162/9880	1214/129511	5	2.17
GO:0007017	microtubule-based process	141/9880	1103/129511	2	2.16
GO:0010468	regulation of gene expression	183/9880	1307/129511	4	2.15
GO:1901575	organic substance catabolic process	189/9880	1657/129511	3	2.15
GO:0051252	regulation of RNA metabolic process	147/9880	1056/129511	6	2.14
GO:0006629	lipid metabolic process	197/9880	1627/129511	3	2.14
GO:000398	mkiva splicing, via spliceosome	50/9880	321/129511 1738/120511	11	2.12
GO:0006066	alcohol metabolic process	25/9880	121/129511	3	2.11
GO:0006082	organic acid metabolic process	321/9880	1814/129511	3	2.1
GO:0006396	RNA processing	263/9880	1641/129511	7	2.1
GO:0031323	regulation of cellular metabolic process	177/9880	1325/129511	4	2.09

 Table 8 Enriched terms relating to biological processes in the positively selected plant necrotrophs.

 Table 9 Enriched terms relating to biological processes in the positively selected plant necrotrophs (continued).

CC 2000112 regulation of cellular macromolecule biosynthetic process 157/980 1151/129511 6 2.00 CC 2000576 regulation of metabolic process 215/980 153/129511 3 2.00 CC 2000576 regulation of metabolic process 215/980 153/129511 3 2.00 CC 20010147 gene silencing by RNA 8/980 151/129511 8 2.07 CC 20010147 gene silencing by RNA 8/980 151/129511 8 2.07 CC 20010570 regulation of macromolecule hick process 219/980 203/129511 3 2.00 CC 20010570 regulation of acromolecule hick process 208/980 279/129511 2 0.00 CC 20010570 regulation of acromolecule hick hick process 208/980 966/129511 2 0.00 CC 20005670 regulation of acromolecule hick hick process 219/980 96/129511 4 1.90 CC 20005779 regulation of biosynthetic process 219/980 96/129511 4 1.90 CC 20005797 regulation of diogena proces	GO number	Name	Ratio in study	Ratio in	Depth	-log10 of p value
CO.0005976 polyaccharide metabolic process 32/9880 175/129511 4 2.06 CO.000525 regulation of macromolecule metabolic process 210/9880 148/129511 4 2.07 CO.0010451 cellular macromolecule metabolic process 217/9880 162/129511 5 2.06 CO.0010445 cellular macromolecule bioynthetic process 217/9880 162/129511 5 2.06 CO.0010470 RNA metabolic process 433/9880 206/129511 2 2.0 CO.0005096 regulation of Topas activity 17/9880 65/129511 2 2.0 CO.0005096 regulation of Topas activity 17/9880 65/129511 2 2.0 CO.0005097 regulation of Topas activity 17/9880 65/129511 2 2.0 CO.0005097 regulation of molegine process 230/9880 215/129511 2 2.0 CO.0005079 regulation of molegine process 210/9880 164/129511 1 9.0 CO.0005079 regulation of molegice process 24/9880 116/129511 <td>GO:2000112</td> <td>regulation of cellular macromolecule biosynthetic process</td> <td>157/9880</td> <td>1151/129511</td> <td>6</td> <td>2.08</td>	GO:2000112	regulation of cellular macromolecule biosynthetic process	157/9880	1151/129511	6	2.08
CO.001222 regulation of machaolic process 210/9880 113/122511 3 2.08 CO.0003047 gene silencing by RNA 6/9880 15/129511 8 2.07 CO.001464 gene silencing by RNA 6/9880 15/129511 5 2.06 CO.0014645 amide biosynthetic process 216/9880 15/129511 5 2.06 CO.0016607 response to stimulus 114/9880 96/129511 5 2.00 CO.0005067 crabolic process 206/9880 1779/129511 2 2.0 CO.0005067 regulation of GTPase activity 17/9880 65/129511 5 2.0 CO.0005069 regulation of biological process 319/9880 215/129511 4 199 CO.00050790 regulation of biological process 319/9880 216/129511 4 199 CO.00050791 regulation of biological process 319/9880 323/129511 5 199 CO.00050791 regulation of ollogical process 319/9880 327/129511 199 199 <	GO:0005976	polysaccharide metabolic process	32/9880	175/129511	4	2.08
GO:000255 regulation of macromolecule metabolic process 210/9800 1484/129511 4 207 GO:001404 cellular macromolecule biosynthetic process 217/9800 162/129511 5 206 GO:001404 cellular acomonent organization 226/9800 2020/129511 3 202 GO:001406 cellular component organization 226/9800 2020/129511 2 2.0 GO:001406 cellular component organization or biogenesis 233/9800 215/129511 2 2.0 GO:0019050 cellular component organization or biogenesis 233/9800 215/129511 4 1.9 GO:0019150 cellular component asembly 110/9880 965/129511 4 1.9 GO:0019152 carbooic facid metabolic process 310/9880 3119/129511 5 1.9 GO:00019152 carbooic facid metabolic proces 310/9880 3119/129511 1 1.9 GO:0001912 carbooic facid metabolic proces 310/9880 3527/129511 1 1.9 GO:00001912 unclocokan metaboic proces <t< td=""><td>GO:0019222</td><td>regulation of metabolic process</td><td>215/9880</td><td>1513/129511</td><td>3</td><td>2.08</td></t<>	GO:0019222	regulation of metabolic process	215/9880	1513/129511	3	2.08
GO.0031047 gene silencing by FNA 6/9680 15/129511 6 200 GO.0034641 amide biosynthetic process 114/9880 946/129511 5 206 GO.0034641 amide biosynthetic process 129/9880 179/129511 2 20 GO.0030656 cathal component organization 229/9880 179/129511 2 2.0 GO.0030676 catabolic process 236/9880 179/129511 2 2.0 GO.003087 regulation of GTPase activity 17/9880 65/129511 4 1.9 GO.0020870 catabolic process 231/9880 1356/129511 4 1.9 GO.0020870 catabolic process 339/9880 1320/129511 5 1.9 GO.0003078 catabolic process 339/9880 1319/129511 6 1.9 GO.0004281 marcomolecule biograft proces 339/9880 332/129511 1.9 1.9 GO.0006885 regulation of biological proces 337/9880 3322/129511 1.9 1.9 GO.0006811 <td>GO:0060255</td> <td>regulation of macromolecule metabolic process</td> <td>210/9880</td> <td>1484/129511</td> <td>4</td> <td>2.07</td>	GO:0060255	regulation of macromolecule metabolic process	210/9880	1484/129511	4	2.07
G.0.003464 cellular macromolecule biosynthetic process 217/4880 1621/129511 5 2.06 G.0.004404 cellular component organization 226/4880 2030/129511 3 2.02 G.0.004500 response to stimulus 214/4880 277/129511 1 2.02 G.0.005007 regulation of TPase activity 117/4880 66/129511 5 2.0 G.0.005007 cellular component organization or biogenesis 233/4880 215/129511 4 1.0 G.0.005007 cellular component assembly 110/4880 966/129511 4 1.99 G.0.000507 cellular component assembly 110/4880 236/1880 212/129511 4 1.99 G.0.000507 carbox(is acid biograch process 230/4880 312/129511 5 1.99 G.0.000507 biological process 230/4880 312/129511 1.99 1.99 G.0.000507 biological regulation of pl 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	GO:0031047	gene silencing by RNA	8/9880	15/129511	8	2.07
G0.0083604 amide biosynthetic process 114/9880 946/129511 5 2.04 G0.001007 RNA metabolic process 433/980 2030/129511 6 2.01 G0.001007 regulation of GTPase activity 117/980 65/129511 5 2.0 G0.0003087 regulation of GTPase activity 123/980 62/129511 5 2.0 G0.0003059 macronolecule biosynthetic process 233/980 980/129511 4 1.9 G0.0003057 cathobic process 230/980 186/129511 1 1.9 G0.0003075 cathobic process 24/980 323/9129511 1 1.9 G0.0003076 regulation of biological process 326/980 326/129511 1 1.9 G0.000428 small molecule metabolic process 327/980 3327/129511 1 1.9 G0.0005070 regulation of cellular process 37/980 3327/129511 1 1.9 G0.00050704 regulation of cellular process 37/980 3327/129511 1 1.8	GO:0034645	cellular macromolecule biosynthetic process	217/9880	1621/129511	5	2.06
G.0.001043 celluir component organization 226 / 9880 2080 / 129511 2 220 G.0.001057 transports 200 / 9800 1779 / 129511 2 20 G.0.001056 catabolic process 200 / 9800 1779 / 129511 2 20 G.0.001056 catabolic process 233 / 9800 2151 / 129511 2 20 G.0.00171840 callular component argenization or biogenesis 233 / 9800 2161 / 129511 1 99 G.0.0017157 carboxylic acid metabolic process 319 / 9800 234 / 129511 1 199 G.0.001757 regulation of biogical process 345 / 9800 3319 / 129511 1 199 G.0.0004728 mail molecule metabolic process 24 / 9800 3119 / 129511 1 199 G.0.0006805 regulation of hological proces 337 / 9800 3327 / 129511 1 190 G.0.0006811 nucleobase metabolic process 345 / 9800 3527 / 129511 1 191 G.0.0006811 main molecule proces 317 / 9800 3527 / 129511 <td>GO:0043604</td> <td>amide biosynthetic process</td> <td>114/9880</td> <td>946/129511</td> <td>5</td> <td>2.04</td>	GO:0043604	amide biosynthetic process	114/9880	946/129511	5	2.04
GU000007 response to stimulus 433,9880 2694,912511 2 20 GU000505 response to stimulus 141,9800 1273,125511 2 20 GU000505 megulation of CTPse assistion or biogenesis 231,9800 1262,125511 4 19 GU000505 macromolecule biosynthetic process 231,9800 966,129511 4 19 GU000572 callour component assembly 110,9800 926,129511 1 19 GU0005789 regulation of biological process 247,9800 116/,129511 2 1.9 GU0005079 regulation of biological process 247,9800 319/,129511 1 19 GU0005079 regulation of dellaw process 337,9803 332,129511 1 19 GU0005070 regulation of dellaw process 17/9800 661,129511 3 19 GU0005071 pregulation dellaw process 17/9800 661,129511 1 18 GU0005070 regulation of takytic activity 38/9800 327,129511 3 18	GO:0016043	cellular component organization	226/9880	2030/129511	3	2.02
