
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2019) 9:1355–1373 

https://doi.org/10.1007/s13202-018-0532-6

ORIGINAL PAPER - PRODUCTION ENGINEERING

Predicting liquid flow-rate performance through wellhead chokes 
with genetic and solver optimizers: an oil field case study

Hamzeh Ghorbani1 · David A. Wood2  · Jamshid Moghadasi3 · Abouzar Choubineh4 · Peyman Abdizadeh5 · 

Nima Mohamadian6

Received: 12 March 2018 / Accepted: 8 August 2018 / Published online: 18 August 2018 

© The Author(s) 2018

Abstract

None of the various published models used to predict oil production rates through wellhead chokes from fluid composition 

and pressures can be considered as a universal model for all regions. Here, a model is provided to predict liquid production-

flow rates for the Reshadat oil field offshore southwest Iran, applying a customized genetic optimization algorithm (GA) and 

standard Excel Solver non-linear and evolutionary optimization algorithms. The dataset of 182 records of wellhead choke 

measurements spans liquid flow rates from < 100 to 30,000 stock tank barrels/day. Each data record includes measurements 

of five variables: liquid production rate (QL), wellhead pressure, choke size, basic sediment and water, and gas–liquid ratio. 

70% of the dataset (127 data records) was used for training purposes to establish the prediction relationships, and 30% of the 

dataset (55 data records) was utilized for independently testing the accuracy of the derived relationships as predictive tools. 

The methodology applying either the customized GA or standard Solver optimization algorithms, demonstrates significant 

improvements in QL-prediction accuracy with the lowest APD (− 7.72 to − 2.89), AAPD (7.33–8.51), SD (288.77–563.85), 

MSE (91,871–316,429), and RMSE (303.1–562.52); and the highest R2 (greater than 0.997) compared to six previously 

published liquid flow-rate prediction models. As a general result, the novel methodology is easily applied to other field/

reservoir datasets, to achieve rapid practical flow prediction applications, and is consequently of worldwide significance.

Keywords Flow-rate prediction · Evolutionary optimization algorithms · Non-linear optimization · Choke size · Liquid 

production rate · Wellhead flow-rate variables

Abbreviations

A  Proportionality constant

AAPD  Absolute average percent deviation

ANN  Artificial neural network

APD  Average percent deviation

B  Bean or choke size exponent

bbl  Barrel

BS&W  Basic sediment and water

D  Basic sediment and water term exponent

F  Fitness function

GA  Genetic algorithm

GLR  Producing gas–liquid ratio at standard condi-

tions (SCF/STB)

GRG   Generalized reduced gradient
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m  Total number of iterations specified for the 

GA

MSE  Mean squared error

n  Number of data records in the training data 

subset

Pwh  Wellhead pressure, psig

PDi  Percent deviation of data record i

Q avg  Average value of liquid flow rate

Qi  Ith value of liquid flow rate

Q L  Gross liquid flow rate, STB/day

Q L(predicted)  Predicted production liquid flow rate, STB/

day

Q L(measured)  Measured production liquid flow rate, STB/

day

R 2  Correlation coefficient

RMSE  Root-mean-square error, (STB/D)2

S  Choke or bean size, 1/64 in.

SD  Standard deviation

σ  Standard deviation of the Gaussian distribu-

tion applied for the mutation operator of the 

genetic algorithm

SCF  Standard cubic foot

STB  Stock tank barrel

T avg  Average fluid temperature of all data records

Ti  Ith fluid temperature input value

Introduction

Chokes are key equipment installed at the wellhead of almost 

all producing oil, gas, and gas condensate wells. Wellhead 

chokes control and stabilize production flow rates of single or 

multiple phases, which is essential to prevent reservoir damage 

by creating a back pressure on the reservoir. Wellhead chokes 

also maintain the integrity and safety of surface production 

equipment (downstream of the wellhead), prevent water or gas 

coning within the reservoir, limit sand production from the res-

ervoir in the flow stream, and provide flexible adjustments that 

can be used to adjust production rates and ultimate resource-

recovery rates for a wide range of reservoir conditions (Guo 

2007; Nasriani and Kalantariasl 2011; Mirzaei-Paiaman and 

Nourani 2012; Mirzaei-Paiaman and Salavati 2013).

Flow through a wellhead choke can be critical or sub-

critical (Zarenezhad and Aminian 2011). From the per-

spective of controlling solid and fines production in a well 

production flow stream, the critical flow rate represents a 

production threshold rate above which the production of sol-

ids contained within the produced flow stream is uniform. 

Maintaining sub-critical flow conditions can be important 

in reservoirs prone to sand or fines production. When the 

flow rate exceeds this threshold (i.e., becomes critical), the 

production of sand and fines increases significantly.

