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ABSTRACT 

Longitudinal dispersion coefficient is a key parameter in determining the distribution of 

pollution concentration; especially in temporally time varying source cases after that full cross 

sectional mixing has occurred. Several studies have been carried out to present simple formulas 

for its prediction. However, they may not always result in accurate prediction due to the 

complexity of the phenomena. In this study, M5  ́model tree was used to develop a new model 

for prediction of the longitudinal dispersion coefficient. The main advantages of the model trees 

are that they (a) provide transparent formulas and offer more insight into the obtained formulas 

and (b) are more convenient to develop and employ compared to other soft computing methods. 

To develop the model tree, extensive field data sets consisting of hydraulic and geometrical 

characteristics of different rivers were used. The performance of the model was also compared 

with those of other existing equations using error measures. Overall, results showed that the 

developed model outperforms the existing formulas and can serve as a valuable tool for 

prediction of the longitudinal dispersion coefficient. 
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INTRODUCTION 

In rivers, longitudinal dispersion becomes the predominant mechanism in mixing of the 

tracer by several orders of magnitude when cross sectional mixing is complete; leading to the 

elimination of any further concentration gradient (Fischer et al. 1979). The dispersion coefficient 

plays an important role in the spill modeling, design of water intakes, outfall and treatment plants 

and is representative of the intensity of the mixing in rivers (Deng et al. 2002). Hence, accurate 

estimation of the longitudinal dispersion coefficient is of a great importance for both engineers 

and scientists. Direct estimation (by experimental means) of the dispersion coefficient needs 

expensive and time consuming tracer studies. As a result, demand for a coefficient prediction 

tool still exists. Estimation of the longitudinal dispersion coefficient has been received 

considerable attention for a long period of time (e.g. Fischer et al. 1979; Liu 1977; Seo and 

Cheong 1998; Guymer 1998; Kashefipour and Falconer 2002; Shucksmith et al. 2010). It is still 

a challenging task to quantify this coefficient since various governing parameters cause 

complexity in the mixing process. Consequently, introducing mathematical expressions for the 

dispersion coefficient becomes problematic. Considering that river reaches may vary in 

condition; one formula may not produce accurate dispersion coefficients. However, this 

approach is a quite common practice in hydraulic engineering (Rowiński et al. 2005). 

When a tracer is introduced to a channel, the shape of tracer cloud is largely affected by 

velocity variations across the channel. Taylor (1954) suggested that the transverse shear velocity 

and transverse mixing become in equilibrium after a certain timescale at some point downstream. 

Beyond this point, Fickian diffusion equation can be used to model the tracer cloud 

concentration. The following simplified 1-D advection-dispersion equation was derived using 

Fickian’s law for a uniform channel: 
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where C is the cross-sectional average concentration (kg/m
3
), U is the cross-sectional average 

velocity (m/s), x is the direction of the mean flow, t is the time (s), and Kx is the longitudinal 

dispersion coefficient (m
2
/s). There is no guarantee for the equilibrium to be established in 

natural streams. However, equation (1) can adequately illustrate important features of tracer 

profiles in laboratory and river channels (Rutherford 1994).  

Various experimental studies have explored different aspects of the longitudinal dispersion 

(e.g. Fukuoka and Sayre 1973; Guymer 1998; Murphy et al. 2007). Moreover, regression and 

dimensional based analysis along with data-driven methods have been employed for the 

prediction of the dispersion coefficients which have a wide range of variations (e.g. Seo and 

Cheong 1998; Kashefipour and Falconer 2002; Sahay 2011). More details are provided in the 

following section. 

The main purpose of this study is to employ M5  ́ algorithm (Wang and Witten 1997) to 

develop a transparent model for prediction of the longitudinal dispersion coefficient. M5  ́model 

tree is a new soft computing method that provides understandable formulas, which allow users to 

have more insight in the physics of the phenomena (Etemad-Shahidi and Bonakdar 2009). 

Rainfall-runoff modeling (Solomatine 2003), flood forecasting (Solomatine and Xue 2004), 

sediment transport (Bhattacharya and Solomatine 2005) and wave prediction (Etemad-Shahidi 

and Mahjoobi 2009), are examples of successful model tree applications. This method has not 

been used for prediction of the dispersion coefficient. In this paper, a comprehensive field data 

set consisting of 149 field measurements extracted from the literature is used for model 
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development. The performance of the developed model is then compared with those of previous 

ones using statistical error measures. 

PREVIOUS WORKS 

In rivers, a range of variables affect the longitudinal dispersion coefficient. The most 

important ones are: the density, viscosity, channel width, flow depth, mean velocity, shear 

velocity, bed slope, bed roughness, horizontal stream curvature (sinuosity) and bed shape factor 

(Seo and Cheong 1998; Guymer 1998). Most of the previous efforts have been devoted to 

develop a formula for the estimation of Kx using easily measurable parameters such as mean 

velocity and depth. An overview of these investigations is given first and then a brief report of 

other affecting parameters (such as sinuosity, vegetation, etc.) and soft computing methods used 

for the prediction of Kx is provided. 

Elder (1959) expanded Taylor’s method for an open channel of infinite width. Using 

laboratory measurements and assuming a logarithmic distribution for the velocity profile in the 

vertical direction, he suggested: 

*5.93xK HU  (2) 

where H is the depth of flow and U* is the bed shear velocity. The transverse variation in the 

velocity profile was not considered in deriving equation (2). This may lead to underestimated 

predictions since in most natural channels, the transverse shear is more important than the 

vertical one. 

Fischer (1967) used the lateral velocity profile instead of the vertical velocity profile and 

developed the following integral equation: 
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in which A is the cross-sectional area, W is the channel width, h=h(y) is the local flow depth, u΄ 

is the deviation of the velocity from the cross-sectional mean velocity and εt is the transverse 

turbulent diffusion coefficient. This equation shows that Kx is inversely related to εt. In narrow 

and deep rivers, εt is high and hence, Kx becomes low. By contrast in relatively wide rivers, the 

transverse variation of velocity is large and Kx will be higher (Rutherford 1994). 