COUMBODE Catabolic process 240,9808 17.99,129511 2 2.0 COUNDERS 233,9808 2151,125511 2 2.0 COUNDERS 233,9808 2151,125511 2 2.0 COUNDERS 233,9808 2151,125511 2 2.0 COUNDERS 233,9808 2161,125511 4 1.99 COUNDERS 230,9808 0661,125511 4 1.99 COUNDERS carbox/ic acid metabolic process 320,9808 3249,125511 1 1.94 COUNDERS regulation of hological process 240,9808 3119,125511 1 1.94 COUNDERS 240,9808 3119,125511 1 1.94 1.94 1.96 1.92 1.94 1.96 1.96 1.92 1.94 1.92 1.94 1.94 1.96 1.92 1.94 1.94 1.96 1.92 1.94 1.96 1.96 1.94 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96	GO:0016070	RNA metabolic process	453/9880	2964/129511	6	2.01
CO.000000 regulation of GTBs activity 137/9800 127/9800 126/9800 CO.00000590 macromolecule biosynthetic process 231/9800 155/120511 4 199 CO.00000590 macromolecule biosynthetic process 231/9800 156/120511 4 199 CO.0000752 carboxylic acid metabolic process 315/9808 2320/129511 2 199 CO.00005079 regulation of biological process 315/9808 346/9808 116/129511 2 199 CO.0005077 regulation of pH 15/9808 53/129511 1 199 CO.0005007 regulation of pH 15/9808 337/129511 1 191 CO.0005007 regulation of pH 15/9808 337/129511 3 191 CO.0005007 regulation of pH 38/9808 303/129511 3 191 CO.0005007 regulation of pH 38/9808 303/129511 3 191 CO.0005079 regulation of pH 38/9808 303/129511 3 183 CO.0005079 </td <td>GO:0009050</td> <td>catabolic process</td> <td>208/9880</td> <td>1779/129511</td> <td>2</td> <td>2.0</td>	GO:0009050	catabolic process	208/9880	1779/129511	2	2.0
CD 0071001 registration on biological graphing 123/0880 155/120511 2 2.0 CD 0000059 macromolecule biosynthetic process 221/0880 165/120511 4 199 CD 0000570 cellular component assembly 110/0880 106/120511 4 199 CD 0001576 organonitrogen compound biosynthetic process 270/0880 324/0129511 4 199 CD 0000576 organonitrogen compound biosynthetic process 355/0880 324/129511 6 193 CD 0000587 regulation of pH 15/9880 327/129511 3 191 CD 00065774 regulation of cellular process 37/9880 337/129511 3 191 CD 00065774 regulation of catalytic activity 38/9800 327/129511 3 188 CD 0006579 regulation of catalytic activity 38/9880 326/129511 3 188 CD 0006579 regulation of catalytic activity 38/9880 326/129511 3 188 CD 0006797 regulation of catalytic activity 38/9880 326/12	GO:0050690	response to sumulus	17/0900	65/129511	5	2.0
CO:0000090 macromolecule biosynthetic process 231/980 1956/129511 4 199 CO:0013752 carboxylic acid metabolic process 270/9880 164/51/29511 5 199 CO:00120752 carboxylic acid metabolic process 319/9880 230/129511 2 199 CO:0005079 regulation of biological process 24/9980 116/129511 2 199 CO:000507 regulation of pH 15/9880 53/129511 8 191 CO:0005007 biological regulation 409/9880 332/129511 3 191 CO:0005077 regulation of pH 38/9880 303/129511 3 191 CO:0005077 regulation of catalytic activity 38/9880 303/129511 3 188 CO:0005079 regulation catalytic activity 38/9880 418/129511 3 188 CO:0005079 regulation catalytic activity 38/9880 433/129511 3 188 CO:0005073 neclular protein modification process 564/9880 476/129511 3 188 <td>GO:0043087</td> <td>cellular component organization or biogenesis</td> <td>233/9880</td> <td>2151/129511</td> <td>2</td> <td>2.0</td>	GO:0043087	cellular component organization or biogenesis	233/9880	2151/129511	2	2.0
C0:0022607 cellular component isosembly 110/9880 106/129511 4 199 C0:0101576 organonitrogen compound biosynthetic process 319/9880 3249/129511 4 199 C0:0000712 nucleobase metabolic process 385/9880 3249/129511 6 139 C0:0000712 nucleobase metabolic process 405/9880 3119/129511 6 139 C0:0000885 regulation of pH 15/9880 327/129511 1 191 C0:00068704 regulation of cellular process 37/9880 327/129511 3 191 C0:00050794 regulation of catalytic activity 38/9880 2267/129511 3 188 C0:0006810 inctar activity 38/9880 3267/129511 3 188 C0:00069704 regulation of catalytic activity 38/9880 3267/129511 3 188 C0:00069709 regulation process 56/9880 503/129511 3 188 C0:0006979 regulation process 56/9880 503/129511 3 188	GO:0009059	macromolecule biosynthetic process	231/9880	1856/129511	4	1.99
C0:0019752 carboxylic acid metabolic process 270/9880 2320/129511 5 1.99 C0:0050759 regulation of biological process 336/9880 2320/129511 2 1.94 C0:000114 small molecule metabolic process 24/9880 116/129511 2 1.92 C0:0005607 biological regulation 400/9880 3327/129511 1 1.91 C0:0005607 regulation of pH 15/9880 3327/129511 3 1.91 C0:0005607 regulation of cellular process 37/9880 3227/129511 3 1.88 C0:0005611 in transport 328/9880 227/129511 3 1.88 C0:0005079 regulation of catalytic activity 38/9880 428/129511 3 1.83 C0:0005079 regulation process 554/9880 4428/129511 3 1.83 C0:0000573 phosphorus metabolic process 511/9880 5511/129511 1 1.83 C0:0000573 phosphorus metabolic process 512/9880 56/129511 1 1.83	GO:0022607	cellular component assembly	110/9880	906/129511	4	1.99
CD:101566 organointrogen compound biosynthetic process 319/9880 3249/129511 4 1.99 CD:0050791 nucleobase metabolic process 426/9880 3119/129511 2 1.92 CD:0050794 regulation of pH 15/9880 337/129511 1 1.91 CD:0050794 regulation of cellular process 37/9880 3327/129511 3 1.91 CD:0050794 regulation of cellular process 137/9880 66/129511 3 1.91 CD:0050794 regulation of catatytic activity 38/9880 2367/129511 4 1.85 CD:0050790 regulation of catatytic activity 38/9880 2367/129511 4 1.86 CD:0050790 regulation of catatytic activity 38/9880 5031/129511 5 1.84 CD:0050790 regulation of catatytic activity 38/9880 5511/129511 3 1.88 CD:0050790 regulation process 564/9880 5511/129511 3 1.88 CD:0050791 organic subtance biosynthetic process 513/9880 540/129511 3 1.88 CD:0050451 alon94444 alon9	GO:0019752	carboxylic acid metabolic process	270/9880	1645/129511	5	1.99
C0:0050789 regulation of biological process 249/9800 116/129511 2 1.94 C0:0044281 small molecule metabolic process 24/9800 116/129511 2 1.92 C0:0005607 biological regulation 409/9800 3327/129511 1 1.91 C0:0005607 biological regulation 409/9800 3327/129511 3 1.91 C0:0005617 regulation of cellular process 37/9800 3327/129511 3 1.91 C0:0005617 regulation of cellular process 543/9800 3267/129511 3 1.83 C0:0004514 regulation of cellular protein modification process 551/9800 4381/129511 5 1.83 C0:0000564 cellular protein modification process 513/9800 5601/129511 1 1.83 2 1.83 2 1.83 2 1.83 2 1.83 2 1.83 2 1.83 2 1.84 2 1.84 2.95 1.84 1.84 2.95 1.84 2.95 1.84 2.95	GO:1901566	organonitrogen compound biosynthetic process	319/9880	2320/129511	4	1.99
GO:0009112 nucleobase metabolic process 24/9800 116/129511 6 159 GO:0006885 regulation of pH 159/9800 352/129511 1 159 GO:00050794 regulation of cellular process 337/9800 3032/129511 3 159 GO:00050794 regulation of catalytic activity 38/9800 3032/129511 3 159 GO:00050796 regulation of catalytic activity 38/9800 3267/129511 3 185 GO:0006116 ion transport 328/9800 3267/129511 3 185 GO:00005079 regulation of catalytic activity 38/9800 3031/29511 3 185 GO:0000579 regulation of actalytic activity 38/9800 533/129511 3 183 GO:0000579 progenic substance biosynthetic process 564/9800 561/9800 533/129511 1 183 GO:0000579 phosphorus metabolic process 613/9800 16/129511 1 18 GO:0000621 petidyl-lysine modification to petidyl-hypusine 8/9800 16/129511 1 18 GO:0000427 cytesinyl-tRNA aminaca	GO:0050789	regulation of biological process	385/9880	3249/129511	2	1.94
G0:0044281 small molecule metabolic process 405/9880 531/129511 2 1.92 G0:0065007 biological regulation 409/980 3327/129511 1 1.91 G0:0065007 regulation of cellular process 377/9880 3327/129511 3 1.91 G0:0065179 regulation of catalytic activity 38/9880 267/129511 3 1.88 G0:0006611 in transport 328/9880 326/7/129511 3 1.88 G0:0000641 netlastance hiosynthetic process 569/9880 433/129511 5 1.84 G0:0000646 cellular protein modification process 551/9880 4761/129511 1 1.83 G0:0000673 phosphorus metabolic process 512/9880 16/129511 1 1.83 G0:0000610 citrate metabolic process 8/9880 16/129511 1 1.83 G0:0000622 cysteinyl-tRNA aminaccylation 8/9880 16/129511 1 1.83 G0:0000673 phosphorus metabolic process 56/9880 66/129511 1 1.79	GO:0009112	nucleobase metabolic process	24/9880	116/129511	6	1.93