Critical flow typically occurs when the pressure upstream 

of the wellhead is at least 70% higher than the pressure 

downstream of the wellhead, or when the ratio of down-

stream pressure to upstream pressure is 0.588 or less. If the 

ratio of downstream pressure to upstream pressure is greater 

than 0.588, sub-critical flow conditions prevail (Beiranvand 

et al. 2012). When critical flow conditions prevail, the flow 

rate is primarily a function of upstream pressure, gas oil ratio 

(GOR), and the choke aperture diameter. In critical flow 

conditions pressure changes in the flow lines downstream 

of the wellhead do not affect the flow rate therein. Since the 

liquid production rate through wellhead chokes is affected 

by changes in their aperture diameter (i.e., choke size), 

modeling and simulating the rate of flow through chokes of 

various aperture diameters for specific oil/gas field condi-

tions enables production engineers to better understand and 

control production flow conditions.

Studies on wellhead chokes and their impacts on pro-

duction flow rates began with Tangren et al. (1949) and 

their analysis of flow rate through restrictions. That analy-

sis focused only on critical flow conditions and revealed 

that when gas bubbles are added to incompressible fluids, 

they prevent the upstream pressure from being transferred 

downstream of the restriction. Gilbert (1954) conducted 

pioneering work on production well-test data and analyzed 

260 test datasets for choke sizes from 6/64 to 18/64 in. 

to derive an experimental relationship for critical flow 

(Eq. 1)

where C, m, and n are experimental coefficients, which can 

be calculated when there is sufficient data (Al-Ajmi et al. 

2015). Pwh is wellhead pressure (psig). R is gas to liquid 

ratio (SCF/STB). Q is flow rate (STB/day). S is choke size 

(1/64 in.).

Gilbert’s equation became the basis for many subsequent 

studies and adaptions beginning with Baxendell (1958), and 

with Ros (1960) addressing sub-critical as well as critical 

flow regimes. Achong (1961) claimed an improved relation-

ship based upon a dataset of 104 well tests through chokes 

with 1/2 to 4 in. Poettmann and Beck (1963) adapted Ros’s 

model for field application, proposing a relationship for 

critical flow conditions that depends on upstream and down-

stream pressures.

Two relationships for critical and sub-critical flows were 

derived by Fortunati (1972), applying the Guzov and Medi-

vedive log for sub-critical flow. Ashford (1974) proposed a 

model addressing two-phase critical flow through wellhead 

chokes further developing the model of Ros (1960). Abdul-

Majeed (1988), based on data from 155 well tests from east-

ern Baghdad oilfields developed an experimental model, 

(1)P
wh

=

CRmQ

Sn
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based on the Gilbert equation, demonstrating an absolute 

error of about 6%.

Using 97 well-test datasets and with choke diameters 

ranging from 24/64 to 128/64 in., Al-Attar (2008) devel-

oped an equation that predicts choke performance for sub-

critical conditions. Beiranvand et al. (2012) proposed two 

formulas for estimating the liquid critical flow rate, based 

on 748 experimental data records including measured data 

for the input parameters of wellhead pressure, gas–liquid 

ratio, surface wellhead choke size, and the percentage of 

water, sediment, and emulsion. Mirzaei-Paiaman and Sala-

vati (2013) investigated the effect of gas-specific gravity and 

oil-specific gravity on liquid flow rate. According to a sta-

tistical analysis of their results, they concluded that neither 

gas-specific gravity nor oil-specific gravity had a significant 

effect on flow rate. 704 test datasets from 31 wells in field A 

were used by Al-Ajmi et al. (2015) to develop a model for 

flow rate through chokes applying an artificial neural net-

work (ANN) algorithm. Their model resulted in a calculated 

absolute error for that dataset of 13.92%. Choubineh et al. 

(2017a, b) improved predictions of wellhead choke liquid 

critical flow rates, applying a model based on a neural net-

work hybridized with a training-learning-based optimization 

algorithm, to 113 data points from 12 oil wells in south Iran, 

achieving an average relative error of 2.09%. Ghorbani et al. 

(2017) optimized gas flow predictions for 92 datasets from 

the Pazanan gas condensate field (Iran) applying a firefly 

algorithm to successfully minimize the mean square error 

between measured and predicted gas flow rates from a well-

head test dataset.

Our objective here is to provide a new model for esti-

mating oil flow through wellhead chokes improving upon 

the Gilbert’s equation and derivatives of it. Based on this 

formula, the liquid flow rate is as a function of three param-

eters such as wellhead pressure, choke size, and gas–liquid 

ratio. Since almost all models available in the literature used 

these three variables to predict the flow rate, we decided to 

include a new parameter named basic sediment and water 

(BS&W) to develop a model with new parameters and better 

performance. Also, it is necessary to say that the temperature 

did not have any significant impact on the flow rate based on 

relevancy factor formula; not including it in the new model 

(Discussion section). Another novelty is that it uses a mean 

square error (MSE) function test as the single-objective 

function for the GA and Solver algorithms, and then applies 

the optimized formula to a testing data subset, that is evalu-

ated in terms of a set of statistical accuracy and correlation 

measures. A dataset of 182 wellhead choke measurements 

from wells drilled in the Reshadat oil field, located offshore 

southwest of Iran, is used to evaluate models to predict liq-

uid flow rates through wellhead chokes (see Appendices 1, 

2 and 3 for details of the reservoir and individual data record 

values).

