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Abstract

Background Presence of lymph node metastasis (LNM) influences prognosis and clinical

decision-making in colorectal cancer. However, detection of LNM is variable and depends on

a number of external factors. Deep learning has shown success in computational pathology,

but has struggled to boost performance when combined with known predictors.

Methods Machine-learned features are created by clustering deep learning embeddings of

small patches of tumor in colorectal cancer via k-means, and then selecting the top clusters

that add predictive value to a logistic regression model when combined with known baseline

clinicopathological variables. We then analyze performance of logistic regression models

trained with and without these machine-learned features in combination with the baseline

variables.

Results The machine-learned extracted features provide independent signal for the presence

of LNM (AUROC: 0.638, 95% CI: [0.590, 0.683]). Furthermore, the machine-learned fea-

tures add predictive value to the set of 6 clinicopathologic variables in an external validation

set (likelihood ratio test, p < 0.00032; AUROC: 0.740, 95% CI: [0.701, 0.780]). A model

incorporating these features can also further risk-stratify patients with and without identified

metastasis (p < 0.001 for both stage II and stage III).

Conclusion This work demonstrates an effective approach to combine deep learning with

established clinicopathologic factors in order to identify independently informative features

associated with LNM. Further work building on these specific results may have important

impact in prognostication and therapeutic decision making for LNM. Additionally, this general

computational approach may prove useful in other contexts.
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Plain language summary
When colorectal cancers spread to

the lymph nodes, it can indicate a

poorer prognosis. However, detecting

lymph node metastasis (spread) can

be difficult and depends on a number

of factors such as how samples are

taken and processed. Here, we show

that machine learning, which involves

computer software learning from

patterns in data, can predict lymph

node metastasis in patients with

colorectal cancer from the micro-

scopic appearance of their primary

tumor and the clinical characteristics

of the patients. We also show that

the same approach can predict

patient survival. With further work,

our approach may help clinicians to

inform patients about their prognosis

and decide on appropriate

treatments.
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Colorectal cancer (CRC) is the third most common type of
cancer in the United States and the third-leading cause of
cancer-related deaths1. The presence of lymph node

metastasis (LNM) is a key factor in the prognosis and manage-
ment of CRC. For cases without LNM (stage I/II disease), treat-
ment is typically via surgical resection alone, whereas the
presence of LNM (stage III disease) is an indication for adjuvant
chemotherapy2,3

Unfortunately, the current diagnosis of LNM is imperfect. To
identify metastasis within a lymph node, the affected lymph node
must first be contained in the surgical resection, identified in the
surgical specimen for pathologic evaluation, and then the metastasis
within must be recognized on histologic sectioning and review; all of
these processes are subject to substantial variability4. For example,
surgeons vary in their lymph node yield depending on the margin
size taken and whether additional lymph node dissection is done3,
and the number of nodes identified within a surgical specimen is
associated with the amount of time taken by the pathologist5,6. After
finding the lymph nodes, identifying LNM can further depend on
specimen processing and careful evaluation. Cutting multiple sec-
tions from the node increases detection of LNM7 and small
metastases (such as isolated tumor cells or micrometastases) may be
missed8. Immunohistochemistry stains and molecular techniques
may enhance the yield but are variably performed due to cost,
availability, and workflow challenges3. Consistent with these diag-
nostic challenges, patients with node-negative disease still have
5-year mortality of 20–30%, which is thought to be due largely to
undiagnosed lymph node involvement3,5. Therefore, better identi-
fication of LNM would have significant ramifications for patient
prognosis and therapeutic management.

While prior work has demonstrated associations of established
histologic factors with LNM, including submucosal involvement,
tumor budding, lymphovascular invasion, tumor growth pattern,
fibrotic stroma, and various IHC markers9–11, no system currently
exists in practice to utilize these features to make an accurate risk
estimate for LNM. Deep learning via convolutional neural net-
works has shown great success in medical image analysis, including
prediction of clinical outcomes across many cancer types from
pathological images via weakly-supervised deep learning12–16. For
LNM prediction, deep learning approaches have recently shown
promise as well, but to this point have struggled to show improved
predictive power over models using baseline clinicopathologic
variables in external validation17–20. Without controlling for
established histologic associations, a deep learning system may
directly learn to predict the known features, limiting overall per-
formance relative to an approach that incorporates both prior-
known and deep learning-extracted previously unknown features.