G0:0006885 regulation of pH 15/9880 53/129511 8 1.91 G0:00550794 regulation of cellular process 337/9880 3032/129511 3 1.91 G0:0050790 regulation of catalytic activity 38/9880 227/129511 3 1.83 G0:0050790 regulation of catalytic activity 38/9880 227/129511 3 1.88 G0:0004244 cellular biosynthetic process 543/9880 533/129511 5 1.84 G0:000056 eclular process 564/9880 540/1229511 3 1.88 G0:000056 biosynthetic process 512/9880 540/1229511 1 1.82 G0:0000579 phosphorus metabolic process 512/9880 16/129511 1 1.83 G0:000610 citrate metabolic process 512/9880 16/129511 1 1 1.8 G0:000612 petdidi/hylipsiem colfication to petidyl-hypusine 8/9880 16/129511 1 1 1.8 G0:0006423 cystenyi-tRNA aminacylation 8/9880 665/19880 633/129511 1 1 1.79 G0:0006423	GO:0044281	small molecule metabolic process	405/9880	3119/129511	2	1.92
GO:0065007 biological regulation 409/9880 3527/129511 1 1.91 GO:005079 regulation of calluly process 17/9880 66/129511 3 1.91 GO:005079 regulation of calluly cativity 38/9880 227/129511 4 1.85 GO:0000611 ion transport 328/9880 3267/129511 4 1.85 GO:0000744 cellular biosynthetic process 564/9880 438/129511 5 1.84 GO:0000644 cellular potein modification process 551/9880 5511/129511 6 1.82 GO:00006793 phosphorus metabolic process 512/9880 540/129511 1 1.88 GO:0000673 phosphorus metabolic process 8/9880 16/129511 1 1.88 GO:0000673 phosphorus metabolic process 8/9880 16/129511 1 1.88 GO:0000673 posphorus metabolic process 8/9880 16/129511 1 1.88 GO:00006423 cysteinyl-RNA aminoacylation 8/9880 16/129511 1 1.79 GO:0004717 cellular nitrogen compound biosynthetic process 506/9880	GO:0006885	regulation of pH	15/9880	53/129511	8	1.91
GO.1000744 regulation of cellular process 337/9880 3022/129511 3 1.91 GO.0050790 regulation of catalytic activity 38/9880 227/129511 3 1.88 GO.00064149 cellular biosynthetic process 543/9880 4181/129511 3 1.85 GO.0006419 nucleic acid metabolic process 564/9880 4428/129511 3 1.83 GO.0006419 anguitario process 551/9880 4761/129511 2 1.81 GO.0006419 alanyl-tRNA aminacylation 8/9880 16/129511 2 1.81 GO.0006419 alanyl-tRNA aminacylation 8/9880 16/129511 1 1.8 GO.0006422 peptidyl-lysine modification to peptidyl-hypusine 8/9880 16/129511 1 1.8 GO.0006422 restinyl-tRNA aminacylation 8/9880 16/129511 1 1.8 GO.0006422 restinyl-tRNA aminacylation process 26/9880 16/129511 1 1.8 GO.000427 restinyl-tRNA aminacylation process 26/9880 269/129511 1 1.79 GO.000427 restinyl-tRNA aminacylation process	GO:0065007	biological regulation	409/9880	3527/129511	1	1.91
GU.0046148 pigment biosynthetic process 17/9810 60/129511 3 1.91 GU.0050790 regulation of catalytic activity 38/9880 3267/129511 4 1.85 GU.0006611 ion transport 328/9880 3267/129511 3 1.85 GU.0006404 cellular biosynthetic process 569/9880 5033/129511 5 1.84 GU.0006793 phosphorus metabolic process 551/9880 560/129511 1 1.83 GU.0006793 phosphorus metabolic process 512/9880 560/129511 1 1.88 GU.0006101 citrate metabolic process 519/9880 16/129511 1 1.88 GU.000612 peptidyl-lysine modification to peptidyl-hypusine 8/9880 16/129511 1 1.88 GU.000627 cellular protein metabolic process 655/9880 633/129511 1 1.79 GU.000427 cellular protein metabolic process 506/9880 666/129511 1 1.70 GU.000427 cellular aromatic compound metabolic process 756/9880 663/129511	GO:0050794	regulation of cellular process	337/9880	3032/129511	3	1.91
G010006190 regulation of catalytic activity 38 3267/129511 3 1.88 G01006111 ion transport 322/9880 4181/129511 3 1.85 G01006176 organic substance biosynthetic process 566/9880 4428/129511 3 1.83 G01006176 organic substance biosynthetic process 561/9880 4428/129511 1 1.83 G01006673 phosphorus metabolic process 511/9880 461/129511 1 1.83 G01006619 alanyi-tRNA aminoacylation 8/9880 16/129511 1 1.83 G01006612 certare metabolic process 8/9880 16/129511 1 1.8 G01006612 peptidyl-hysine modification to peptidyl-hypusine 8/9880 16/129511 1 1.8 G01004622 cysteinyl-tRNA aminoacylation 8/9880 16/129511 1 1.76 G01004621 cysteinyl-tRNA aminoacylation 8/9880 16/129511 1 1.76 G010046793 macromole motabolic process 265/9880 2604/129511 1 1.77 G01004791 maclebase-containing compound metabolic process	GO:0046148	pigment biosynthetic process	17/9880	66/129511	3	1.91
GU0000611 Int transport 3229/129810 3.00/129811 4 1.85 GO:000424 cellular biosynthetic process 566/9880 5033/129511 5 1.84 GO:000424 cellular protein modification process 561/9880 511/129511 6 1.82 GO:0006793 phosphorus metabolic process 511/9880 540/129511 1 1.83 GO:0006101 citrate metabolic process 512/9880 540/129511 1 1.8 GO:0006101 citrate metabolic process 8/9880 16/129511 1 1.8 GO:0006427 cystein/i-tRNA aminoacylation 8/9880 16/129511 1 1.8 GO:0006427 cellular protein metabolic process 655/9880 6393/129511 1 1.79 GO:000427 cellular protein metabolic process 506/9880 561/129511 1 1.79 GO:000427 cellular protein metabolic process 506/9880 6051/129511 1 1.77 GO:000427 cellular nitrogen compound metabolic process 753/9880 6051/129511 <t< td=""><td>GO:0050790</td><td>regulation of catalytic activity</td><td>38/9880</td><td>227/129511</td><td>3</td><td>1.88</td></t<>	GO:0050790	regulation of catalytic activity	38/9880	227/129511	3	1.88
GOL0004224 Cellular D05ynHetic Process 546/9880 44.01/129511 3 1.60 GOL000030 cellular protein modification process 566/9880 4428/129511 3 1.83 GOL0000305 biosynthetic process 551/9880 4761/129511 2 1.83 GOL0006419 alanyl-tRNA aminoacylation 8/9880 16/129511 1 1.83 GOL0000612 peptidyl-lysine modification to peptidyl-hypusine 8/9880 16/129511 7 1.8 GOL0000612 peptidyl-lysine modification to peptidyl-hypusine 8/9880 16/129511 9 1.8 GOL0004227 cellular nitrogen compound biosynthetic process 265/9880 2604/129511 1 1.79 GOL000423 cysteinyl-tRNA aminoacylation 8/9880 16/129511 4 1.79 GOL0004247 cellular nitrogen compound metabolic process 265/9880 2604/129511 4 1.79 GOL000421 pacter containing compound metabolic process 13/9880 42/129511 7 1.76 GOL0006777 Mo-molybdopterin cofactor biosynthet	GO:0006811	ion transport	328/9880	3207/129511	4	1.85
GO:000500+ organic substance biosynthetic process 564/980 4428/129511 3 1.83 GO:000646 cellular protein modification process 551/980 5511/129511 6 1.83 GO:000673 phosphorus metabolic process 513/980 4761/129511 3 1.83 GO:0006101 citrate metabolic process 512/9800 5401/129511 7 1.83 GO:0006121 citrate metabolic process 8/9880 16/129511 7 1.8 GO:0006423 cystein/tRNA aminoacylation 8/9880 16/129511 1 1.8 GO:0006423 cystein/tRNA aminoacylation 8/9880 16/129511 1 1.79 GO:0006427 cellular protein metabolic process 265/9880 2604/129511 4 1.79 GO:000676 phosphate-containing compound metabolic process 265/9880 6681/129511 4 1.76 GO:0006139 nucleobase-containing compound metabolic process 786/9880 6682/129511 3 1.77 GO:0006777 Mo-molybdopterin cofactor biosynthetic process 73/98	GO:0044249	pusleis asid metabolis process	545/9000	4101/129511 E022/120E11	5	1.05
GO:006464 cellular protein modification process 551/9800 5511/129511 6 GO:006464 cellular protein modification process 613/9800 4761/129511 2 GO:000649 alanyl-tRNA aminoacylation 8/9800 16/129511 1 1.8 GO:000649 alanyl-tRNA aminoacylation 8/9800 16/129511 7 1.8 GO:000642 cpstidyl-Hysine modification to peptidyl-hypusine 8/9880 16/129511 7 1.8 GO:0004271 cellular protein metabolic process 655/9880 6393/129511 1 1.8 GO:0004271 cellular protein metabolic process 506/9880 6361/129511 4 1.79 GO:0004271 cellular protein metabolic process 506/9880 6361/129511 4 1.79 GO:0006776 phoesphere-containing compound metabolic process 586/9880 6267/129511 4 1.77 GO:0006725 cellular aromatic compound metabolic process 753/9880 6732/129511 3 1.77 GO:0006725 cellular aromatic compound metabolic process 759/9880	GO:10030304	organic substance biosynthetic process	564/9880	AA28/129511	3	1.04
GO:0009058 biosynthetic process Dialy9880 476/129511 2 1.81 GO:0006793 alanyi-tRNA aminoacylation 8/9880 16/129511 1 1.81 GO:0006419 alanyi-tRNA aminoacylation 8/9880 16/129511 7 1.8 GO:0006421 cysteinyl-tRNA aminoacylation 8/9880 16/129511 1 1 1.8 GO:0006423 cysteinyl-tRNA aminoacylation 8/9880 16/129511 1 1.8 GO:0006423 cysteinyl-tRNA aminoacylation 8/9880 16/129511 4 1.79 GO:0006423 cysteinyl-tRNA aminoacylatio process 255/9880 2504/129511 4 1.79 GO:0006739 macromolecule modification 672/9880 6267/129511 4 1.78 GO:0006777 Mo-molybdopterin cofactor biosynthetic process 13/9880 42/129511 7 177 GO:0006775 cellular aromatic compound metabolic process 786/9880 688/2129511 3 1.77 GO:0006725 cellular airtrogen compound metabolic process 873/9880	GO:0006464	cellular protein modification process	551/9880	5511/129511	6	1.05