Flow-rate prediction model incorporating 
optimization with a genetic algorithm

Our objective is to build optimization models that can esti-

mate the liquid flow rate through wellhead chokes as accu-

rately as possible. To achieve this objective, suitable math-

ematical tools are required. In recent decades, numerous 

optimization algorithms have been published and refined to 

find the best solution for optimization problems. We have 

selected a genetic optimization algorithm (GA) and standard 

Excel Solver non-linear and evolutionary optimization algo-

rithms because of their simplicity, transparency, and general 

availability. The procedures for setting up and applying these 

algorithms are explained here.

A standard genetic algorithm (GA) is applied in this study 

as an optimization tool to assist in rapidly establishing the 

most accurate flow-rate prediction models in a novel easy to 

apply, transparent methodology that can be easily adapted to 

datasets (populations) of various sizes from other oil fields.

Genetic algorithms (GA) are robust stochastic evolution-

ary algorithms widely applied for solving optimization chal-

lenges in many scientific and industrial fields. The GA con-

cept was initially proposed and exploited in the 1960s and 

1970s (Holland 1975), and further developed with improved 

computation power in the 1980s and 1990s (Goldberg 1989; 

Jefferys 1993; Mitchell 1996). GA methodologies have con-

tinued to be refined in the past decade (e.g., Gen and Cheng 

2008; Sivanandam and Deepa 2008) and are now frequently 

applied to provide multi-objective optimization solutions for 

various oil and gas engineering (Mansouri et al. 2015) and 

portfolio (Wood 2016) challenges.

The GA, therefore, offers a well-established, evolution-

ary optimization method suitable for application to many 

non-linear optimization problems. Genetic algorithms are 

easy to apply in a consistent and transparent manner (Fig. 1), 

involving relatively few control parameters.

The methodology adopted here for predicting liquid flow 

rate involves a sequence of 12 steps, described in detail in a 

flow diagram (Fig. 2). It incorporates a customized genetic 

optimization algorithm, which optimizes a fitness function 

defined by Eqs. 2 and 3 

where

yi = measured liquid flow rate QL(measured). ŷi = predicted liq-

uid flow rate QL(predicted). n number of data records sampled. 

(2)Fitness(f ) =

n
∑

i=1

(

yi − ŷi

)2
/

(n)

(3)ŷi =
P

wh

(

D
64

)C
(1 − BS& W%)D

A(GLR)B
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A proportionality constant. B gas liquid ratio exponent. 

C = choke size exponent. D BS&W exponent.

The coefficients A, B, C, and D in Eq. (3) are the inde-

pendent variables evaluated by the GA with Eq. (2) as its 

objective function.

A key control parameter for the GA (applied in step 8, 

Fig. 2) is a shrink factor applied (Eq. 4) as part of Gaussian 

mutation. This factor causes the standard deviation a Gauss-

ian distribution supplying random numbers to progressively 

shrink as GA generations (iterations) advance

where � is the standard deviation of the gaussian distribu-

tion applied for the mutation operator in that generation. 

t is a specific generation. t + 1 is the next generation. m is 

the total number of generations (iterations) specified for the 

GA. The impact of the shrink factor is to reduce the scale of 

change induced by mutation as generations progress toward 

convergence.

(4)�
t+1

= �
t

(

1 −
t

m

)

The control and behavioral parameters for the genetic 

algorithm are given in Table 1.

Excel’s Solver provides standard 
evolutionary and non-linear optimization

The Solver optimizer is a standard function in Microsoft’s 

Excel software and readily applied with options to select 

linear (simplex), non-linear (generalized reduced gradient, 

GRG) or evolutionary algorithms to apply. We compare the 

customized genetic algorithm developed for this study with 

the Solver options applying GRG and evolutionary algo-

rithms to the same field dataset.

The Solver optimizer is easily set up for the flow predic-

tion model by: (1) specifying a range of cells in a spread-

sheet specifying the input data variable range; (2) specifying 

a range of cells in the spreadsheet specifying the constraints 

to place on the formula coefficient ranges to be tested; (3) 

specifying a single cell in the spreadsheet as the statistical 

Fig. 1  Flow diagram for the 

sequence involved in a generic 

genetic algorithm for optimiza-

tion analysis
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precision variable to be minimized by Solver (i.e., the target 

cell and objective function), and (4) selecting which solver 

algorithm to apply (e.g. GRG or evolutionary in the context 

of the current model).

Restrictions on optimization applying Excel’s Solver are:

1. Only one objective function variable can be specified 

for each run of Excel’s Solver making it a single-dimen-

Fig. 2  Flow diagram for the customized methodology to optimize wellhead choke oil flow-rate prediction incorporating a genetic algorithm
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sional optimizer. This is the way that Microsoft have 

configured the Solver algorithm in Excel so it cannot be 

used directly for multi-objective optimization This is not 

an issue for the flow-rate prediction model considered 

here because it is does have just one objective function 

(i.e., liquid flow rate).

2. These specified input variable range must be linked via 

formula(s) in the spreadsheet to the single-specified 

objective function.