In this study we propose a method of controlling for known
variables while selecting machine-learned features, with the aim
of developing a combined predictive model that maximizes
generalizable performance while being inherently interpretable.
We hypothesize that such a system will achieve better perfor-
mance than a model trained on known clinicopathologic variables
or deep learning based features alone. To our knowledge, this
method of feature generation/selection has not been done before,
and we demonstrate that this does indeed provide a performance
boost over known baseline variables that generalizes to an
external dataset. Finally, we explore the ability of different deep
learning pre-training regimens to generate relevant machine-
learned features, including supervised pretraining using natural
images vs self-supervised pre-training using histologic images.

Methods
Data cohorts. This retrospective study utilized de-identified,
digitized histopathology slides of primary colorectal samples and

clinicopathologic metadata from colorectal cancer cases from the
BioBank at the Medical University of Graz (MUG)21 and from
Stanford University (SU). Slides were scanned using a Leica
Aperio AT2 scanner at 20X magnification (0.5 μm/pixel). Insti-
tutional Review Board approval for this study was obtained from
MUG (Protocol no. 30-184 ex 17/18) and SU (Protocol no.
46762). The need for informed consent was waived as the
research was deemed to involve no more than minimal risk to the
subjects, and could not be practically carried out with informed
consent given the historical nature of the retrospective datasets.
Clinicopathologic metadata including pathologic TNM staging,
age, sex, and tumor grade were extracted from de-identified
clinical and pathology reports. When indicated in the report,
presence of lymphatic invasion and venous invasion were also
extracted. Only cases with complete clinicopathologic metadata
for TNM staging, age, sex, tumor grade were included in this
study. Patient characteristics of these cohorts are reported in
Supplementary Data 1.

Cases from MUG comprise archived stage II and stage III
colorectal cases from 1984 to 2013. Cases from 1984-2007 were
used for model development and feature selection (divided into
training and tune sets) and cases from 2008-2013 were used as a
temporal validation set22–24. In the event of multiple cases for a
given patient, only the primary resection was included. Cases
from SU comprise all available archived stage II and III colorectal
cancer cases and a random sample of available stage I and IV
cases from 2007 to 2018 (one case per patient). The SU cases were
used for external validation.

All slides underwent manual quality assurance review by
pathologists to confirm the stain, tissue, and specimen type. Only
hematoxylin and eosin (H&E) stained slides with colorectal tissue
from resection specimens were used in this study. Slides
containing sections from lymph nodes or large lymphoid
aggregates were excluded.

Notably, as per colorectal cancer staging definitions4, stage II
cases are node negative and represent only T3 or T4 cases, while
stage III cases are node positive and can include cases of any T
category. Hence, in a cohort of stage II and stage III cases, T1
and T2 cases will all be node positive. To avoid learning a
spurious association between node positivity and T1 or T2, we
excluded T1 and T2 cases from the MUG cohorts. For
evaluation using the external datasource (SU), we established
a similar cohort (stage II/III, T-category T3/T4) which we refer
to as external validation set 1a. The full SU cohort containing
stage I-IV cases and all T-categories is referred to as external
validation set 1b.

The final dataset used for model development also involved the
inclusion criteria of requiring that the WSIs were scanned after a
specific date. This stems from the fact that training/tune set cases
for MUG were scanned with the majority of stage II cases
preceding stage III in scan date. Unfortunately, in early model
development, we discovered that our model learned this spurious
association between scan date and stage, as even for LNM
negative cases only (stage II), the model predicted higher
probability of node positivity for cases after a certain scan date.
Despite reviewing our scanning operation notes, investigating
scanning metadata, and examining scanned slides, we could not
elucidate what had changed. Additionally, there was no difference
in clinicopathologic variables (e.g., T-category, grade, etc)
between cases before and after this date that may explain the
difference in average model output. Therefore, for model
development, we dropped all cases that were scanned before this
date, and subsampled stage III cases to account for the subsequent
class imbalance resulting from the relative decrease in stage II
cases. This did not affect cases in the internal or external
validation sets.
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The MUG data cohorts were detailed previously16; a STARD
diagram detailing inclusion and exclusion criteria for the SU
cohorts is available as Supplementary Fig. S8.

Region of Interest Selection. Region of interest (ROI) masks to
utilize predominantly tumor regions for model development and
inference were generated as described in a previous work16.
Briefly, a convolutional neural network (CNN) was developed in
a patch-based supervised learning approach using whole slide
images (WSIs) from pathologist-annotated colorectal slides. This
CNN takes as input a small patch from a WSI and predicts the
presence of tumor in this patch. We then compare the prediction
of the model for this patch with the ground truth obtained via the
pathologist-labeled tumor segmentation mask for the slide. This
model achieved an AUC of 0.985 with sensitivity of 0.940 and
specificity of 0.950 on a held out test-set of 44 slides (6,866,573
patches) from the Medical University of Graz and an AUC of
0.949 with sensitivity of 0.880 and specificity of 0.872 on a held
out test set of 86 slides (10,005,507 patches) from the public
TCGA COAD data set. For more details, see ref. 15. Tumor masks
were generated by running the tumor detection model over all
tissue containing patches in a slide in a sliding-window fashion
(Fig. 1a). ROI masks were generated by denoising and dilating the
tumor masks to capture both tumor regions and approximately
0.5 mm of bordering non-tumor regions (approximately 2 patch-
widths) immediately adjacent to the tumor.