GC:000673 phosphorus metabolic process 512/9880 5401/129511 3 1.8 GO:0006101 citrate metabolic process 8/9880 16/129511 7 1.8 GO:0006102 peptidyl-lysine modification to peptidyl-hypusine 8/9880 16/129511 9 1.8 GO:000612 cystein/ltRNA aminoacylation 8/9880 16/129511 1 1.8 GO:0006427 cellular protein metabolic process 265/9880 6393/129511 5 1.79 GO:000676 phosphate-containing compound metabolic process 206/9880 6361/129511 4 1.76 GO:0006139 nucleobase-containing compound metabolic process 568/9880 6267/129511 4 1.76 GO:0006139 nucleobase-containing compound metabolic process 786/9880 633/129511 3 1.77 GO:0006775 cellular aromatic compound metabolic process 786/9880 671/129511 3 1.77 GO:0006754 cellular aromatic compound metabolic process 759/9880 671/129511 3 1.74 GO:0006745 negative reg	GO:0009058	biosynthetic process	613/9880	4761/129511	2	1.81
GC:0006419 alanyl-tRNA aminoacylation 8/9880 16/129511 11 18 GO:0006101 citrate metabolic process 8/9880 16/129511 7 1.8 GO:000612 peptidyl-lysine odification to peptidyl-hypusine 8/9880 16/129511 11 1.8 GO:000612 cysteinyl-tRNA aminoacylation 8/9880 16/129511 11 1.8 GO:0006427 cysteinyl-tRNA aminoacylation 65/9880 633/129511 4 1.79 GO:0004271 cellular nitrogen compound biosynthetic process 506/9880 506/129511 4 1.79 GO:0006796 phosphate-containing compound metabolic process 13/9880 42/129511 7 1.77 GO:0006797 mucleobase-containing compound metabolic process 13/9880 42/129511 3 1.77 GO:0006725 cellular aromatic compound metabolic process 753/980 6732/129511 3 1.77 GO:0006720 neglular nitrogen compound metabolic process 879/9880 671/129511 3 1.74 GO:0046403 heterocycle metabolic process 877/9880 793/129511 3 1.74	GO:0006793	phosphorus metabolic process	512/9880	5401/129511	3	1.8
GC:00006101 citrate metabolic process 8/9880 16/129511 7 1.8 GC:0006423 cysteinyl-tRNA aminoacylation 8/9880 16/129511 1 1 1.8 GC:0006423 cysteinyl-tRNA aminoacylation 8/9880 16/129511 1 1 1.8 GC:0006767 cellular protein metabolic process 265/9880 6393/129511 4 1.79 GC:0006766 phosphate-containing compound metabolic process 668/9880 6267/129511 4 1.78 GO:0006139 nucleobase-containing compound metabolic process 688/9880 6267/129511 3 1.77 GO:0006775 rellular aromatic compound metabolic process 786/9880 682/129511 3 1.77 GO:0006775 cellular aromatic compound metabolic process 786/9880 673/129511 3 1.77 GO:0006776 mk-molybdopterin cofactor biosynthetic process 786/9880 673/129511 3 1.77 GO:0006775 cellular aromatic compound metabolic process 877/9880 674/129511 3 1.74 GO:	GO:0006419	alanyl-tRNA aminoacylation	8/9880	16/129511	11	1.8
GC:0008612 peptidyl-lysine modification to peptidyl-hypusine 8/9880 16/129511 9 1.8 GC:0006423 cysteinyl-tRNA aminoacylation 8/9880 16/129511 11 1.8 GC:0004267 cellular nitrogen compound biosynthetic process 655/9880 530/129511 4 1.79 GC:0004217 cellular nitrogen compound metabolic process 506/9880 5361/129511 4 1.79 GC:0006139 nucleobase-containing compound metabolic process 688/9880 6051/129511 4 1.78 GO:0006777 Mo-molybdopterin cofactor biosynthetic process 13/9880 42/129511 7 1.77 GO:0006777 Mo-molybdopterin cofactor biosynthetic process 736/9880 6882/129511 3 1.77 GO:0006775 cellular aromatic compound metabolic process 759/9880 674/129511 3 1.74 GO:0004244 heterocycle metabolic process 759/9880 674/129511 3 1.74 GO:001629 negative regulation of gene expression 30/9880 166/129511 1.60 1.71 GO:00162	GO:0006101	citrate metabolic process	8/9880	16/129511	7	1.8
GC:0006423 cysteinyl-tRNA aminacylation 8/9880 16/129511 11 1.8 GO:0044271 cellular nitrogen compound biosynthetic process 655/9880 633/129511 4 1.79 GO:0044271 cellular nitrogen compound biosynthetic process 265/9880 5361/129511 4 1.79 GO:0006796 macromolecule modification 672/9880 651/129511 4 1.78 GO:0006139 nucleobase-containing compound metabolic process 13/9880 6267/129511 7 1.77 GO:0006725 cellular aromatic compound metabolic process 786/9880 6832/129511 3 1.77 GO:0006725 cellular aromatic compound metabolic process 877/9880 7987/129511 3 1.77 GO:0006429 negative regulation of gene expression 30/9880 671/129511 3 1.77 GO:0004643 heterocycle metabolic process 972/9880 971/129511 1 1.63 GO:00046405 netaromolecule metabolic process 972/9880 674/129511 7 1.69 GO:001011 mRNA metaboli	GO:0008612	peptidyl-lysine modification to peptidyl-hypusine	8/9880	16/129511	9	1.8
GC:0044267 cellular protein metabolic process 655/9880 6393/129511 5 1.79 GC:0004271 cellular nitrogen compound biosynthetic process 265/9880 2604/129511 4 1.79 GO:0004312 macromolecule modification 672/9880 6051/129511 4 1.79 GO:0006139 nucleobase-containing compound metabolic process 688/9880 6267/129511 7 1.77 GO:0006139 organic cyclic compound metabolic process 786/9880 682/129511 3 1.77 GO:0006725 cellular aromatic compound metabolic process 787/9880 673/129511 3 1.74 GO:000674 negative regulation of gene expression 30/9880 671/129511 3 1.74 GO:0004643 heterocycle metabolic process 759/9880 671/129511 3 1.74 GO:001071 mRNA metabolic process 130/9880 166/129511 6 1.71 GO:0101624 organonicrogen compound metabolic process 1213/9880 169/219511 1 1.63 GO:0004260 cellular macromolecule	GO:0006423	cysteinyl-tRNA aminoacylation	8/9880	16/129511	11	1.8
GO:0004271 cellular nitrogen compound biosynthetic process 265/9880 2604/129511 4 1.79 GO:000570 phosphate-containing compound metabolic process 506/9880 5631/129511 4 1.78 GO:0006717 Mo-molybdopterin cofactor biosynthetic process 13/9880 42/129511 7 1.77 GO:0006777 Mo-molybdopterin cofactor biosynthetic process 13/9880 42/129511 3 1.77 GO:0006777 cellular aromatic compound metabolic process 753/9880 6732/129511 3 1.77 GO:0006775 cellular aromatic compound metabolic process 753/9880 6732/129511 3 1.77 GO:0006481 cellular nitrogen compound metabolic process 759/9880 6761/129511 3 1.74 GO:0004643 heterocycle metabolic process 759/9880 6761/129511 3 1.74 GO:0040602 cellular nitrogen compound metabolic process 972/9880 166/129511 1 1.62 GO:0016071 mRNA metabolic process 972/9880 166/129511 3 1.62 GO:0016071 macromolecule metabolic process 972/9880 12929/129511	GO:0044267	cellular protein metabolic process	655/9880	6393/129511	5	1.79
GO:000676 phosphate-containing compound metabolic process 506/9880 5361/129511 4 1.79 GO:0006139 nucleobase-containing compound metabolic process 688/9880 6267/129511 4 1.78 GO:0006177 Mo-molybdopterin cofactor biosynthetic process 13/9880 42/129511 7 1.77 GO:000672 cellular aromatic compound metabolic process 786/9880 6882/129511 3 1.77 GO:0006725 cellular aromatic compound metabolic process 877/9880 673/129511 3 1.74 GO:0006431 neterocycle metabolic process 877/9880 671/129511 3 1.74 GO:0006432 neterocycle metabolic process 877/9880 671/129511 3 1.74 GO:0016071 mRNA metabolic process 87/9880 661/129511 6 1.71 GO:0016071 macromolecule metabolic process 972/9880 674/129511 7 1.69 GO:0016071 macromolecule metabolic process 1213/9880 12929/129511 3 1.62 GO:0001607 nitrogen compound metabolic process 1213/9880 1506/129511 3 1.62 <td>GO:0044271</td> <td>cellular nitrogen compound biosynthetic process</td> <td>265/9880</td> <td>2604/129511</td> <td>4</td> <td>1.79</td>	GO:0044271	cellular nitrogen compound biosynthetic process	265/9880	2604/129511	4	1.79
GC:00043412 macromolecule modification 672/9880 6051/129511 4 1.78 GC:0006777 Mo-molybdopterin cofactor biosynthetic process 688/9880 6267/129511 7 1.77 GO:0006777 Mo-molybdopterin cofactor biosynthetic process 786/9880 682/129511 3 1.77 GO:0006725 cellular aromatic compound metabolic process 753/9880 6732/129511 3 1.77 GO:0004431 heterocycle metabolic process 759/9880 671/129511 3 1.77 GO:0004463 heterocycle metabolic process 759/9880 671/129511 3 1.74 GO:0004426 cellular aromatic compound metabolic process 759/9880 671/129511 3 1.74 GO:0004260 cellular macromolecule metabolic process 1213/9880 166/129511 6 1.71 GO:0004270 macromolecule metabolic process 1213/9880 1670/129511 3 1.63 GO:0004170 macromolecule metabolic process 1213/9880 15069/129511 3 1.63 GO:0006307 nitrogen compound metabolic process 1772/9880 17628/129511 2 1.57	GO:0006796	phosphate-containing compound metabolic process	506/9880	5361/129511	4	1.79