3. It is important before running the optimizer to test, by 

some running deterministic cases, that the mathemati-

cal relationship between the specified input variables 

and the objective function is working appropriately. This 

involves defining cell formula(s) to define the flow-rate 

predictions for each data record (involving the unknown 

coefficient values applied to the formula) and the sin-

gle statistical precision measure to be minimized as the 

objective function. It also involves testing the constraint 

ranges applied to the coefficients in the formula. If this 

is not done, there is a risk that the optimizer will not 

function as expected.

4. Excel’s Solver optimizer only provides a single (opti-

mum) result, if it finds one. In some optimization prob-

lems, it is useful to retain and evaluate several high-

performing solutions rather than just one. A customized 

evolutionary algorithm, such as the genetic algorithm 

applied in this study, can provide multiple high-ranking 

solutions, if required.

Analysis of Reshadat oil �eld data

In this study, 182 datasets were collected from 7 wells pen-

etrating 3 distinct reservoir zones (#1, #2, and #3) that are 

located adjacent to one another in the Reshadat oil field. 

The Reshadat oil field is located 110 km south–west of 

Lavan Island. It was discovered in 1965 and first brought 

onstream in 1968. It has undergone a significant renovation 

and extended development since 2008 with five new plat-

forms installed and many new wells drilled in recent years 

to increase oil production rates. Fluid properties of the three 

reservoir zones are shown in “Appendix 2” (training subset) 

and “Appendix 3” (testing subset).

All the collected data are divided randomly into two 

groups: 70% (127 datasets) were used for training; and, 30% 

for (55 datasets) for testing. The data include wellhead pres-

sure, gas–liquid ratio, percentage of BS&W [base sediment 

and water, which incorporates produced water (free water), 

water in produced sediment/solids, and some water derived 

from emulsions with oil], choke size, and oil production rate. 

The ranges and mean values associated with each of these 

variables in the Reshadat field dataset are listed in Table 2; 

a full data listing is provided in “Appendix 2”.

Developing a new model for predicting 
liquid �ow rates through wellhead chokes

Oil flow rate through a wellhead choke is a function of: (a) 

choke size; (b) wellhead pressure; (c) percentage of water 

produced (expressed as BS&W); and (d) gas–liquid ratio 

(Beiranvand et al. 2012), which are shown in the following 

equations:

where the units of these variables are: liquid production rate 

(QL) is measured in stock tank barrels (STB/D). Wellhead 

(5)QL(predicted) = f
(

Pwh, D64, BS& W, GLR
)

(6)X =
P

wh
×
(

D
64

)

× (1 − BS& W%)

(GLR)

Table 1  Genetic algorithm control and behavioral parameters applied

Parameter Value

Initial population 200

Crossover percent 90%

The number of elites 10

Migrated population 10%

Selection method Tournament selection

Crossover method Selection based on binary vector

Mutation method Gaussian mutation

Table 2  Distribution of variable 

values for the Reshadat oil field 

dataset

Wellhead choke 

test variable

Number of points Range Mean

Training data Test data Training data Test data Training data Test data

QL, STB/D 127 55 253–34,450 205–29,400 9930.28 9273

Pwh, psig 127 55 133–842 294–881 526.01 510.16

GLR, Scf/STB 127 55 36–761 42–885 249.24 257.27

BS&W% 127 55 0.05–66 0.02–50 18.997 20.55

D64, inch 127 55 25.6–64 38.4–51.2 59.06 44.80
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pressure (Pwh) is measured in pounds per square inch gauge 

(Psig). Choke size (D64) is measured in 1/64 in. Base sedi-

ment and water (BS&W) is measured as a percentage of 

liquid production. Gas–liquid ratio (GLR) is measured in 

Scf/STB.

To analyze the X function and find the best relationship 

between parameters, BS&W, D64, GLR, and Pwh to predict 

QL(predicted) accurately, QL(measured) is evaluated versus the cal-

culated value of X (Eq. 6) for each dataset record (Fig. 3). 

The QL versus X cross plot for the Reshadat field dataset 

(Fig. 3) reveals a correlation coefficient of 0.8901 between 

these parameters, indicating a good positive correlation with 

the equation for the best-fit straight line through the data 

shown in the equation below: 

The accuracy of the prediction of liquid flow rate 

[QL(predicted)] can be improved by adding coefficients A, B, 

C, and D to Eq. (6) to form the expression forming part 

of the GA fitness test. This relationship (repeated as Eq. 8) 

enables various values of A, B, C, and D to be applied to it 

to test the accuracy of the predicted versus measured values 

of QL for each record in the dataset

The GA applied uses Eq. (8) as part of its objective func-

tion to minimize the fitness function to rapidly find opti-

mum values for coefficients A, B, C, and D that minimize 

the error between QL(predicted) and measured QL(measured) for 

(7)X = 0.0184 Q
L(measured) − 8.027

(8)QL(predicted) =
Pwh

(

D64

)C
(1 − BS& W%)D

A(GLR)B

the entire dataset. The GA objective function is essentially 

a mean-square-error (MSE) function and can be expressed 

in expanded form as the following equations:

where QL(predicted) = predicted liquid production rate. 