Feature Generation. Candidate case-level machine-learned fea-
tures for predicting LNM were generated by computing the
percentage of patches in each case belonging to each of K dif-
ferent histologic clusters. Clusters were generated by applying the
k-means algorithm to embeddings of a sample of 113,984 patches,
where an embedding represents the feature vector obtained after
passing a patch through a convolutional neural network (CNN)
(Fig. 1a). This set of patches was constructed by randomly sam-
pling 64 patches at 10X magnification from each case in the
training set. Patch size was determined based on the design model
architecture (289 × 289 pixels for Graph-Rise, 224 × 224 pixels for
ResNet-based models at 1 micron per pixel). For the primary
analysis, embeddings were generated via Graph-Rise25, a CNN
trained on natural images to predict image similarity, an
approach consistent with prior work on pathology image
search25,26 and survival prediction16. Alternative embedding
models including a BiT27 model pre-trained on ImageNet and a
self-supervised SimCLR28 model pre-trained on The Cancer
Genome Atlas (TCGA) were explored in secondary analyses (see
Supplementary Methods).

Feature selection. Given a set of K candidate machine-learned
features, a subset of machine-learned features was selected for
inclusion in an LNM prediction model that combines both
clinicopathologic variables and machine-learned features
(Fig. 1b). Forward stepwise selection was employed for machine-
learned feature selection with the baseline clinicopathologic
variables included in the model throughout the process. In other
words, we started with a multivariable logistic regression model
for LNM that included only the set of known baseline variables.
Candidate machine-learned features were then iteratively selected
for inclusion in the multivariable logistic regression model. In
each iteration, the candidate machine-learned feature that gave
the largest increase in performance (AUROC) when added to the
model was selected. We measured performance on the develop-
ment set over different values of K clusters (10, 25, 50, 100, 200),
and for an increasing number of selected machine-learned fea-
tures (1–10). The optimal configuration of K= 200 and 5 selected

machine-learned features was chosen based on development set
performance and the observation of diminishing returns after
selecting more than 5 machine-learned features.

The goal of this selection process was to identify a subset of
machine-learned features that are associated with LNM after
controlling for known clinicopathologic variables by including
them in the multivariable model. The statistical evaluations used
to evaluate this approach are described next.

Statistical evaluation of features. The association of the 5
machine-learned features with LNM after controlling for known
clinicopathologic variables was evaluated in three different ways.
Our first approach and planned primary analysis consisted of a
likelihood ratio test comparing a null logistic regression model
containing just the baseline clinicopathologic variables (age, sex,
tumor grade, T-category, lymphatic invasion and venous inva-
sion) to an alternative logistic regression model containing the
baseline clinicopathologic variables and the 5 selected machine-
learned features. In the second approach, we fit multivariable
logistic regression models including both machine-learned fea-
tures and known clinicopathologic variables and evaluated the
odds ratios associated with the machine-learned features. In these
first two approaches (which are both analytical in nature instead
of predictive), the logistic regression models were fit on the
validation set being evaluated. Lastly, we evaluated the gain in
AUROC on the validation sets by adding the 5 selected machine-
learned features to a baseline logistic regression model of clin-
icopathologic variables trained on the development set (e.g., a
predictive logistic regression model) (Fig. 1c).

To further interpret histologic patterns captured by the
machine-learned features, we sampled patches from different
cases close to the cluster centroid for each of the top 5 machine-
learned features (Fig. 2 and Supplementary Fig. S2–S6). Two
board-certified pathologists reviewed these patches to provide a
brief characterization of each machine-learned feature (Supple-
mentary Table S2).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Digitized histopathology slides of primary tissue as well as clin-
icopathologic metadata from two institutions’ colorectal cancer
patients were used in this study (Supplementary Data 1). From
the first institution, cases from 1982 to 2007 were used for model
development, while cases from 2008 to 2013 were used for tem-
poral validation. Cases from the second institution were only used
for external validation. For this external validation institution, we
will refer to the cohort that contains only stage II and III cases as
external validation set 1a and the full cohort containing stage I-IV
cases as external validation set 1b.