GC:0006139 nucleobase-containing compound metabolic process b88/9880 b26/1/129511 4 1.78 GO:000677 Mo-molybdopterin construction process 13/9880 42/129511 3 1.77 GO:000677 molemolybdopterin conspound metabolic process 753/9880 673/129511 3 1.77 GO:0004641 cellular nitrogen compound metabolic process 753/9880 673/129511 3 1.74 GO:0004642 neterocycle metabolic process 879/9880 6710/129511 3 1.74 GO:0016071 mRNA metabolic process 879/9880 6671/129511 7 1.69 GO:0016071 mRNA metabolic process 972/9880 983/129511 4 1.63 GO:0044260 cellular macromolecule metabolic process 972/9880 983/129511 3 1.63 GO:004071 macromolecule metabolic process 1213/9880 123/9880 123/929/129511 3 1.62 GO:0016310 phosphorylation 341/9880 3524/129511 3 1.62 GO:00006071 nitrogen compound metabolic pr	GO:0043412	macromolecule modification	672/9880	6051/129511	4	1.78
GU:000/// Mo-molybdopterin cofactor biosynthetic process 15/980 42/129511 / 1.// GO:1001360 organic cyclic compound metabolic process 766/980 6682/129511 3 1.77 GO:0006725 cellular aromatic compound metabolic process 787/9880 768/129511 3 1.77 GO:0004483 heterocycle metabolic process 877/9880 767/129511 3 1.74 GO:0016071 mRNA metabolic process 879/9880 6710/129511 6 1.71 GO:01016071 mRNA metabolic process 84/9880 674/129511 7 1.69 GO:0004260 cellular macromolecule metabolic process 1213/9880 1292/129511 3 1.63 GO:0004270 macromolecule metabolic process 1213/9880 15069/129511 3 1.63 GO:0004270 posphorylation 341/9880 15069/129511 3 1.62 GO:0004230 phosphorylation 341/9880 172/29511 2 1.57 GO:0004237 cellular metabolic process 1906/9880 17/129511	GO:0006139	nucleobase-containing compound metabolic process	688/9880	6267/129511	4	1.78
GC:1901300 organic cyclic compound metabolic process 780/9880 673/129511 3 1.// G0:000572 cellular aromatic compound metabolic process 753/9880 673/129511 3 1.77 G0:000672 cellular airtorgen compound metabolic process 759/9880 6710/129511 3 1.74 G0:0016029 negative regulation of gene expression 30/9880 166/129511 6 1.71 G0:0016020 negative regulation of gene expression 30/9880 166/129511 6 1.71 G0:0016021 macromolecule metabolic process 972/9880 963/129511 4 1.69 G0:0016171 macromolecule metabolic process 9129/129511 3 1.62 G0:0016310 phosphorylation 341/9880 1569/129511 3 1.62 G0:0004237 cellular metabolic process 1906/9880 1704/129511 2 1.57 G0:0004237 cellular metabolic process 1906/9880 17/129511 8 1.57 G0:0006037 theronyl-tRNA aminoacylation 8/9880 17/129511	GO:0006777	Mo-molybdopterin cofactor biosynthetic process	13/9880	42/129511	(1.77
GO:000125 cellular infragen compound metabolic process 753/9880 7087/129511 3 1.74 GO:0014643 heterocycle metabolic process 877/9880 7887/129511 3 1.74 GO:0014643 heterocycle metabolic process 877/9880 7887/129511 3 1.74 GO:0014643 heterocycle metabolic process 759/9880 6761/129511 3 1.74 GO:0016071 mRNA metabolic process 972/9880 9883/129511 7 1.69 GO:0004200 cellular macromolecule metabolic process 972/9880 9783/129511 4 1.69 GO:0016071 macromolecule metabolic process 1213/9880 1202/129511 3 1.62 GO:0016130 phosphorylation 341/9880 124/129511 5 1.6 GO:000607 nitrogen compound metabolic process 1906/9880 1704/129511 2 1.59 GO:0006435 threanyl-tRNA aminoacylation 8/9880 17/129511 1 1.57 GO:0006432 pinary metabolic process 1962/9880 1704/129511	GO:1901300	organic cyclic compound metabolic process	780/9880	6722/129511	3	1.77
GO.004441 Central microscie metabolic process 759 (9880 671 (129111 3 1.74 GO.004042 heterocycle metabolic process 759 (9880 671 (129511 6 1.74 GO.0010629 negative regulation of gene expression 30/9880 166 (129511 6 1.71 GO.004260 cellular macromolecule metabolic process 84 (9880 674 (129511 4 1.69 GO.004250 cellular macromolecule metabolic process 1213 (9880 15069/129511 3 1.63 GO.0043170 macromolecule metabolic process 1213 (9880 15069/129511 3 1.63 GO.0016310 phosphorylation 341 (9880 3524 (129511 5 1.6 GO.0004237 cellular metabolic process 1772 (9880 1702 (129511 2 1.57 GO.000435 threonyl-tRNA aminoacylation 8 (9880 17/129511 1 1.57 GO.0006152 metabolic process 1962 (9880 17/329511 1 1.57 GO.0003152 metabolic process 1962 (9880 17/129511	GO:0000725	cellular aromatic compound metabolic process	9000	7097/129511	2	1.77
GO:001029 nicktob/set mitabolic process 15/2000 011/129511 5 1.71 GO:001027 negative regulation of gene expression 30/9860 166/129511 7 1.69 GO:001027 mRNA metabolic process 84/9880 674/129511 7 1.69 GO:0010571 macromolecule metabolic process 972/9880 983/129511 3 1.63 GO:0041270 macromolecule metabolic process 1213/9880 1506/129511 3 1.62 GO:0016310 phosphorylation 341/9880 3524/129511 3 1.62 GO:000427 cellular metabolic process 1906/9880 1704/129511 2 1.57 GO:000423 theremyl-tRNA aminoacylation 8/9880 17/129511 8 1.57 GO:000423 primary metabolic process 1962/9880 19530/129511 2 1.57 GO:000423 primary metabolic process 1962/9880 1160/129511 1 1.57 GO:000423 primary metabolic process 1962/9880 19530/129511 1 1.57	GO:0034041	beterocycle metabolic process	750/0880	6710/129511	3	1.74
GO:0016071 mRNA metabolic process 84/9880 674/129511 7 1.69 GO:0016071 mRNA metabolic process 943/9880 674/129511 7 1.69 GO:0016071 macromolecule metabolic process 912/9880 1929/9129511 3 1.63 GO:0004200 organonitrogen compound metabolic process 1213/9880 15069/129511 3 1.62 GO:0006807 nitrogen compound metabolic process 341/9880 3524/129511 5 1.6 GO:0006807 rellular metabolic process 1906/9880 17064/129511 2 1.57 GO:0006423 rellular metabolic process 8/9880 17/129511 1 1.57 GO:0006433 primary metabolic process 1962/9880 1953/129511 1 1.57 GO:0006435 threonyl-tRNA aminoacylation 8/9880 17/129511 1 1.57 GO:0007170 organoic substance metabolic process 1962/9880 1953/129511 1 1.57 GO:0008152 metabolic process 1962/9880 116/1295111 1	GO:0010629	negative regulation of gene expression	30/9880	166/129511	6	1.74
GO:0044260 cellular macromolecule metabolic process 972/9880 9893/129511 4 1.69 GO:1091564 organonitrogen compound metabolic process 1213/9880 12929/129511 3 1.63 GO:0016310 phosphorylation 1472/9880 15069/129511 3 1.62 GO:0004317 cellular metabolic process 1472/9880 15069/129511 2 1.57 GO:0004237 cellular metabolic process 1772/9880 17828/129511 2 1.57 GO:0004237 cellular metabolic process 1906/9880 17/129511 8 1.57 GO:0004237 telurine biosynthetic process 1962/9880 19730/129511 2 1.57 GO:0004238 primary metabolic process 1962/9880 17/129511 1 1.55 GO:0004238 primary metabolic process 2337/9880 2133/129511 2 1.57 GO:0001704 organic substance metabolic process 108/9880 21160/129511 1 1.56 GO:0004235 chluar response to stress 108/9880 232/129511	GO:0016071	mRNA metabolic process	84/9880	674/129511	7	1.69
GO:1901564 organonitrogen compound metabolic process 1213/9880 12929/129511 3 1.63 GO:0043170 macromolecule metabolic process 1472/9880 15069/129511 3 1.62 GO:0016310 phosphorylation 341/9880 3524/129511 5 1.62 GO:0016310 phosphorylation 341/9880 1722/9880 17828/129511 2 1.59 GO:000607 nitrogen compound metabolic process 1906/9880 1706/129511 2 1.57 GO:0006435 thereonyl-tRNA aminoacylation 8/9880 17/129511 8 1.57 GO:0006152 metabolic process 1962/9880 1706/129511 2 1.57 GO:000152 metabolic process 1962/9880 17/129511 1 1.57 GO:0001704 organic substance metabolic process 2927/129511 2 1.57 GO:0001704 organic substance metabolic process 1962/9880 1160/129511 2 1.57 GO:0002704 organic substance metabolic process 19929/129511 1 1.53	GO:0044260	cellular macromolecule metabolic process	972/9880	9893/129511	4	1.69
GO:00043170 macromolecule metabolic process 1472/9880 15069/129511 3 1.62 GO:0016310 phosphorylation 341/9880 352/129511 5 1.6 GO:0006807 nitrogen compound metabolic process 1772/9880 17828/129511 2 1.59 GO:0006807 nitrogen compound metabolic process 1906/9880 17/129511 2 1.57 GO:00064237 cellular metabolic process 8/9880 17/129511 1 1.57 GO:0006435 threonyl-tRNA aminoacylation 8/9880 17/129511 1 1.57 GO:0008152 metabolic process 1962/9880 197/129511 1 1.57 GO:0008152 metabolic process 1962/9880 17/129511 1 1.55 GO:00071704 organic substance metabolic process 2198/9880 22313/129511 1 1.53 GO:0003554 cellular response to stress 108/9880 329/129511 3 1.51 GO:0003555 chromatin organization 47/9880 321/29511 4 1.42	GO:1901564	organonitrogen compound metabolic process	1213/9880	12929/129511	3	1.63
GO:0016310 phosphorylation 341/9880 3524/129511 5 1.6 GO:0006807 nitrogen compound metabolic process 1772/9880 17828/129511 2 1.59 GO:00048237 cellular metabolic process 1906/9880 17064/129511 2 1.57 GO:0004237 cellular metabolic process 1906/9880 17/129511 8 1.57 GO:0004238 primary metabolic process 8/9880 17/129511 11 1.57 GO:0004238 primary metabolic process 1962/9880 19530/129511 2 1.57 GO:00071704 organic substance metabolic process 2337/9880 21160/129511 1 1.56 GO:00071704 organic substance metabolic process 2192/9880 21160/129511 3 1.53 GO:000525 chromatin organization 47/9880 323/129511 3 1.51 GO:0006325 chromatin organization 47/9880 323/129511 4 1.42 GO:0006325 chromatin organization 47/9880 323/129511 4 1.42	GO:0043170	macromolecule metabolic process	1472/9880	15069/129511	3	1.62