QL(measured) = measured liquid production rate. n = number 

of data records sampled.

To establish appropriate control and behavioral param-

eters for the GA that speed its convergence toward accept-

able and repeatable minima for the fitness function f 

(Eq. 10), it is necessary to run a series of trials applying 

different values to these parameters. Each problem and 

dataset have their own particular characteristics, which 

mean that GA control parameter values and methods that 

work well for one dataset may be sub-optimal for another. 

For the Reshadat field dataset, trials led to the selection 

of the GA control and behavioral parameters and the GA 

selection, crossover, and mutation methods as listed in 

Table 1. Applying those values to the GA, it was then 

used to determine the optimum values for the A, B, C, 

(9)

Fitness(f ) = MSE =
1

n

n
∑

i=1

(

(Q
L
)
Measuredi

− (Q
L
)
Predictedi

)2

(10)

Fitness(f ) =
1

n

n
∑

i=1

(

(Q
L
)
Measuredi

−

(

P
wh

(

D
64

)C
(1 − BS& W%)D

A(GLR)B

)

i

)2

Fig. 3  Liquid production rate QL(measured) versus parameter X calculated with Eq. (6) displaying the best-fit straight line (Eq. 7) and correlation 

coefficient
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and D coefficients to use in Eq. (8), by minimizing fitness 

function f for the 70% of the dataset records allocated for 

training. Exactly, the same approach was used when apply-

ing Excel’s Solver optimizers (GRG and evolutionary) to 

the Reshadat field dataset.

Statistical measures used to measure 
the accuracy of optimum solutions

Once the GA, by minimizing the fitness function, has 

selected optimum values for coefficients A, B, C, and D to 

apply in Eq. (8), it is necessary to establish the accuracy 

with which Eq. (8) can match QL(predicted) values with 

QL(measured) values for each record the test section of the 

dataset (i.e., the 30% of the entire Reshadat field data records 

selected randomly to form the test subset).

The following six statistical error measures for accuracy, 

precision, and correlation (expressed as Eqs. 11 to 17) were 

calculated for the optimum solution values for coefficients 

A, B, C, and D (Eq. 8) applied to the test subset with results 

shown in Table 3.

Percent deviation for dataset record i (PDi):

Average percent deviation (APD):

Absolute average percent deviation (AAPD):

Standard deviation (SD):

where Di is QLi(measured) – QLi(predicted) for each dataset record 

i. Dimean is the mean of the Di values

Mean square error (MSE):

Also used for the GA fitness function f (Eqs. 7 and 8).

(11)PDi =

QL(Measured) − QL(Predicted)

QL(Measured)

× 100

(12)APD =

∑n

i=1
PD

i

n

(13)AAPD =

∑n

i=1

�
�PD

i
�
�

n

(14)SD =

�

∑n

i=1
(D

i
− Dimean)

2

n − 1

Dimean =
1

n

n
∑

i=1

(

(Q
L
)
Measuredi

− (Q
L
)
Predictedi

)

(15)MSE =
1

n

n
∑

i=1

(

(Q
L
)
Measuredi

− (Q
L
)
Predictedi

)2
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Root-mean-square error (RMSE):

Coefficient of determination  (R2):

The statistical measures (Eqs. 11–17) are also reported 

in Table 3 for our GA evaluations, using the same method 

described for our proposed Eq. (8), of the liquid flow-rate 

prediction equations proposed and historically published by 

Gilbert (1954), Baxendell (1958), Ros (1960), and Achong 

(1961) (shown here as Eq. 19 with different values for coef-

ficients A, B, and C) applied to the Reshadat field dataset.

Re-arranging Gilbert’s formula (Eq. 1) to predict liquid 

flow rate, and renaming the coefficients as A, B, and C to 

match those coefficients expressed in Eq. (8) provides the 

equation below:

Using the same symbols for the variables as Eq. (5), Gil-

bert’s formula for predicting flow (Eq. 18) can be expressed 

as Eq. (19). This omits the BS&W term (not considered 

by Gilbert) from Eq. (8) [which is the same as applying a 

value of zero to exponent D in (Eq. 8)]. The correlations 

derived by Baxendell (1958), Ros (1960), Achong (1961), 

Beiranvand et al. (2012), and Mirzaei-Paiaman and Salavati 

(2013) involve different values for the coefficients A, B, and 

C applied to the following equation (Table 3):

where Gilbert (1954) derived values of coefficients A = 10; 

B = 0.546; C = 1.84; Baxendell (1958) correlation involves 

values of coefficients A = 9.56; B = 0.546; C = 1.93; Ros 

(1960) correlation involves values of coefficients A = 17.4; 

B = 0.5; C = 2.00; Achong (1961) correlation involves values 

of coefficients A = 3.82; B = 0.65; C = 1.88; Mirzaei-Paiaman 

and Salavati (2013) correlation involves values of coeffi-

cients A = 11.41; B = 0.553; C = 1.92; BS&W coefficient 

D = 0 in all five of the above cases.