We utilized a deep learning model to develop candidate
machine-learned histologic features of colorectal cancer and
selected 5 features that complement existing clinicopathologic
variables for predicting LNM. In the pre-planned, primary ana-
lysis, we observed a significant improvement in the goodness of fit
when adding the 5 machine learned features to a multivariable
logistic regression model for LNM prediction containing 6 clin-
icopathologic variables in external validation set 1a. (p= 0.00032;
likelihood ratio test; Table 1). Similar results were observed in the
temporal validation set and external validation set 1b (p < 0.0001
for both, Table 1).

In multivariable regression analysis (Table 2) in which both
clinicopathologic variables and machine learned features were
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included, the odds ratios for two of the five individual machine-
learned features were significant in each validation set, but the
two features differed by validation set (features #1 and #3 in the
temporal validation set; features #3 and #4 in the external vali-
dation sets).

We also evaluated the added predictive value of the machine-
learned features by computing the increase in area under the
receiver operating characteristic (AUROC) when adding the
machine-learned features to a logistic regression model contain-
ing the clinicopathologic variables. These models were trained on
the development set and evaluated on the validation sets. For
external validation set 1a, addition of the machine learned fea-
tures increased the AUROC by 0.024 [95% CI: −0.001, 0.048],
from 0.716 [95% CI: 0.673, 0.759] using the baseline variables
alone to 0.740 [95% CI: 0.697, 0.781] when also including the
machine-learned features (Table 3). Similar improvements were
seen for the temporal validation set and external validation set 1b

(Table 3). Receiver operating characteristic curves with AUROCs
for these approaches are shown in Supplementary Figure S1. To
evaluate the effect of model architecture and type of pretraining,
we repeated this analysis for ResNet50 models that had either
undergone supervised training via BiT on ImageNet27 or self-
supervised training via SimCLR28 on The Cancer Genome Atlas,
and found that all approaches gave similar results (Supplemen-
tary Table S3). We also report sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) for
each method using an operating threshold by selecting the value
that maximized the harmonic mean of sensitivity and specificity
(Supplementary Table S4).

Given the potential clinical dilemma regarding use of adjuvant
chemotherapy in stage II CRC patients, we also evaluated the
ability of the same five machine-learned features to provide risk
stratification for disease-specific survival (DSS). This analysis
involved a logistic regression model trained on the machine-

Fig. 1 Overview of model development. a Feature Generation: patches are sampled at random from regions containing tumor of a given case in the training
set, and each patch is passed through a CNN to obtain an embedding vector. A k-means algorithm is then fit on these embeddings. Note: for demonstration
purposes in this example only 10 cluster centroids were placed; in our actual model we fit 200 clusters on the patch embeddings. b Feature Selection: all
patch embeddings from a case are run through the trained k-means model and are assigned a cluster id, and the fraction of patches in a case assigned to
each cluster is computed (case-level cluster quantitation vector). This is repeated for all cases in the training set. The top 5 clusters are chosen to maximize
AUROC in a greedy stepwise forward selection on the training set when combined with baseline clinical features in a logistic regression model. c Feature
Evaluation: a cluster quantitation vector is computed for a case to be evaluated, and the cluster quantitations for the pre-selected top cluster ids are
concatenated to the baseline clinical features. This case-level combined feature vector is then fed through a logistic regression model to obtain a prediction.
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learned features alone and was evaluated on the temporal vali-
dation set (outcome data was not available for the external vali-
dation sets). Patients were split into low and high risk groups
within each stage based on the model’s predicted probability of
LNM (see Methods). In Kaplan-Meier analysis (Fig. 3), this
model provided significant risk stratification within both stage II
and stage III cases (p < 0.001, log-rank test). For stage II cases the
5-year DSS survival rate was 0.855 [95% 0.789, 0.901] for the low
risk group vs. 0.664 [95% CI: 0.588, 0.736] for the high risk group.
For Stage III cases, the 5-year DSS was 0.697 [95% CI: 0.588,
0.783] for the low risk group vs. 0.493 [95% CI: 0.430, 0.554] for
the high risk group.