Having difficulties in using the integral form and unavailability of detailed transverse 

velocity profile, Fischer (1975) simplified equation (3) into the following non-integral form: 

2 2

*

0.011x

W U
K

H U

  
   

  
 (4) 

Liu (1977) (equation 5), Iwasa and Aya (1991) (equation 6) and Koussis and Rodrigues-

Mirasol (1998) (equation 7) have considered the effect of the lateral velocity gradient on 

dispersion and also Fischer’s (1975) expression, using laboratory and field data. Their formulas 

were: 

2 1.52

*

* *

, 0.18xK UW U

HU H U U

    
     

    
   (5) 

2

*

2xK W

HU H

 
  

 
 (6) 

2

*

, 0.6xK W

HU H

 
  

 
   (7) 



6 

 

Koussis and Rodrigues-Mirasol (1998) compared their model with Fischer’s (1975) one and 

stated that their results were much closer to the measurements. 

Seo and Cheong (1998) used 59 data sets from rivers in USA. They implemented 

dimensional analysis to select appropriate variables for model construction and applied one-step 

Hubor method, a nonlinear multi regression method, to obtain the following equation: 

1.4280.62

* *

5.915xK W U

HU H U

  
   

   
 (8) 

They stated that Liu’s equation (1977) is generally in good agreement with the measured data 

whereas Iwasa and Aya’s equation (1991) underestimates Kx in many cases. 

Deng et al. (2001) developed a mathematical expression for the terms h, u΄ and εt from 

equation (3) and predicted the dispersion coefficient as: 

25/3 1.38

0

* 0 * *

0.15 1
5.915 for 10, 0.145

8 3520

x
t

t

K W U W U W

HU H U H U H

      
          

       
 (9) 

Where εt0 is the dimensionless transverse mixing coefficient. Although their model is limited to 

straight-uniform streams with W/H greater than 10, they showed that it is superior to the model 

of Seo and Cheong (1998) in predicting the Kx. However, the model of Deng et al. (2001) has a 

disadvantage of the complexity caused by the approximation methods for triple numerical 

integration with a set of regression equations (Rowiński et al. 2005). 

Using 81 sets of field data in USA, Kashefipour and Falconer (2002) developed an equation 

based on the dimensional and regression analysis as: 
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They also found out that the average computed ratio of (Kx/HU*) obtained from Seo and 

Cheong’s (1998) formula and theirs were 1508 and 887 respectively while the corresponding 

average measured ratios was 1045. Hence, they combined equations (8) and (10)  to obtain a 

more accurate model using trial and error. Their final equation was:  

0.5720.62

*

*

7.428 1.775x

UW U
K HU

H U U

     
       

       

 (11) 

According to their analysis, model of Fischer (1975) and Koussis and Rodrigues-Mirasol (1998) 

both overestimate the longitudinal dispersion coefficient. They proposed that for open channel 

flows with W/H greater and less than 50, equation (10) and (11) can be used for practical 

applications, respectively. 

In a more fundamental study, Papadimitrakis and Orphanos (2004) stated that the dispersion 

processes depend on both transverse and vertical velocity profiles, and their relative importance 

depends on the W/H ratio. They divided W/H values into three regions and studied each region 

individually. Various combinations of parameters derived from river geometry and velocity data 

were tested, and an empirical expression was proposed for different ranges of the W/H ratios. 

Seo and Baek (2004) developed a theoretical method to predict longitudinal dispersion 

coefficient based on the distributions of transverse velocity profile in natural streams. First, they 

tested different velocity profile equations for irregular cross sections. Then, they developed a 

new equation for the longitudinal dispersion coefficient on the basis of the velocity profile. The 
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comparison showed that the predictions of the developed equation have better agreement with 

the observed values. 

Sahay and Dutta (2009) applied genetic algorithm (GA) to 65 field measurements and 

proposed: 

1.250.96

* *

2xK W U

HU H U

  
   

   
 (12) 

They mentioned that expressions given by Seo and Cheong (1998), Deng et al. (2001) and 

Kashefipour and Falconer (2002) perform well especially when the Kx values greater than 100 

m
2
s

-1
 are excluded from the analysis. They also found that the most effective parameter for an 

accurate prediction of the longitudinal dispersion coefficient is the term U/U*. 

Tayfur (2009) also used GA approach based on 85 field data and proposed the following 

empirical equation: 

0.91 9.94xK Q   (13) 

in which Q is the flow discharge. According to this study, equation (13) may have limited predictive 

capacity for fast-flowing mountainous streams or the streams with a very low flow discharge rate.  

Along with these studies, there are some investigations focusing on other influential 

parameters. For instance, Fukouka and Syre (1973) experimentally investigated the effect of 

sinuosity in a laboratory flume with various bending conditions. They found that in these cases, 

the dispersion coefficient is larger and the initial convective period is shorter than those of 

equivalent straight channel. The effect of this parameter was also investigated by other 

researchers (e.g. Rutherford 1994; Guymer 1998, Boxall et al. 2003; Boxall and Guymer 2007; 
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Bashitialshaaer et al. 2011). Effects of other factors such as vegetation, dead zones and hydraulic 

structures have been studied as well: Nepf et al. (1997) found that the longitudinal dispersion 

coefficient was decreased in the presence of vegetation while Shucksmith et al. (2010) noticed an 

increase in the longitudinal mixing in submerged conditions. Valentine and Wood (1977) 

conducted a numerical modeling to study two-dimensional flow with regular dead zones. They 

observed that dead zones not only increase the rate of dispersion but also delay the occurrence of 

Fickian type dispersion. Considerable research efforts have been devoted to the modeling of 

dead/storage zones in the last decade. More details in this regard can be found in Seo and 

Cheong (2001), Singh (2003), Smith et al. (2006), Cheong et al. (2007) and Marion et al. (2008). 

Caplow et al. (2004) suggested that dams (as one of the hydraulic structures) reduce the 

longitudinal dispersion coefficient below the expected value in a natural channel with the same 

discharge. However, quantification of the effects of such parameters needs detailed information 

of the river hydraulics as well as experimental investigations. 