Beiranvand et al. (2012) correlation involves values of 

coefficients A = 26.17; B = 0.5154; C = 2.151; D = 0.5297.

Table 3 reveals the significant superiority of our pro-

posed Eq. (8), in terms of accuracy, compared to the other 

liquid flow-rate prediction formulas evaluated. APD, 

AAPD, SD, MSE, and RMSE values are all much lower for 

optimization of the Reshadat oil field dataset than for the 

(16)RMSE =

√

MSE

(17)R2 = 1 −

∑N

i=1

�

QL(Predicted) − QL(Measured)

�2

∑N

i=1

�

QL(Predicted) −

∑n

I=1
QL(Measured)

n

�2

(18)Q =

P
wh

SB

AR
C

(19)QL(predicted) =
Pwh

(

D64

)C

A(GLR)B
other published formulas applying Eq. (19). All formulas 

evaluated show high correlation coefficients (≫ 0.9 or 90%), 

which is hardly surprising as Eq. (6) (with A, B, C, and 

D coefficients all equal to 1) achieves a correlation coef-

ficient of 0.89 (89%). However, the high correlation coef-

ficients reveal little about accuracy of the predictions [i.e., 

QL(predicted) versus QL(measured)]. As can be seen from Fig. 3 

and Table 3, the values of X calculated by Eq. (6) include 

orders of magnitude of error in relation to QL(measured). 

Although the Gilbert (1954), Baxendell (1958), Ros (1960), 

Achong (1961), Beiranvand et al. (2012), and Mirzaei-Paia-

man and Salavati (2013) formulas also significantly outper-

form Eq. (6) in terms of accuracy, their levels of accuracy 

(i.e., APD, AAPD, SD, MSE, and RMSE values) they are 

much inferior in accuracy to those achieved by our proposed 

Eq. (8) and the Solver (GRG and evolutionary) solutions 

(Table 3).

Figures 4 and 5 show a comparison of QL(predicted) versus 

QL(measured) for each data point training subset (127 randomly 

Fig. 4  Liquid flow-rate (QL) prediction reliability and accuracy for 

the Reshadat oil field training data subset applying the GA optimized 

Eq. (8)

Fig. 5  Liquid flow-rate (QL) prediction reliability and accuracy for 

the Reshadat oil field testing data subset applying the GA optimized 

Eq. (8)
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selected data records) and testing subset (55 randomly 

selected data records), respectively, of the Reshadat oil field 

dataset (total of 182 wellhead test data records).

Figures  4 and 5 show excellent agreement between 

QL(predicted) versus QL(measured) for both training and testing 

datasets using Eq. (8), which is confirmed by Fig. 6.

Figure 7 demonstrates the ability of the GA optimiza-

tion method to transform the highly inaccurate functional 

relationship expressed as Eq. (6) into the highly accurate 

prediction formula expressed as Eq. (8).

Fig. 6  Liquid flow rate QL(predicted) versus QL(measured) reveals a strong correlation and high reliability and accuracy for the Reshadat oil field 

applying the GA optimized Eq. (8) to the test data subset (55 data records)

Fig. 7  Liquid flow rate QL(predicted) versus QL(measured) reveals a strong correlation for the Reshadat oil field applying Eq. (6) and the GA optimized 

Eq. (6) to the test data subset (55 data records). However, Eq. (6) provides highly unreliable and inaccurate predictions in comparison to Eq. (8)
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Performance comparisons with published 
correlations

Figure 8 compares the relative performance for the Reshadat 

oil field dataset of applying Eq. (19) with the A, B, C, and 

D (where appropriate) coefficient values of Gilbert (1954), 

Baxendell (1958), Ros (1960), Achong (1961), Beiran-

vand et al. (2012), Mirzaei-Paiaman and Salavati (2013) 

and Excel Solver (GRG and evolutionary). All show good 

correlations (coefficient of determination ≥ 0.93) between 

measured and predicted liquid flow rates, but not very 

impressive accuracy (Table 3). However, the performance 

of all of published correlations are substantially inferior 

in terms of accuracy to Eq. (8) (GA solution) and the two 

Solver solutions, as measured by a range of statistical met-

rics (Table 3).

Figures 9 and 10 show the percent deviation  (PDi) for 

each data record in the test data subset applying the GA 

optimization algorithm to Eqs. (6) and (8) (Fig. 9) and with 

various coefficient values from published studies and Solver 

algorithms applied to Eq. (19) (Fig. 10) for predicting liquid 

flow rate. The PDi measure is useful in revealing where in 

the production rate range significant errors occur. In the case 

of Eq. (6), high errors occur across the entire production rate 

range of the dataset. In the case of Eq. (8), significant errors 

(beyond the plus or minus 20% range) only occur in the 

prediction of flow rates in four data records with flow rates 

below 3000 STB/D (see Figs. 5, 9). This is not surprising as 

higher percentage errors are much more likely to be calcu-

lated using Eq. (11) for low rate tests. What is encouraging 

for Eq. (8) is that so few data records suffer from such high 

PDi errors, even among the data records with low measured 

flow rates.