GO:0006807 nitrogen compound metabolic process 1772/9880 17828/129511 2 1.59 GO:004237 cellular metabolic process 1906/9880 17046/129511 2 1.57 GO:0004908 leucine biosynthetic process 1906/9880 17046/129511 2 1.57 GO:0004935 threonyl-tRNA aminoacylation 8/9880 17/129511 1 1.57 GO:0006435 primary metabolic process 1962/9880 1503/129511 2 1.57 GO:0008152 metabolic process 1962/9880 1503/129511 1 1.55 GO:0007174 organic substance metabolic process 2192/9880 2133/129511 1 1.55 GO:0003554 negative regulation of biological process 198/9880 929/129511 3 1.51 GO:0003555 chiloar timoganization 47/9880 323/129511 4 1.42 GO:000355 chiloar timoganization 47/9880 323/129511 4 1.39 GO:0003556 response to stress 129/9880 162/129511 2 <td< td=""><td>GO:0016310</td><td>phosphorylation</td><td>341/9880</td><td>3524/129511</td><td>5</td><td>1.6</td></td<>	GO:0016310	phosphorylation	341/9880	3524/129511	5	1.6
GO:0044237 cellular metabolic process 1906/9880 17/129511 2 1.57 GO:0006435 threonyl-tRNA aminoacylation 8/9880 17/129511 1 1.57 GO:0006435 threonyl-tRNA aminoacylation 8/9880 17/129511 1 1.57 GO:0004238 primary metabolic process 1962/9880 19530/129511 2 1.57 GO:0004325 metabolic process 2337/9880 2331/129511 1 1.55 GO:0004519 metabolic process 2337/9880 2313/129511 1 1.55 GO:0004516 regulation of biological process 2192/9880 21160/129511 2 1.54 GO:0004355 cellular response to stress 108/9880 92/129511 3 1.51 GO:0006325 chromatin organization 47/9880 323/129511 4 1.42 GO:100136 carbohydrate derivative catabolic process 129/9880 162/129511 2 1.38 GO:0006325 chromatin organization 47/9880 323/129511 4 1.42	GO:0006807	nitrogen compound metabolic process	1772/9880	17828/129511	2	1.59
GO:000908 leucine biosynthetic process 8/9880 17/129511 8 1.57 GO:0006423 primary metabolic process 8/9880 17/129511 11 1.57 GO:0006423 primary metabolic process 1962/9880 19530/129511 2 1.57 GO:0004238 metabolic process 2937/9860 2133/129511 1 1.56 GO:0004704 organic substance metabolic process 2192/9880 21310/129511 2 1.57 GO:00071704 organic substance metabolic process 2192/9880 21310/129511 2 1.53 GO:00071704 organic substance metabolic process 108/9880 292/129511 3 1.53 GO:0006325 churat regionse to stress 108/9880 323/129511 4 1.42 GO:0006325 chromatin organization 47/9880 323/129511 4 1.42 GO:0006326 chromatin organization 47/9880 79/129511 4 1.39 GO:0006326 chromatin organization 47/9880 129/9880 162/129511 2 </td <td>GO:0044237</td> <td>cellular metabolic process</td> <td>1906/9880</td> <td>17064/129511</td> <td>2</td> <td>1.57</td>	GO:0044237	cellular metabolic process	1906/9880	17064/129511	2	1.57
GO:0006435 threonyl-tRNA aminoacylation 8/9880 17/129511 11 1.57 GO:0004253 primary metabolic process 1962/9880 1953/129511 2 1.57 GO:0008152 metabolic process 2337/9880 22313/129511 1 1.55 GO:0008150 negative regulation of biological process 2192/9880 21160/129511 2 1.54 GO:0003554 cellular response to stress 108/9880 929/129511 3 1.53 GO:0003555 chloration organization 47/9880 321/29511 4 1.42 GO:0001706 response to stress 129/9880 136/129511 4 1.42 GO:0001706 carbohydrate derivative catabolic process 129/9880 136/129511 4 1.39 GO:0000234 water-soluble vitamin biosynthetic process 129/9880 116/129511 2 1.38 GO:0002344 water-soluble vitamin biosynthetic process 129/9880 156/129511 5 1.37 GO:0002344 mathydic process to pulactativid Sclactoric clustristices 8/9880	GO:0009098	leucine biosynthetic process	8/9880	17/129511	8	1.57
GC:0004238 primary metabolic process 1962/9880 1953/0129511 2 1.57 GC:00017104 organic substance metabolic process 2337/9880 22313/129511 1 1.56 GC:00017104 organic substance metabolic process 2192/9880 21160/129511 2 1.54 GC:00048519 negative regulation of biological process 57/9880 414/129511 3 1.53 GC:0006325 cellular response to stress 108/9880 929/129511 4 1.42 GO:10010525 chromatin organization 47/9880 323/129511 4 1.42 GO:0006950 response to stress 18/9880 79/129511 4 1.39 GO:0006950 response to stress 129/9880 1162/129511 2 1.38 GO:0006950 response to stress 129/9880 1162/129511 2 3.38 GO:0004234 water-soluble vitamin biosynthetic process 28/9880 156/129511 5 1.37 GO:0004234 metabulic process 10.42 58/08080 156/129511	GO:0006435	threonyl-tRNA aminoacylation	8/9880	17/129511	11	1.57
GC:0008152 metabolic process 2337/9880 2133/129511 1 1.56 GC:001704 organic substance metabolic process 2192/9880 21160/129511 2 1.54 GC:0017051 negative regulation of biological process 57/9880 9214/129511 3 1.53 GO:0003255 cellular response to stress 108/9880 929/129511 3 1.51 GO:0006325 chromatin organization 47/9880 323/129511 4 1.42 GO:0006326 carbohydrate derivative catabolic process 129/9880 1162/129511 2 1.38 GO:00042364 water-soluble vitamin biosynthetic process 129/9880 1162/129511 2 1.38 GO:00042364 water-soluble vitamin biosynthetic process 129/9880 156/129511 5 1.37	GO:0044238	primary metabolic process	1962/9880	19530/129511	2	1.57
GC:00171/04 organic substance metabolic process 2192/9880 21100/129511 2 1.53 GC:0048554 cellular response to stress 57/9880 414/129511 3 1.53 GC:00405354 cellular response to stress 108/9880 929/129511 3 1.51 GO:0006325 chromatin organization 47/9880 323/129511 4 1.42 GO:0006950 response to stress 18/9880 79/129511 4 1.39 GO:0006950 response to stress 129/9880 1162/129511 2 1.38 GO:00042364 water-soluble vitamin biosynthetic process 28/9880 156/129511 5 1.37 GO:00042364 mather/alloward actabolic process 28/9880 156/129511 5 1.37	GO:0008152	metabolic process	2337/9880	22313/129511	1	1.56
GO:000355 Inegative regulation to biological process 57/9600 414/129511 3 1.53 GO:001355 cellular response to stress 108/9880 929/129511 3 1.51 GO:000355 chromatin organization 47/9880 323/129511 4 1.42 GO:1001655 carbohydrate derivative catabolic process 18/9880 79/129511 4 1.39 GO:0006950 response to stress 129/9880 1162/129511 2 1.38 GO:00042364 water-soluble vitamin biosynthetic process 28/9880 156/129511 5 1.37 GO:00042364 methydipwal catabolic process 28/9880 156/129511 5 1.37	GO:00/1/04	organic substance metabolic process	2192/9880	21100/129511	2	1.54
October Constraint repurise to stress 100/9000 929/14/911 3 1.91 GO:000635 chromatin organization 47/9880 323/129511 4 1.42 GO:100155 carbohydrate derivative catabolic process 18/9880 79/129511 4 1.39 GO:0006350 response to stress 129/9880 116/129511 2 1.38 GO:00042364 water-soluble vitamin biosynthetic process 129/9880 156/129511 5 1.37 GO:00042364 methydipuryal catabolic process 28/9880 156/129511 5 1.37	CO-0033EE1	regulative regulation of biological process	108/0000	414/129011 020/120511	3	1.55
Construction carbohydrate derivative catabolic process 18/9880 79/129511 4 1.32 GO:000123 carbohydrate derivative catabolic process 18/9880 79/129511 4 1.39 GO:000123 response to stress 129/9880 1162/129511 2 1.38 GO:0004236 water-soluble vitamin biosynthetic process 28/9880 156/129511 5 1.37 GO:0010243 methydigwaya catabolic process 28/9880 156/129511 5 1.37	GO:00335554 GO:0006325	chromatin organization	100/9000	323/129511	3 /	1.51
Science 12/2001 4 1.5 G0:0006950 response to stress 129/9880 1162/129511 2 1.38 G0:00042364 water-soluble vitamin biosynthetic process 28/9880 1162/129511 5 1.37 G0:001042364 water-soluble vitamin biosynthetic process 28/9880 156/129511 5 1.37	GO:1001136	carbohydrate derivative catabolic process	18/9880	79/129511	4	1.42
GO:0042364 water-soluble vitamin biosynthetic process 28/9880 156/129511 5 1.37 GO:0012043 methydrwyal catabolic process to Dulactate via SulactoryLedutatione 8/0880 18/120511 0 125	GO:0006950	response to stress	129/9880	1162/129511	2	1.38
GO:0019243 methyldyoxal catabolic process to D-lactate via S-lactovi-dutathione 8/0880 18/100511 0 1.25	GO:0042364	water-soluble vitamin biosynthetic process	28/9880	156/129511	5	1.37
00.0015210 meanyigiyoxai catabolic process to briactate via priactovirgititatiliolic 0/3000 10/123311 9 1.33	GO:0019243	methylglyoxal catabolic process to D-lactate via S-lactoyl-glutathione	8/9880	18/129511	9	1.35
GO:0019310 inositol catabolic process 8/9880 18/129511 7 1.35	GO:0019310	inositol catabolic process	8/9880	18/129511	7	1.35
GO:0018344 protein geranylgeranylation 8/9880 18/129511 8 1.35	GO:0018344	protein geranylgeranylation	8/9880	18/129511	8	1.35
GO:0006566 threonine metabolic process 11/9880 34/129511 9 1.3	GO:0006566	threonine metabolic process	11/9880	34/129511	9	1.3