Soft computing methods have been also applied by several investigators for the estimation of 

Kx. Fuzzy logic (Tayfur 2006; Toprak and Savci 2007), adaptive neuro-fuzzy inference system 

techniques (Riahi-Madvar et al. 2009; Noori et al. 2009), support vector machine (Noori et al. 

2009; Azamathulla and Ghani 2010) and genetic programming (Azamathulla and Wu 2011) are 

the examples of these approaches. It is worth mentioning that artificial neural network (ANN) 

models have been also employed to predict Kx (Rowiński et al. 2005; Tayfur and Singh 2005; 

Toprak and Cigizoglu 2008; Sahay 2011). 

MATERIAL AND METHOD 

Data set 



10 

 

The data sets used in this study were the collection of different data sets measured in different 

rivers (Fischer 1968; Yotsukura et al. 1970; McQuivey and Keffer 1974; Nordin and Sabol 1974; 

Rutherford 1994; Graf 1995). By considering the published data sets, 149 distinctive data records 

were selected which are presented in Appendix A. The data sets contain geometric and hydraulic 

characteristics including channel width, channel depth, average velocity, shear velocity and 

longitudinal dispersion coefficient. The histograms of Kx, W/H and U/U* are illustrated in Fig. 1. 

Approximately, 80 % of Kx values are less than 100 m
2
s

-1
, the expected maximum value of Kx  in 

natural rivers (Chapra 1997). The histogram of W/H implies that the studied cases varied from 

narrow rivers (W/H<10) to very wide rivers (W/H>100). U/U*, defined as the friction term (Seo 

and Cheong 1998), can be interpreted as hydrodynamic characteristics of the river bed. In other 

words, the wide range of U/U* in Fig. 1 covers different bed roughnesses. It should be mentioned 

that reported coefficients and hydraulic characteristics such as water depth, width and shear 

velocity may have some uncertainties in their values. Poor estimation procedures, tracer loss or 

the measurements made in the advective zone are the examples of such uncertainties of Kx 

values. Besides, software and hardware errors are inevitable in measuring hydraulic 

characteristics of a river (Rutherford 1994).  

Model Tree 

The main concept of model tree approach is the process of dividing complex problems into 

smaller ones (Bhattacharya et al. 2007). Hence, Model tree (MT) can be regarded as a robust 

method for classification and prediction, which is more understandable than ANN (Jung et al. 

2010). In fact, model tree (MT) combines the conventional decision tree with linear regression 

equation at the leaves (Wang and Witten, 1997). M5 algorithm, initially introduced by Quinlan 

(1992), is one of the most commonly approaches of MTs. Two main processes are considered in 



11 

 

the algorithm: building the tree and deriving the knowledge from it. The first process involves 

dividing the input parameter space into smaller sub-space for which a multiple regression model 

is assigned. The scheme is like an inverted tree in which the root is on top while the leaves are at 

the bottom. In the second process, a data record is introduced into the root of the tree. Fig. 2 

illustrates splitting the space for building a tree and eliciting knowledge from the structure. 

The record finds its way down by passing through the nodes. Nodes in the tree represent testing 

the particular parameter. This testing process involves comparing the given parameter with a 

constant value. These nodes are arranged based on the dividing condition of the first process (the 

process of building the tree). Finally, related prediction of the introduced record is obtained when 

a leaf is reached, and it is recognized as an output. Indeed, that record is classified on the basis of 

the class appointed to that leaf. 

M5 algorithm was later improved as M5  ́ algorithm by Wang and Witten (1997). The new 

version is more robust, produces simpler trees and can deal with enumerated and missing values. 

Generally, M5  ́ consists of three steps: building, pruning and smoothing the tree. M5  ́ is a 

recursive algorithm that constructs the regression tree by splitting the space using standard 

deviation reduction (SDR) factor: 

( ) - ( )i
i

i

T
SDR sd T sd T

T
   (14) 

in which T is the set of the data points before splitting, Ti is the data point that results from 

splitting the space and fall into one sub-space according to the chosen splitting parameter and sd 

is the standard deviation (Wang and Witten 1997). Standard deviation is considered as an error 

measure for the data points which fall into a one sub-space. M5  ́ model tree tests different 
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splitting points for all input parameters. For each sub-space, standard deviation is calculated and 

then compared with that of data records before dividing the space into smaller ones. When a 

value of the input parameters maximizes the expected error reduction, it is selected as the 

splitting point (node). This process (splitting) is repeated for every sub-space. The splitting 

process is brought to an end when a standard deviation reduction is less than 5% or a few data 

points remain in a sub-domain. After being built, tree calculates a linear multiple regression 

model for each sub-space using the input parameters. 

As the tree grows, the accuracy of the model increases uniformly for training set. Consequently, 

over-fitting may be inevitable while the tree is being built. Hence, pruning plays an important 

role in this step. Pruning is the process of merging some of the lower sub-trees into one node to 

avoid generating too accurate and over-fitted trees. In pruning, the prediction of expected error at 

each node for the test data is used. The average absolute difference between the predicted value 

and the actual output is calculated for each of the training sets that reach the node. To prevent 

underestimating the expected error for new data, the output value is multiplied by (n+  )/(n-  ) 

where n is the number of training data points that reach to the node and   is the number of input 

parameters that represent the output value at that node. The leaf (or sub-space) can be pruned if 

the predicted error is lower than the expected one (Witten and Frank 2005).  

The last step is the regularization process to compensate sharp discontinuities, which may 

happen between adjacent linear models in the leaves after the tree is being pruned. In this step, 

models built in each sup-space calculate the predicted value. That value is then modified along 

the route back to the root of the tree on top (first splitting point) by smoothing it at each node. 

The predicted value by the leaf model is combined with that of linear one for each node (Quinlan 

1992). 
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MODELING AND RESULT 

As discussed previously (See PREVIOUS WORKS), different parameters can affect 

longitudinal dispersion coefficient. Considering available data in this study, the effects of some 

parameters such as vegetation, dead zones and hydraulic structures cannot be investigated. 