In contrast to Fig. 9, the PDi result comparisons for the 

published Eq. (19) applying A, B, C, and D (where appropri-

ate) coefficient values of Gilbert (1954), Baxendell (1958), 

Ros (1960), Achong (1961), Beiranvand et al. (2012), and 

Mirzaei-Paiaman and Salavati (2013) plotted in Fig. 10. 

These reveal, for these published correlations, predictions 

of multiple records with flow rates less than 3000 STB/D 

display  PDi values of less than minus 50%. This suggests 

that these formulas are systematically over-estimating liquid 

flow-rate predictions for the lower flow-rate data records. On 

the other hand, Gilbert, Baxendell, and Ros formulas are all 

under-estimating liquid flow-rate predictions for the higher 

flow-rate data records (> 5000 STB/D). The Gilbert formula 

performs the worst for this dataset by under-estimating liq-

uid flow-rate predictions for flow rates > 3000 STB/D to a 

progressively higher degree from about 25% at 5000 STB/D 

to > 50% at 30,000 STB/D. Figure 10 reveals that for flow 

rates above 3000 STB/D, the Achong formula performs the 

best of these published formulas with low (negative) PDi 

errors but performs the worst at flow rates < 3000 STB/D, 

Fig. 8  Liquid flow rate QL(predicted) versus QL(measured) achieved by 

applying the two Excel Solver optimization algorithms (non-linear 

and evolutionary) and the published liquid flow-rate prediction for-

mulas of Gilbert (1954), Baxendell (1958), Ros (1960), Achong 

(1961), Beiranvand et  al. (2012), and Mirzaei-Paiaman and Salavati 

(2013) to the Reshadat oil field applying Eq.  (19) with appropriate 

coefficients to the test data subset (55 data records)
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particularly when compared to the Excel Solver (GRG and 

evolutionary) solutions.

Figures 11, 12, and 13 confirm the superior perfor-

mance in terms of statistical accuracy of Eq. (8) optimized 

with evolutionary and/or non-linear algorithms compared 

Fig. 9  Percent deviation  (PDi) 

calculated by Eq. (11) for the 

Reshadat oil field applying 

Eq. (6) and the GA optimized 

Eq. (8) to the test data subset 

(55 data records). Equation (6) 

displays very high PDi values 

(reflecting high prediction 

errors), whereas Eq. (8) displays 

very low PDi values (reflecting 

low prediction errors)

Fig. 10  Percent deviation  (PDi) calculated by Eq.  (11) for the 

Reshadat oil field applying various coefficients to Eq.  (19) for the 

published liquid flow-rate prediction formulas of Gilbert (1954), Bax-

endell (1958), Ros (1960), Achong (1961), Beiranvand et al. (2012), 

and Mirzaei-Paiaman and Salavati (2013) to the test data subset (55 

data records). The Achong (1961) formula displays lower PDi values 

than the other published formulas (reflecting lower prediction errors), 

but these are higher than for our Eq. (8) (Fig. 9)
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to the other formula published for predicting liquid flow 

rate from wellhead test data records for the Reshadat oil 

field dataset.

Discussion

The analysis presented for flow-rate prediction for the 

Reshadat field dataset indicate that both evolutionary and 

non-linear optimization algorithms can provide highly 

accurate results by applying the proposed methodology. 

Although there is almost negligible difference between 

the level of accuracy achieved by the customized genetic 

algorithm (GA) and Excel Solver’s GRG and evolutionary 

optimizers methods is the same approximately, the Solver 

optimizers display slightly higher levels of accuracy. The 

preciseness of the GA is shown to be fit for purpose accept-

able but is slightly outperformed by the Solver solutions.

We consider the main reason for this slight difference 

between GA and the Solver solutions is due to the several 

behavioral and control setting parameters associated with 

the GA (Table 1). The developed GA requires that values 

have to be selected for the behavioral and control setting, 

including: initial population, crossover percent, the num-

ber of elites, migrated population, selection method, and 

crossover method. The values for these metrics are usually 

determined by trial and error or tuned to a specific dataset. 

This can be time consuming and mean that when applied 

Fig. 11  A comparison between 

root-mean-square error (RMSE) 

and absolute average percent 

deviation (AAPD%) for the 

Reshadat oil field applying 

GA and Solver optimization 

to Eqs. (6), (8), and (19) for 

the published liquid flow-rate 

prediction formulas proposed 

by this study and by Gilbert 

(1954), Baxendell (1958), 

Ros (1960), Achong (1961), 

Beiranvand et al. (2012), and 

Mirzaei-Paiaman and Salavati 

(2013) to the test data subset 

(55 data records)

Fig. 12  A comparison between 

root-mean-square error (RMSE, 

Eq. 16) and absolute average 

percent deviation (AAPD%, 

Eq. 13) for the Reshadat oil 

field for the various flow-rate 

prediction methods identified in 

Fig. 11
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to a slightly different set of data, slightly higher errors are 

incurred in the prediction (e.g., tuning the control metrics for 

the training data subset and then applying them to the testing 

data subset). One advantage of the Solver optimizers is that 

they can be setup and applied rapidly avoiding the need to 

tune any behavioral or control metrics.