Gómez-Pérez and Kemen

Page 29 of 38

					1100
go number	name	ratio in study	ratio in	depth	-log10 of
GO:0006190	inosine salvage	8/7214	8/114793	11	4 22
GO:0032955	regulation of division septum assembly	6/7214	6/114793	8	3.9
GO:0036159	inner dynein arm assembly	6/7214	6/114793	8	3.9
GO:0046168	glycerol-3-phosphate catabolic process	12/7214	20/114793	7	3.7
GO:0015940	pantothenate biosynthetic process	15/7214	20/114793	8	3.7
GO:0072350	tricarboxylic acid metabolic process	13/7214	26/114/93	5	3.41
GO:0002098	tRNA wobble uridine modification	18/7214	50/114793	12	3.29
GO:0030488	tRNA methylation	15/7214	44/114793	11	3.24
GO:0051253	negative regulation of RNA metabolic process	17/7214	44/114793	7	3.24
GO:0003341	cilium movement	24/7214	57/114793	4	3.24
GO:0006536	glutamate metabolic process	15/7214	38/114793	9	3.23
GO:0009086	methionine biosynthetic process	14/7214	33/114793	10	3.11
GO:0006414 GO:0071897	DNA biosynthetic process	21/7214	30/114/93	0	3.09
GO:1901031	regulation of response to reactive oxygen species	6/7214	7/114793	6	3.08
GO:0006425	glutaminyl-tRNA aminoacylation	6/7214	7/114793	11	3.08
GO:0051103	DNA ligation involved in DNA repair	6/7214	7/114793	8	3.08
GO:0032958	inositol phosphate biosynthetic process	13/7214	18/114793	7	3.05
GO:0001522	pseudouridine synthesis	29/7214	138/114793	8	3.03
GO:0006006	protein import into nucleus	24/7214	81/114/93	10	3.0
GO:0017186	peptidyl-pyroglutamic acid biosynthetic process, using glutaminyl-peptide cyclotransferase	11/7214	14/114793	9	2.98
GO:0043648	dicarboxylic acid metabolic process	27/7214	105/114793	6	2.98
GO:0045892	negative regulation of transcription, DNA-templated	16/7214	40/114793	10	2.94
GO:0006525	arginine metabolic process	15/7214	53/114793	9	2.93
GO:0051056	regulation of small GTPase mediated signal transduction	27/7214	82/114793	7	2.92
GO:0009082	branched-chain amino acid biosynthetic process	24/7214	60/114/93	5	2.91
GO:0010575	notion acetylation	19/7214	83/114793	5	2.03
GO:0009084	glutamine family amino acid biosynthetic process	22/7214	83/114793	9	2.83
GO:0007154	cell communication	18/7214	54/114793	2	2.82
GO:0006537	glutamate biosynthetic process	11/7214	19/114793	10	2.81
GO:0006166	purine ribonucleoside salvage	13/7214	19/114793	10	2.81
GO:0034637	cellular carbohydrate biosynthetic process	25/7214	133/114793	5	2.8
GO:0042398	cellular modified amino acid biosynthetic process	23/7214	116/114/93	5	2.79
GO:0006066	aiconol metabolic process	26/7214	116/114793	4 9	2.79
GO:0009064	glutamine family amino acid metabolic process	40/7214	142/114793	8	2.79
GO:0033014	tetrapyrrole biosynthetic process	21/7214	76/114793	5	2.78
GO:0001510	RNA methylation	40/7214	188/114793	8	2.78
GO:0009966	regulation of signal transduction	43/7214	245/114793	5	2.77
GO:0046034	ATP metabolic process	32/7214	198/114793	2	2.75
GO:0006096	glycolytic process	26/7214	134/114793	12	2.74
GO:0000398	heta-glucan biosynthetic process	17/7214	62/114793	8	2.75
GO:0016052	carbohydrate catabolic process	37/7214	236/114793	4	2.69
GO:0072330	monocarboxylic acid biosynthetic process	31/7214	101/114793	7	2.68
GO:0031324	negative regulation of cellular metabolic process	18/7214	70/114793	5	2.65
GO:000097	sulfur amino acid biosynthetic process	20/7214	70/114793	5	2.65
GO:0032012	regulation of ARF protein signal transduction	16/7214	56/114793	9	2.6
GO:0060271	Cilium assembly PNA colicing	27/7214	221/114793	6	2.59
GO:1901615	organic hydroxy compound metabolic process	37/7214	192/114793	3	2.59
GO:0046394	carboxylic acid biosynthetic process	96/7214	495/114793	6	2.53
GO:0006480	N-terminal protein amino acid methylation	6/7214	8/114793	9	2.52
GO:0070925	organelle assembly	35/7214	215/114793	5	2.52
GO:0018205	peptidyl-lysine modification	29/7214	165/114793	8	2.52
GO:0008033	tRINA processing	92/7214	407/114793	9	2.51
GO:0008652	cellular amino acid biosynthetic process	65/7214	388/114793	7	2.51
GO:0018193	peptidyl-amino acid modification	65/7214	497/114793	7	2.5
GO:0032787	monocarboxylic acid metabolic process	64/7214	357/114793	6	2.47
GO:0006400	tRNA modification	52/7214	220/114793	10	2.46
GO:0010605	negative regulation of macromolecule metabolic process	42/7214	220/114793	5	2.46
GO:0032259	methylation	64/7214	377/114793	2	2.46
GO:0010055	mRNA metabolic process	80/7214	646/114793	4	2.45
GO:1901607	alpha-amino acid biosynthetic process	48/7214	329/114793	8	2.42
GO:0048583	regulation of response to stimulus	49/7214	258/114793	3	2.42
GO:1901605	alpha-amino acid metabolic process	71/7214	546/114793	7	2.4
GO:0042364	water-soluble vitamin biosynthetic process	24/7214	131/114793	5	2.39
GO:0043414	macromolecule methylation PNA modification	48/7214	304/114/93	5	2.38
GO:0005451	nucleoside diphosphate phosphorylation	27/7214	159/114793	8	2.35
GO:0006397	mRNA processing	67/7214	528/114793	8	2.35
GO:0006399	tRNA metabolic process	132/7214	725/114793	8	2.35
GO:0034660	ncRNA metabolic process	167/7214	1014/114793	7	2.33
GO:0043604	amide biosynthetic process	110/7214	802/114793	5	2.32
GO:0007017	microtubule-based process	116/7214	1016/114793	2	2.32
GO:0006518	peptide metabolic process	111/7214	990/114793 600/114702	5	2.31
GO:0006412	translation	91/7214	714/114793	7	2.28
GO:0044283	small molecule biosynthetic process	158/7214	943/114793	3	2.27
GO:0072594	establishment of protein localization to organelle	35/7214	227/114793	6	2.27
GO:0006355	regulation of transcription, DNA-templated	112/7214	1004/114793	9	2.24
GO:0031323	regulation of cellular metabolic process	130/7214	1282/114793	4	2.21
GO:0010468	regulation of gene expression	143/7214	1284/114/93	5	2.2
GO:1901575	organic substance catabolic process	147/7214	1452/114793	3	2.19
GO:0043603	cellular amide metabolic process	135/7214	1100/114793	4	2.19
GO:0034645	cellular macromolecule biosynthetic process	188/7214	1454/114793	5	2.19
GO:0006520	cellular amino acid metabolic process	132/7214	1045/114793	6	2.18
GO:0044262	cellular carbohydrate metabolic process	37/7214	258/114793	4	2.17
GO:0051171	regulation of nitrogen compound metabolic process	134/7214	1260/114793	4	2.17
GO:0000082 GO:2000112	organic acid metabolic process regulation of cellular macromolecule biosynthetic process	208/1214 118/7014	1030/114/93	3	2.17
GO:0051252	regulation of RNA metabolic process	113/7214	1021/114793	6	2.16
GO:0006396	RNA processing	240/7214	1505/114793	7	2.13
GO:0006091	generation of precursor metabolites and energy	38/7214	272/114793	3	2.12
GO:0009056	catabolic process	154/7214	1580/114793	2	2.12

Table 10 enriched terms relating to biological processes in the positively selected animal necrotrophs.

Gómez-Pérez and Kemen

Page 30 of 38

 Table 11 Enriched terms relating to biological processes in the positively selected animal necrotrophs (continued).