However, we assume that the studied cases here can be representatives of average conditions, 

which may occur in natural environments. So, the following term relates remaining affecting 

parameters to Kx: 

 1 *, , , , , , , , ,x fK f W H U U S slope roughness   
 

(15) 

where ρ is the fluid density, µ  is the viscosity, Sf is the bed shape factor and σ is the sinuosity. 

According to Seo and Cheong (1998), bed shape factor and sinuosity represent the vertical and 

lateral irregularities respectively.  

As mentioned earlier, using dimensional analysis, equation (15) can be written in a 

dimensionless form as follows (Seo and Cheong 1998; Kashefipour and Falconer 2002): 

2

* *

, , , , , ,x
f

K HU W U
f S slope roughness

HU H U

 
  

 
 


 (16) 

in which Kx/HU* is the dimensionless dispersion coefficient and ρHU/µ is the Reynolds number. 

Since the flow in natural rivers is usually turbulent, the effect of Reynolds number is negligible 

and can be ignored. The effects of channel slope and roughness can be reflected in terms of U* 

and U/ U* respectively and can be excluded. 

Because of the complexity of obtaining σ and also the limited number of available data for this 

parameter, it has been omitted in most of the previous studies. However, some investigators 
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commented on the effect of σ. Sahay (2011), Tayfur and Singh (2005) and Rowiński et al. (2005) 

stated that the inclusion of σ in the input vector of the ANN models improves the accuracy of 

prediction. On the contrary, Tayfur (2006) stated that there is no strong dependence between Kx 

and σ. In fact, our study has also confirmed the former finding. In this study, σ was reported in 

about 40% of the whole measurements. Hence, σ was excluded from the input parameters of the 

model tree at the first step to simplify the problem. 

Sf values are not reported in the data sets, and hence it was not possible to use it. This parameter 

is not easily collected from natural streams, and its corresponding effect can be included in the 

term U/ U* (Seo and Cheong 1998). However, Deng et al (2001) introduced an expression named 

channel shape parameter as β=ln (W/H). β might be able to reflect the vertical irregularities as the 

bed shape factor. As seen later, one of the inputs of our model is log (W/H), which corresponds 

to β. Hence equation (16) can be written as: 

3

* *

,xK W U
f

HU H U

 
  

 
 (17) 

Assuming f3 to be a power function, the general expression of longitudinal dispersion coefficient 

can be: 

* *

cb

xK W U
a

HU H U

  
   

   
 (18) 

in which a, b, c are the constants of the equation which possess different values in different 

expressions.  

Since, model trees ordinarily can only produce linear relationships, the model was developed 

with log (inputs) and log (output) to obtain a nonlinear relationship. Furthermore, most of the 
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data-driven approaches perform well while dealing with the data with nearly uniform or normal 

distributions (Pyle 1992). It can be easily inferred from Fig. 3 that the distributions of the used 

variables are nearly log normal. 

Considering possible combinations of dimensionless forms for the longitudinal dispersion 

coefficient, plots of (Kx/HU*), (Kx/HU), (Kx/WU*), (Kx/WU) versus W/H and U/U* were plotted 

and their correlation coefficients were calculated. It was found that (Kx/HU*) is the best 

dimensionless form of Kx and has the highest correlation with W/H and U/U*. Consequently, 

these three terms were used as the inputs and the output for the model development. 

Taking logarithms of equation (18), the following linear formula can be derived: 

* *

log( ) log log logxK W U
a b c

HU H U

  
     

   
 (19) 

To develop the model, test and train technique was used. This is a common technique in 

learning algorithms on a data set (Mahjoobi et al. 2008). In this method, a data set is randomly 

divided into two subsets, train and test. The train data set is used to train the model, and then the 

model is tested (verified) using the test data set. In this study, 119 data records were used for 

training while the remaining ones were used for testing the model. The statistics of the 

parameters used for training the model are listed in Table 2. The developed model tree (MT) 

generated the following formulas: 

If log (W/H) ≤ 1.486 then log (Kx/HU*) = 1.90+0.78log (W/H) + 0.11log (U/U*)  20-a 

If log (W/H) > 1.486 then log (Kx/HU*) = 1.15+0.61log (W/H) + 0.85log (U/U*)  20-b 

After transformation, Equations (20-a, 20-b) can be written as: 
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If W/H ≤ 30.6 then 

0.110.78

* *

15.49xK W U

HU H U

    
    

    
      21-a 

If W/H > 30.6 then 

0.850.61

* *

14.12xK W U

HU H U

    
    

    
      21-b 

The splitting parameter is W/H, and the splitting value is about 30; a value close to that 

obtained by Papadimitrakis and Orphanos (2004). This splitting value is obtained by minimizing 

the prediction error and do not necessarily have a physical interpretation (Bhattacharya et al. 

2007; Bonakdar and Etemad-Shahidi 2011). However, the importance of W/H in determining Kx 

has been mentioned by others (Asay and Fujisaki 1991; Kashefipour and Falconer 2002; 

Papadimitrakis and Orphanos 2004, Tayfur and Singh 2005). Transverse shear is less important 

in relatively small values of W/H, while it dominates the dispersion characteristic when the 

aspect ratio is large. Hence, different regimes may exist for low and high W/H ratios. 

The exponents of W/H and U/U* are different in these formulas. In rivers with W/H ≤ 30.6, it 

is the width to depth ratio that outweighs the dispersion coefficient. In wider rivers with W/H > 

30.6, the influence of U/U* increases and the effect of W/H decreases (see also Papadimitrakis 

and Orphanos 2004). This can be interpreted as in very wide rivers, Kx may be less influenced by 

the W/H ratio than in narrow rivers. As discussed by Rutherford (1994), in relatively wide rivers, 

the role of velocity becomes more pronounced in determining the Kx than in narrow rivers. In this 

regard, it can be seen that the power of U in equation 21-b is almost 8 times greater than that of 

the value in equation 21-a. The obtained exponents of W/H and U/U* are in the range reported in 

previous works. The average exponents of W/H and U/U* are 0.7 and 0.48, which are close to 
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those of Seo and Cheong’s (1998) and Liu’s (1977), respectively. In brief, it was concluded that 

the obtained formulas are in good agreement with the engineering sense and previous findings. 