The methodology has the potential to add additional rel-

evant variables, if required. We have not considered addi-

tional variables, such as fluid temperature, because other 

studies have suggested that additional variables to those con-

sidered have very small impacts on liquid flow rates from oil 

reservoir production or well tests. For instance, Choubineh 

et al. (2017a, b) concluded that the effects of temperature on 

liquid flow rate is not remarkable. Furthermore, sensitivity 

analysis performed on the Reshadat field dataset suggests 

that it is best not to include fluid temperature in the liquid 

flow-rate performance model. Relevancy factor (r) as defined 

by Choubineh et al. (2017a, b) was calculated using Eq. (20) 

to investigate the dependence of the liquid flow rate on fluid 

temperature. The r value calculated is 0.11 that shows it does 

not have any significant effect on liquid flow rate

where T
i
 is the ith fluid temperature input value; T

ave
 is the 

average fluid temperature of all data records; Qi is the ith 

value of liquid flow rate; Q
ave

 is the average value of liquid 

(20)r =

∑N

i=1

�

Ti − T
ave

��

Qi − Q
ave

�

�

∑N

i=1

�

Ti − T
ave

�2 ∑N

i=1

�

Qi − Q
ave

�2

flow rate; and, N is the number of all data records in the 

dataset.

The QA and Solver algorithms presented are configured 

as single-objective optimization calculations. It is possible 

to expand these algorithms as multi-objective algorithms by 

using a function test based on assigning a score to each of 

the statistical measures of accuracy identified in “Statistical 

measures used to measure the accuracy of optimum solu-

tions”. The multi-objective optimization algorithms are then 

configured to maximize the combined function test score. 

This approach is deemed unnecessary for the Reshadat field 

dataset, because the GA and Solver algorithms achieve 

acceptable levels of accuracy configured to minimize MSE. 

However, in datasets where a single-objective statisti-

cal measure does not achieve sufficient levels of accuracy 

between predicted and measured liquid flow rates, applying 

a multi-objective algorithm configured as described is likely 

to improve that accuracy.

Conclusions

A new liquid flow-rate prediction model based on 182 col-

lected data records of well tests through production chokes 

from seven wells drilled in the Reshadat oil field, offshore 

Southwest Iran, is developed and evaluated. The novel liq-

uid flow-rate-prediction formula employed (Eq. 8) involves 

four independent variables and when optimized with either 

a customized genetic algorithm or Excel’s Solver optimizers 

Fig. 13  A comparison between 

mean square error (MSE, 

Eq. 15) and coefficient of 

determination (R2, Eq. 17) for 

the Reshadat oil field for the 

various flow-rate prediction 

methods identified in Fig. 11
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demonstrates high accuracy in predicting flow rate for the 

Reshadat oil field data. For the genetic algorithm it achieves 

the following values for statistical accuracy measures: aver-

age percent deviation = − 2.89%; absolute average per-

cent deviation = 7.33%; standard deviation = 563.85; mean 

squared error = 316,429; root-mean-square error = 562.52; 

and coefficient of determination = 0.9970.

The optimization methodology applied divided the data-

set into training and testing subsets and minimizes as the 

objective function the mean square error between measured 

and predicted flow rates. This approach is easy and flexible 

to setup train and test and is readily adaptable for application 

to other well-test datasets.

The two Solver algorithms achieved lower MSE val-

ues than the GA algorithm, with the Solver evolutionary 

algorithm achieving the lowest MSE value of 91,871. This 

confirms that both non-linear and evolutionary optimiza-

tion algorithms are almost equally effective when applied 

with the proposed methodology to the Reshadat field dataset. 

Applying Eq. (8) with optimized values for its coefficients 

derived from non-linear and evolutionary algorithms, fine-

tuned for specific field data, should enable production engi-

neers to significantly improve their flow-rate predictions for 

this field compared to other methods.

Acknowledgements The authors thank the National Iranian Oil Com-

pany (NIOC) and its subsidiary company, National Iranian South Oil 

Company (NISOC), for their support during this study and for provid-

ing the Reshadat oil field dataset.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

Appendix 1

See Table 4.

Table 4  Fluid properties of oil reservoirs in the Reshadat field

Fluid property Reservoir zone Reservoir conditions

#1 #2 #3 #1 #2 #3

Bubble point pressure, psig 2713 2052 2273 Under-saturated oil at reservoir condition

Reservoir initial pressure, psig 3500 3746 2573

Oil formation volume factor, − 1.39 1.72 1.41 3500 psig and  190oF 3746 psig and 182 °F 2573 psig and 188 °F

Oil viscosity, cp 4.3 3.9 3.85

Crude oil density, °API 20–23.7 21.01–22 19–24

Gas oil ratio, Scf/STB 338 268 304

Reservoir temperature, °F 190 182 188

Oil compressibility, 1/psi 10.2 × 10−6 13.04 × 10−6 9 × 10−6

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix 3

See Table 6.
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