GO number	Name	Ratio in study	Ratio in population	Depth	-log10 of p value
GO:0006629	lipid metabolic process	143/7214	1475/114793	3	2.12
GO:0060255	regulation of macromolecule metabolic process	160/7214	1442/114793	4	2.11
GO:0019752	carboxylic acid metabolic process	216/7214	1483/114793	5	2.09
GO:0034613	cellular protein localization	36/7214	248/114793	4	2.08
GO:1901566	organonitrogen compound biosynthetic process	277/7214	2065/114793	4	2.08
GO:0009059	macromolecule biosynthetic process	189/7214	1710/114793	4	2.07
GO:0006102	isocitrate metabolic process	7/7214	13/114793	7	2.05
GO:0050789	regulation of biological process	306/7214	3078/114793	2	2.03
GO:0016043	cellular component organization	184/7214	2008/114793	3	2.02
GO:0044281	small molecule metabolic process	317/7214	2782/114793	2	2.01
GO:0006401	RNA catabolic process	29/7214	185/114793	7	2.01
GO:0044271	cellular nitrogen compound biosynthetic process	215/7214	2275/114793	4	2.0
GO:0016070	RNA metabolic process	372/7214	2742/114793	6	2.0
GO:0050794	regulation of cellular process	270/7214	2861/114793	3	1.97
GO:0071840	cellular component organization or biogenesis	189/7214	2119/114793	2	1.96
GO:0090304	nucleic acid metabolic process	466/7214	3855/114793	5	1.96
GQ:0044249	cellular biosynthetic process	430/7214	3741/114793	3	1.96
GO:1901576	organic substance biosynthetic process	464/7214	4002/114793	3	1 93
GO:0065007	biological regulation	330/7214	3366/114793	1	1.93
GO:0006139	nucleobase-containing compound metabolic process	548/7214	4921/114793	4	1.92
GO:0000159	biosynthetic process	506/7214	4268/114793	2	1.92
GO:00051273	beta-glucan metabolic process	22/7214	122/114793	7	1.91
CO:0006725	cellular aromatic compound metabolic process	604/7214	5320/11/703	3	1.00
GO:1001360	organic cyclic compound metabolic process	632/7214	5/80/11/703	3	1.07
GO:0043412	macromolecule modification	580/7214	6/00/11/703	4	1.00
CO:0006555	mathianing metabolic process	15/7214	64/11/702	-	1.00
CO:00000555	collular nitrogen compound metabolic process	717/7214	6297/114702	2	1.05
CO:0006464	cellular metoin modification process	460/7214	6070/114793	5	1.04
CO:0006494	betero suclo metabolic process	600/7214	5979/114793	2	1.03
CO:0022607	collular component accombly	00/7214	960/114793	3	1.02
GO:0022007	cellular component assembly	90/7214	6741/114793	4	1.01
GO:0044207	centrar protein metabolic process	450/7214	6741/114795	2	1.01
GO:0006793	prosphorus metabolic process	450/7214	5743/114793	3	1.78
GO:0019538	protein metabolic process	/25//214	9516/114793	4	1.77
GO:0044260	cellular macromolecule metabolic process	824/7214	9171/114793	4	1.74
GO:0006310	DINA recombination	31/7214	211/114/93	1	1.7
GO:0044237	cellular metabolic process	1576/7214	15405/114793	2	1.07
GO:1901564	organonitrogen compound metabolic process	1025/7214	12079/114793	3	1.07
GO:0043170	macromolecule metabolic process	1243/7214	13053/114/93	3	1.00
GO:0006541	giutamine metabolic process	10/7214	31/114/93	9	1.05
GO:0006418	tRNA aminoacylation for protein translation	40/7214	302/114793	10	1.64
GO:0005975	carbohydrate metabolic process	121/7214	1279/114793	3	1.63
GO:0006796	phosphate-containing compound metabolic process	444/7214	5726/114793	4	1.63
GO:0006807	nitrogen compound metabolic process	1481/7214	15957/114793	2	1.63
GO:0044238	primary metabolic process	1583/7214	1/428/114793	2	1.62
GO:0008152	metabolic process	1908/7214	19763/114793	1	1.61
GO:0071704	organic substance metabolic process	1793/7214	18791/114793	2	1.59
GO:0009987	cellular process	2251/7214	23958/114793	1	1.56
GO:0008150	biological_process	2760/7214	30756/114793	0	1.53
GO:0000096	sulfur amino acid metabolic process	22/7214	130/114793	4	1.43
GO:0002943	tRNA dihydrouridine synthesis	6/7214	11/114793	11	1.41
GO:0009072	aromatic amino acid family metabolic process	26/7214	169/114793	4	1.4

Page 31 of 38

 Table 12 Significant enriched terms relating to biological processes in the Stramenopile dataset's paralogs.

GO number	Name	Ratio in	Ratio in	Depth	-log10	<u> </u>	
		study	population		p value	Species	
GO:0055085	transmembrane transport	16/62	557/11080	4	3.26	Achlya hypogyna	
GO:0019637	organophosphate metabolic process	8/62	213/11080	4	1.36	Achlya hypogyna	
GO:0043412	macromolecule modification	107/760	755/8600	4	2.26	Albugo candida	
GO:0071704	organic substance metabolic process	271/760	2317/8600	2	2.12	Albugo candida	
GO:0044237	cellular metabolic process	251/760	2142/8600	2	2.09	Albugo candida	
GO:0044238	primary metabolic process	254/760	2154/8600	2	2.07	Albugo candida	
GO:0006464	cellular protein modification process	95/760	671/8600	6	2.06	Albugo candida	
GO:0008152	metabolic process	283/760	2451/8600	1	2.04	Albugo candida	
GO:0044260	cellular macromolecule metabolic process	145/760	1177/8600	4	1.58	Albugo candida	
GO:0043170	macromolecule metabolic process	196/760	1696/8600	3	1.45	Albugo candida	
GO:0006807	nitrogen compound metabolic process	223/760	1970/8600	2	1.44	Albugo candida	
GO:0006796	phosphate-containing compound metabolic process	90/760	660/8600	4	1.41	Albugo candida	
GO:0044262	cellular carbohydrate metabolic process	12/504	37/8647	4	2.94	Albugo laibachii	
GO:0034645	cellular macromolecule biosynthetic process	35/504	228/8647	5	2.47	Albugo laibachii	
GO:0051560	mitochondrial calcium ion homeostasis	4/504	4/8647	10	1.7	Albugo laibachii	
GO:0042592	homeostatic process	8/504	21/8647	3	1.64	Albugo laibachii	
GO:0051274	beta-glucan biosynthetic process	6/504	11/8647	8	1.62	Albugo laibachii	
GO:0098771	inorganic ion homeostasis	6/504	12/8647	6	1.34	Albugo laibachii	
GO:0034637	cellular carbohydrate biosynthetic process	8/504	23/8647	5	1.31	Albugo laibachii	
GO:0006821	chloride transport	6/477	22/17944	7	1.48	Aphanomyces astaci	
GO:0045048	protein insertion into ER membrane	4/140	5/14252	8	4.08	Aphanomyces euteiches	
GO:0046434	organophosphate catabolic process	4/140	16/14252	5	1.56	Aphanomyces euteiches	
GO:0009084	glutamine family amino acid biosynthetic process	8/272	19/6501	9	3.14	Bremia lactucae	
GO:0006561	proline biosynthetic process	6/272	10/6501	10	2.81	Bremia lactucae	
GO:1901264	carbohydrate derivative transport	6/272	13/6501	7	1.94	Bremia lactucae	
GO:0044271	cellular nitrogen compound biosynthetic process	0/272	274/6501	4	1.59	Bremia lactucae	
GO:0006259	DNA metabolic process	18/843	803/12755	6	2.4	Globisporangium splendens	
GO:0015074	DNA integration	2/843	666/12755	7	2.31	Globisporangium splendens	
GO:0044260	cellular macromolecule metabolic process	81/843	1879/12755	4	1.68	Globisporangium splendens	
GO:0034220	ion transmembrane transport	12/197	68/7213	5	3.39	Hvaloperonospora arabidopsidis	
GO:0098656	anion transmembrane transport	8/197	33/7213	6	2.45	Hvaloperonospora arabidopsidis	
GO:0055085	transmembrane transport	20/197	247/7213	4	1.69	Hvaloperonospora arabidopsidis	
GO:0043933	protein-containing complex subunit organization	44/3329	134/20260	4	2.26	Nothophytophthora sp	
GO:1901564	organonitrogen compound metabolic process	379/3329	2777/20260	3	1.4	Nothophytophthora sp	
GO:0006665	sphingolipid metabolic process	4/123	20/13965	6	1.32	Phytophthora cinnamomi	
GO:0007186	G protein-coupled receptor signaling pathway	4/201	12/19214	5	1.98	Phytophthora fragariae	
GO:0098771	inorganic ion homeostasis	4/201	13/19214	6	1.83	Phytophthora fragariae	
GO:0090304	nucleic acid metabolic process	2/201	1600/19214	5	1.81	Phytophthora fragariae	
GO·1901360	organic cyclic compound metabolic process	4/201	1865/19214	3	14	Phytophthora fragariae	
GO:0034219	carbohydrate transmembrane transport	2/41	2/8291	8	1.37	Phytophthora kernoviae	
GO:0006643	membrane lipid metabolic process	6/103	37/18043	5	3.97	Phytophthora megakarya	
GO:0009247	glycolipid biosynthetic process	4/103	18/18043	7	2 29	Phytophthora megakarya	
GQ:0006470	protein dephosphorylation	18/1465	55/12653	7	1.3	Phytophthora nicotianae	
GO:0070536	protein K63-linked deubiquitination	4/748	5/17216	10	1.48	Phytophthora parasitica	
CO:0006060	ethanol ovidation	2//2	2/0200	7	1 /1	Pythium anhanidermatum	
30.000009		2/43	2/ 9290	1	1.41	i yumum apnamuermatum	

Gómez-Pérez and Kemen

Page 32 of 38

Gómez-Pérez and Kemen

Page 33 of 38

Gómez-Pérez and Kemen

Page 34 of 38

different in at least one taxa and have at least one complete loss in any of the taxa.

Gómez-Pérez and Kemen

Page 35 of 38

Figure 15 Correlation between genes under selection and effectors. Oomycetes represented in blue (Pearson's correlation, r = 0.22, p = 0.22) and non-oomycetes in red (Pearson's correlation, r = 0.19, p = 0.65). Pearson correlation represented as a straight line and the confidence interval represented as a lighter shade.

Gómez-Pérez and Kemen

Page 37 of 38

Figure 16 Heatmap of positive selection ratio of functional annotations in the Stramenopile dataset. The color gradient from black to red represents the ratio of genes with a particular functional annotation that are under selection. Uncolored cells represent the absence of the annotation in a species. Weighted-based clustering of the distance between the taxa is represented.

Gómez-Pérez and Kemen

Page 38 of 38