The performance of the developed model was evaluated against those of other existing 

models by using error measures such as discrepancy ratio (DR) (White et al. 1973), mean of 

absolute error (ME) and root mean square (RMS). These parameters are defined as: 

log
p

m

x

x

K
DR

K
  (22) 

1

1 N

i

i

ME DR
N 

   (23) 

 
2

1

1 N

i

i

RMS DR
N 

   (24) 

in which 
pxK  and 

mxK  are predicted and measured dispersion coefficients, respectively and N is 

the total number of data points. 

If DR is equal to zero, there will be an exact matching between the measured and predicted 

values. Otherwise, there is either an overestimation (DR>0) or underestimation (DR<0). 

Accuracy is defined as the percentage of DR values, which fall between -0.3 to 0.3 (Seo and 

Cheong 1998; Kashefipour and Falconer 2002). The performance of each model can also be 

determined by comparing the calculated values of ME, RMS with zero. The closer the values to 

zero, the more accurate the model will be. 

Error measures of previous models and the developed one are presented in Table 2. The 

results in the last two rows of Table 2 show that the errors of the developed model for testing 

data as well as all data are nearly the same. Although Elder’s (1959) equation is more suitable for 



18 

 

the rivers with no transverse shear, the comparison of this equation with others can merely 

illustrate the importance of transverse variation. According to Table 2, the performance of 

Fischer’s model (1975) is the least satisfactory after Elder (1959). As seen, all the error measures 

of the developed model show improvement in prediction of the longitudinal dispersion 

coefficient. The MT has the accuracy of 63%, the highest one among others. The nearest value of 

the accuracy to that of MT belongs to Liu (1977) with about 51%. The difference between these 

two accuracy values shows superiority of MT over other models well. ME and RMS are other 

performance indicators. The developed model outperforms other ones as it has the lowest values 

for these two error measures. Besides, the percentage of DR values greater than 0.3 and less than 

-0.3 of MT are 17.4% and 19.5%, respectively. It means that DR values out of this range are 

almost equally distributed between overestimated and underestimated values. But for the other 

models, non symmetric distributions for values out of the range -0.3 to 0.3 are somehow 

considerable. Liu (1977), Seo and Cheong (1998), Deng et al. (2001) and Sahay and Dutta 

(2009) over predict the dispersion coefficient by 1.7 times more than the under predicted cases. 

In other words, they generally overestimate the measured values of the longitudinal dispersion 

coefficient. The overestimation of the longitudinal dispersion coefficient results in obtaining 

lower maximum concentration. This is an important issue, especially in practical application 

regarding maximum concentration estimation. In such cases, it may not be safe to use over 

predicted Kx values. 

The histograms of DR values for six models are compared in Fig. 4. The DR distribution of 

MT shows a nearly symmetrical distribution between -1 to 1, which means there is relatively no 

skewness towards positive or negative values. However, there are cases of overestimation for 

other models. For example, model of Sahay and Dutta (2009) is skewed to positive values and 
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does not have a symmetrical distribution. This can also be understood from Table 3 in which the 

mean, standard deviation and skewness of DR of different models are given. The skewness 

values of our model and Deng et al.’s (2002) are the lowest ones. Moreover, the mean DR of MT 

is zero which is an indication of a symmetrical distribution. About 68 % of the DR values of 

Sahay and Dutta’s (2009) fall between -0.41 and 0.63, and 95% of the values are between -0.93 

and 1.15, implying skewness towards positive values. As another example, model of Kashefipour 

and Falconer ІΙ (2002) can also be addressed. Although the corresponding mean value of DR is 

close to zero, it has a relatively high standard deviation. As seen, about 95% the DR values are 

between -0.94 and 1.15, whereas that of MT is in the range of -0.86 and 0.86. This implies that 

DR values of MT prediction are closer to zero. Table 4 also shows that, MT has the lowest 

maximum error while Kashefipour and Falconer ΙΙ (2002) has the largest one. 

In addition, the correlation coefficient (CC) and the slope of the regression line are other 

tools for evaluating the performance of a model. If the slope of the regression line for prediction 

versus measured data is close to 1 and the value of CC is high, then the model is accurate. The 

developed model greatly outperforms other ones in predicting Kx when extreme measured values 

of dispersion coefficient (Kx>100 m
2
s

-1
) are excluded from the analysis. As presented in Table 5, 

the slope of the regression line of MT is close to 1 and it has the highest CC. 

Some more information was gained by the introduction of model tree equations. Information 

such as the splitting point and its value and the values of the exponent of the input parameters 

helped us to include σ parameter for the cases in which it was reported. Considering equations 

21-a, 21-b and the splitting point, the data set was divided into two sub sets. For each sub set, the 

effect of σ was considered to be a power function ( BA  ). The constants were obtained by 
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non-linear regression relation using the reported data (including σ). Finally, equations 21-a and 

21-b were modified as: 

If W/H ≤ 30.6 then  
0.110.78

4.04

* *

2.75xK W U

HU H U

    
    

    
      25-a 

If W/H > 30.6 then  
0.850.61

1.70

* *

8.36xK W U

HU H U

    
    

    
      25-b 

These equations show that Kx is directly related to the sinuosity which is in line with the previous 

findings of Fukouka and Syre (1973) and Bashitialshaaer et al. (2011). Interestingly, the 

performance of the modified equations was improved when including sinuosity. Table 5 

summarizes error measures of equations 21 and 25 for both ranges and also for all data with 

reported σ values. It is found that the accuracy of new equations accounting for σ was enhanced 

especially for the lower range of W/H. It is noteworthy that the power of σ depends on the W/H 

ratios. As inferred from eq. 25, the sinuosity has a greater effect on the lower W/H ratios than in 

the higher ones. This is in good agreement with engineering sense since in narrow rivers, mixing 

is more influenced by the river curvatures. 

Application of the piece-wise regression might provide better understanding of the physics of 

the phenomena in comparison with one simple equation, which may not be appropriate for all 

cases. However, comparison of two equations with existing ones is inevitable for the illustration 

of performance of the new model. Model tree approach used in this study requires minimum 

effort in comparison with other soft computing methods. The model tree provides simple 

regression formulas with low computational cost (Jafari and Etemad-Shahidi 2011). By contrast 

to other soft computing methods such as ANN, it does not need too much trial and error for 
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obtaining the best model. Besides, it is more transparent and can provide understandable 

formulas. The latter advantage can benefit users to have more insight into the physics of the 

phenomena along with quantifying the role of each input parameter. Other soft computing such 

as ANN have limited applicability because they are more like a black box model and do not 

reveal any direct mathematical expressions (Tayfur 2006). Model trees have some limitations as 

well. As mentioned before, they can only produce linear relationships. Besides, transformation of 

input parameters may not be that simple in more complex cases and not necessarily lead to a few 

simple linear formulas. 

CONCLUSION 

In this study, M5  ́model tree was used to predict the longitudinal dispersion coefficient in 

natural streams. The model was developed using 149 field data records consisting of hydraulic 

and geometrical characteristics. Because of the limited number of reported values of σ, it was 

decided to develop the equations without σ in the first step. Based on previous studies and trial 

and error, W/H and U/U* along with (Kx/HU*) were used as inputs and output of the model tree, 

respectively. Two formulas were generated and the splitting parameter was W/H, which is an 

important parameter in dispersion mechanism. The performance of the new model was 

evaluated, and the results were compared with those of existing formulas using different error 

measures. The developed model outperformed others in terms of accuracy. Effect of σ was 

considered then and the results showed improvement in the predictions of the dispersion 

coefficient. The suggested models seem to be safely applicable in hydraulic and environmental 

studies such as design of outfalls or evaluating risks from spills of hazardous contaminants. 
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NOTATION 
 

The following symbols are used in this paper: 

A = cross-sectional area; 

C = cross-sectional average concentration; 

H = depth of flow; 

h = local flow depth; 

Kx = longitudinal dispersion coefficient; 

pxK = measured dispersion coefficient; 

mxK = predicted dispersion coefficient; 

Q = flow discharge; 

n= number of train data points; 

N= number of data points; 

sd = standard deviation; 

Sf = bed shape factor; 

t = time; 

T = set of the examples that reach the node; 

Ti = set of the results of the node splitting according to selected parameter; 

U = cross-sectional average velocity; 

U* = bed shear velocity; 

u= deviation of the velocity from the cross-sectional mean velocity; 

  = number of inputs 

x = direction of the mean flow; 

ρ= fluid density; 

µ= fluid viscosity; 
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σ= sinuosity; 

β=channel shape parameter 

εt = transverse turbulent diffusion coefficient; 

εt0 = dimensionless transverse mixing coefficient; 
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Table 1 The statistics of parameters used for training the model 

 
W (m) H (m) U (ms

-1
) U* (ms

-1
) W/H U/ U* Kx (m

2
s

-1
) Kx/U* H

 

Max 253.6 8.2 1.73 0.55 403.75 20.25 1486.5 37140 

Min 1.4 0.14 0.03 0.002 2.20 0.77 0.2 3.08 

Avg 48.6 1.36 0.48 0.087 47.72 6.96 79.4 1172 

Std 47.2 1.39 0.33 0.078 49.64 4.75 174.9 3570 
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Table 2 Comparison of various models performance  

Model DR<-0.3 -0.3< DR <0 0< DR <0.3 DR >0.3 Accuracy ME RMS 

Elder (1959)-all data 98.0 1.3 0.7 0.0 2.0 1.85 1.95 

Fischer (1975) -all data 30.2 18.1 16.8 34.9 34.9 0.56 0.71 

Liu (1977),all data 17.4 22.1 28.9 31.6 51.0 0.42 0.57 

Seo and Cheong (1998), all 

data 
18.8 16.1 30.2 34.9 46.3 0.43 0.59 

Deng et al (2001), all data 20.1 19.5 27.5 32.9 47.0 0.42 0.56 

Kashefipour and Falconer 

(2002), all data 
36.9 30.2 10.7 22.2 40.9 0.54 0.74 

Kashefipour and Falconer 

(2002)-ΙΙ, all data 
26.1 29.5 19.4 25 48.9 0.46 0.66 

Sahay and Dutta (2009), all 

data 
20.1 22.8 22.8 34.3 45.6 0.40 0.53 

MT, all data 17.4 28.9 34.2 19.5 63.1 0.32 0.44 

MT, Testing data 13.3 36.7 26.7 23.3 63.3 0.35 0.48 
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Table 3 Mean ( DR ), standard deviation ( DR ), maximum (
maxDR ) and skewness of DR (SKDR) 

of different models 

Model DR  DR  maxDR  SKDR
 

Liu(1977) 0.11 0.56 2.05 -0.52 

Seo and 

Cheong (1998) 
0.18 0.56 2.15 0.8 

Deng et al. 

(2001) 
0.11 0.56 1.89 0.33 

Kashefipour 

and Falconer 

(2002)ΙΙ 

0.03 0.66 2.74 1.1 

Sahay and 

Dutta (2009) 
0.11 0.52 1.79 0.38 

MT 0.00 0.43 1.54 -0.32 
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Table 4 Slope of regression line and CC for prediction versus measured Kx (Kx<100 m
2
s

-1
) of 

different models 

Model Slope of regression line CC 

Liu (1977) 3.86 0.29 

Seo and Cheong (1998) 1.31 0.46 

Deng et al. (2001) 0.61 0.14 

Kashefipour and Falconer ΙΙ (2002) 0.51 0.18 

Sahay and Dutta(2009) 1.4 0.49 

MT 0.96 0.6 
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Table 5 Comparison of error measures of MT equations with and without σ 

 

 
W/H < 30.6 W/H > 30.6 

All data points 

with reported σ 

value 

 
Without With Without With Without With 

MAE 0.53 0.33 0.25 0.2 -0.07 0 

RMSE 0.71 0.42 0.31 0.27 0.44 0.32 

DR  -0.23 0 0 0 0.32 0.24 

DR  0.7 0.44 0.32 0.27 0.44 0.31 
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Appendix A. The data sets used in this study. 

No Stream W(m) H(m) U(m/s) U*(m/s) Kx (m
2
/s) σ 

1 Copper creek, VA(below gage) 15.9 0.49 0.21 0.079 19.52  

2 Copper creek, VA(below gage) 18.3 0.84 0.52 0.1 21.4  

3 Copper creek, VA(below gage) 16.2 0.49 0.25 0.079 9.5  

4 Clinch river, TN(below gage) 46.9 0.86 0.28 0.067 13.93  

5 Clinch river, TN(below gage) 59.4 2.13 0.86 0.104 53.88  

6 Clinch river, TN(below gage) 53.3 2.09 0.79 0.107 46.45  

7 Copper creek, VA(above gage) 18.6 0.39 0.14 0.116 9.85  

8 Power river, TN 33.8 0.85 0.16 0.055 9.5  

9 Clinch river, VA 36 0.58 0.3 0.049 8.08  

10 Green and Duwamish 21.77 1.58 0.31 0.058395 6.5  

11 Green and Duwamish 29.61 1.08 0.36 0.048279 0.5 1.41 

12 Bayou Anacoco 19.8 0.41 0.29 0.044 13.94 1.30 

13 Nooksack river 86 2.94 1.2 0.514 153.29  

14 Antietam creek 15.8 0.39 0.32 0.06 9.29  

15 Antietam creek 19.8 0.52 0.43 0.069 16.26  

16 Antietam creek 24.4 0.71 0.52 0.081 25.55  

17 Monocacy river 35.1 0.32 0.21 0.04 4.65  

18 Monocacy river 36.6 0.45 0.32 0.05 13.94  

19 Monocacy river 47.5 0.87 0.44 0.07 37.16  

20 Missouri river 182.9 2.23 0.93 0.065 464.52 1.35 

21 Missouri river 201.2 3.56 1.27 0.082 836.13 1.35 

22 Missouri river 196.6 3.11 1.53 0.077 891.87 1.35 

23 Wind/Bighom rivers 67.1 0.98 0.88 0.11 41.81  

24 Elkhom river 32.6 0.3 0.43 0.046 9.29  

25 Elkhom river 50.9 0.42 0.46 0.046 20.9  

26 John day river 25 0.56 1.01 0.137 13.94 1.08 

27 Comite river 12.5 0.26 0.31 0.043 6.97 1.31 

28 Comite river 15.8 0.41 0.37 0.055 13.94 1.31 

29 Amite river 36.6 0.81 0.29 0.068 23.23  

30 Amite river 42.4 0.8 0.42 0.068 30.19  

31 Sabine river 103.6 2.04 0.56 0.054 315.87  

32 Sabine river 127.4 4.75 0.64 0.081 668.9  

33 Muddy creek 13.4 0.81 0.37 0.077 13.94  

34 Muddy creek 19.5 1.2 0.45 0.093 32.52  

35 Sabine river Texas 35.1 0.98 0.21 0.041 39.48  

36 white river 67.1 0.55 0.35 0.044 30.19  

37 Chattahoochee river 65.5 1.13 0.39 0.075 32.52  

38 Susquehanna river 202.7 1.35 0.39 0.065 92.9 1.13 
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39 Antietam Creek 10.97 0.52 0.21 0.074909 17.5  

40 Antietam Creek 23.47 0.7 0.52 0.101491 101.5  

41 Antietam Creek 24.99 0.45 0.41 0.081374 25.9  

42 Antietam Creek 12.8 0.3 0.42 0.057 17.5 1.40 

43 Antietam Creek 24.08 0.98 0.59 0.098 101.5 2.25 

44 Antietam Creek 11.89 0.66 0.43 0.085 20.9 2.25 

45 Antietam Creek 21.03 0.48 0.52 0.069 25.9 1.26 

46 Monocacy river 48.7 0.55 0.26 0.05 37.8 1.28 

47 Monocacy river 92.96 0.71 0.16 0.05 41.4 1.28 

48 Monocacy river 51.21 0.65 0.62 0.04 29.6 1.28 

49 Monocacy river 97.54 1.15 0.32 0.058 119.8 1.61 

50 Monocacy river 49.99 0.95 0.32 0.074778 29.6  

51 Monocacy river 33.53 0.58 0.16 0.041315 66.5  

52 Monocacy river 40.54 0.41 0.23 0.04 66.5 1.61 

53 Conococheague Creek 42.21 0.69 0.23 0.064 40.8 2.25 

54 Conococheague Creek 49.68 0.41 0.15 0.081 29.3 2.25 

55 Conococheague Creek 42.98 1.13 0.63 0.081 53.3 1.31 

56 Conococheague Creek 43.28 0.69 0.22 0.063729 40.8  

57 Conococheague Creek 63.7 0.46 0.1 0.056203 29.3  

58 Conococheague Creek 59.44 0.76 0.68 0.072242 53.3  

59 Chattahoochee river 75.6 1.95 0.74 0.138 88.9 1.27 

60 Chattahoochee river 91.9 2.44 0.52 0.094 166.9 1.57 

61 Chattahoochee river 99.97 2.5 0.3 0.105054 166.9  

62 Salt Greek 32 0.5 0.24 0.038 52.2 1.38 

63 Difficult run 14.5 0.31 0.25 0.062 1.9 1.09 

64 Difficult run 11.58 0.4 0.22 0.087475 1.9  

65 Bear Creek 13.7 0.85 1.29 0.553 2.9 1.08 

66 Little Pincy Creek 15.9 0.2 0.39 0.053 7.1 1.13 

67 Bayou Anacoco 17.5 0.45 0.32 0.024 5.8 1.41 

68 Bayou Anacoco 25.9 0.94 0.34 0.067 27.6 1.41 

69 Bayou Anacoco 36.6 0.91 0.4 0.067 40.2 1.41 

70 Comite river 15.7 0.2 0.36 0.04 69 1.31 

71 Comite river 6.1 0.49 0.25 0.057591 69  

72 Bayou Bartholomew 33.4 1.4 0.2 0.03 54.7 2.46 

73 Bayou Bartholomew 37.49 2.07 0.1 0.040306 54.7  

74 Amite river 21.3 0.5 0.54 0.027 501.4  

75 Amite river 46.02 0.53 0.41 0.042659 501.4  

76 Tickfau River 14.9 0.59 0.27 0.08 10.3 1.75 

77 Tickfau River 41.45 1.04 0.07 0.090343 10.3  

78 Tangipahoa River 31.4 0.81 0.48 0.072 45.1 1.46 

79 Tangipahoa River 29.9 0.4 0.34 0.02 44 1.46 



39 

 

80 Tangipahoa River 42.98 1.28 0.26 0.068162 45.1  

81 Tangipahoa River 31.7 0.76 0.36 0.053227 44  

82 Red River 253.6 0.81 0.48 0.072 45.1 1.20 

83 Red River 161.5 0.4 0.34 0.02 44 1.44 

84 Red River 152.4 1.62 0.61 0.032 143.8 1.44 

85 Red River 155.1 3.96 0.29 0.06 130.5 1.24 

86 Red River 248.11 4.82 0.31 0.065235 143.8   

87 Sabine River, LA 116.4 3.66 0.45 0.057 227.6 1.17 

88 Sabine River, LA 160.3 1.74 0.47 0.036 177.7 1.17 

89 Sabine River, TX 14.2 1.65 0.58 0.054 131.3 2.53 

90 Sabine River, TX 12.2 2.32 1.06 0.054 308.9 2.05 

91 Sabine River, TX 21.3 0.5 0.13 0.037 12.8 1.47 

92 Sabine River, TX 21.64 0.61 0.08 0.04237 12.8   

93 Sabine River, TX 17.37 1.23 0.04 0.050338 14.7   

94 Sabine River, TX 31.39 1.43 0.13 0.041029 24.2   

95 Wind/Bighom rivers 44.2 1.4 0.99 0.14 184.6 1.56 

96 Wind/Bighom rivers 85.3 2.4 1.73 0.15 464.6 1.56 

97 Copper Creek 16.7 0.5 0.2 0.08 16.8 2.54 

98 Clinch River 48.5 1.2 0.21 0.07 14.8 1.25 

99 Copper Creek 18.3 0.4 0.15 0.12 20.7 2.54 

100 Powell River 36.8 0.9 0.13 0.05 15.5  

101 Clinch River 28.7 0.6 0.35 0.07 10.7 2.20 

102 Copper Creek 19.6 0.8 0.49 0.1 20.8 1.14 

103 Clinch River 57.9 2.5 0.75 0.1 40.5   

104 Conchelaa Canal 24.7 1.6 0.66 0.04 5.9 1.14 

105 Clinch river 33.53 0.78 0.19 0.049483 10.7   

106 Clinch river 55.78 2.26 0.69 0.098768 36.93   

107 Clinch river 53.2 2.4 0.66 0.11 36.9   

108 Coachell canal, CA 23.77 1.6 0.67 0.04 5.96 1.14 

109 Coachell canal, CA 24.99 1.54 0.66 0.037 5.92  

110 Copper Creek 16.8 0.5 0.24 0.08 24.6  

111 Missoury river 180.6 3.3 1.62 0.08 1486.5  

112 Bayou Anacoco 25.9 0.9 0.34 0.07 32.5  

113 Bayou Anacoco 36.6 0.9 0.4 0.07 39.5  

114 Nooksack river 64 0.8 0.67 0.27 34.8 1.30 

115 Wind/Bighom rivers 59.4 1.1 0.88 0.12 41.8 1.18 

116 Wind/Bighom rivers 68.6 2.2 1.55 0.17 162.6 1.18 

117 John day river 34.1 2.5 0.82 0.18 65 1.89 

118 Yadkin River 70.1 2.4 0.43 0.1 111.5 2.17 

119 Yadkin River 71.6 3.8 0.76 0.13 260.1 2.17 

120 Colorado River 106.1 6.1 0.79 0.088201 181  
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121 Colorado River 71.6 8.2 1.2 0.336784 243  

122 Albert 100 4.4 0.029 0.0016 0.2  

123 Dessel-Herentals 35 2.5 0.037 0.0022 0.2  

124 Yuma Mesa A 7.6 3.45 0.68 0.047 0.5  

125 Bocholt-Dessel 35 2.5 0.107 0.0063 1.4  

126 Villemsvaart 34 2.5 0.13 0.0079 1.7  

127 Chicago Ship Canal 49 8.07 0.27 0.019 3  

128 Irrigation 1.4 0.19 0.38 0.11 9.6  

129 Irrigation 1.5 0.14 0.33 0.1 1.9  

130 Puneha 5 0.28 0.26 0.21 7.2  

131 Kapuni 9 0.3 0.37 0.15 8.4  

132 Kapuni 10 0.35 0.53 0.17 12.4  

133 Manganui 20 0.4 0.19 0.18 6.5  

134 Waiongana 13 0.6 0.48 0.24 6.8  

135 Stony 10 0.63 0.55 0.3 13.5  

136 Waiotapu 11.4 0.75 0.41 0.061 8  

137 Manawatu 59 0.72 0.37 0.07 32  

138 Manawatu 63 1 0.32 0.094 22  

139 Manawatu 60 0.95 0.46 0.092 47  

140 Tarawera 25 1.21 0.73 0.084 27  

141 Tarawera 20 1.92 0.62 0.123 11.5  

142 Tarawera 25 1.38 0.77 0.091 20.5  

143 Tarawera 25 1.4 0.78 0.091 15.5  

144 Tarawera 25 1.57 0.83 0.096 18  

145 Tarawera 85 2.6 0.69 0.06 52  

146 Waikato 120 2 0.64 0.05 67  

147 Miljacka 11 0.29 0.35 0.058 2.7  

148 Upper Tame 9.9 0.83 0.46 0.09 5.5  

149 Upper Tame 9.9 0.92 0.52 0.1 5.1  

 

 

 