Finally, to provide initial insights into the histologic patterns
captured by the machine-learned features, pathologists reviewed
exemplar image patches sampled at random (see Methods) for
each machine-learned feature (Fig. 2). The feature most strongly
associated with LNM in univariable analysis (feature #1) con-
sisted predominantly of adipose tissue and inflammatory cells
with rare tumor cells. The features identified with significant ORs
in multivariable analysis in external validation (#3 and #4),
exhibited predominantly moderately differentiated tumor with
occasional presence of inflammation and fibrotic stroma (#3;
OR= 1.64 [95%CI: 1.18, 2.27] p= 0.003, external validation set
1a) and predominantly high grade adenocarcinoma with scant
stroma (#4; OR= 0.62 [95%CI: 0.44, 0.88], p= 0.007; external
validation set 1a) (ORs in Table 2). Brief summary descriptions
for the five features based on review of the sampled patches are

shown in Supplementary Table S2, and 25 additional patches
from external validation set 1a from each cluster are featured in
Supplementary Fig. S2–S6.

Discussion
In this work, we identify machine-learned histopathologic fea-
tures of primary resection specimens that predict the presence of
LNM in CRC. Notably, these features provide independent signal
relative to known clinicopathologic variables. While the boost in
predictive performance achieved via the addition of ML features
to our baseline model is modest, it does indicate that there is
additional signal for LNM prediction when combined with what
is currently known and used (e.g., T-stage, grade, lymphovascular
invasion, venous invasion, etc), representing an opportunity for
future research to further understand the features and biology
associated with LNM. Without implying that this model is
immediately applicable for clinical use, there are at least two
important clinical decisions related to this type of prediction.
First, for prognostic risk stratification to help identify high risk
patients with Stage II cancer who may benefit from adjuvant
chemotherapy2,3. Second, for risk assessment in endoscopic
resection of apparent T1 cancer where there lymph node sam-
pling is typically not performed but risk of metastasis is still
7–15%9,10. An approach that adds information to that of baseline
features alone may be able to help inform decisions about the
need for additional lymph node sampling or treatment escalation

Fig. 2 Representative patches of machine-learned features associated with lymph node metastasis. Univariable AUROCs, univariable odds ratios (OR)
and sample patches for the top 5 machine-learned features are shown. Patches representing the same machine-learned features are shown for the
temporal validation set and the external validation set 1a, respectively. Patches selected here are closest to each cluster centroid, and each patch within a
single feature is sampled from a unique case. Patches are 289 × 289 pixels obtained at 10X, with scale bar in lower right showing length of 100
micrometers.

Table 1 Significance of adding machine-learned features to baseline clinicopathologic variables

Temporal validation External validation 1a External validation 1b

Null model (age, sex, tumor grade, T-category, lymphatic invasion, venous
invasion)

Reference Reference Reference

P-value for adding 5 machine-learned features <0.0001 0.00032a <0.0001

P-values for a likelihood ratio test comparing a null model containing baseline clinicopathologic variables to an alternative model containing the baseline clinicopathologic variables and 5 machine-learned
features.
aplanned primary analysis.
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in some cases. While the lack of Stage I cases in our training data
limits our ability to directly evaluate this potential in our study, it
remains an intriguing area for future work.

In this work our goal was to maximize performance of an LNM
prediction model when clinicopathologic and machine-learned
features were combined. To this end, we decided a priori to
include baseline clinicopathologic variables in our multivariate
logistic regression model when selecting the machine-learned
features. To evaluate the effectiveness of this approach, we also
performed machine-learned feature selection without controlling
for baseline clinicopathologic variables. Notably, in this negative
control experiment, addition of machine-learned features selected
in this manner did not increase performance over the clin-
icopathologic variables alone on the external validation sets
(Supplementary Table S5). This supports the value of controlling
for established clinicopathologic variables when attempting to
both learn novel features and maximize overall predictive value of
deep learning-based approaches.

Our work builds on and corroborates previous work investi-
gating the ability of deep learning-based models to predict cancer

metastasis from primary tumor tissue. Brinker et al. demonstrated
that deep learning-extracted features could be used to predict
sentinel LNM in melanoma, but also demonstrated that these
features did not add value in combination with the baseline
variables17. Kiehl et al. reported the performance of a deep
learning-based model in prediction of LNM in colorectal cancer,
and were able to show on their internal validation set that this
model did improve predictive performance when added to
baseline clinical features in a logistic regression model. However,
they did not control for these baseline clinical features when
training their deep learning model, and on their external vali-
dation set (TCGA) the deep learning model did not add value
over the baseline features alone18. Similarly, Brockmoeller et al.
demonstrated the development of a deep learning model for
prediction of LNM in early colorectal cancer, and showed good
performance that remained when combined with baseline models
on their internal validation set, but they did not have an external
dataset to assess generalizability19. To expand upon these prior
efforts and address the issue of relearning established features, we
control for known features during feature selection and

Table 2 Multivariable odds ratios for the machine-learned features

Temporal validation External validation 1a External validation 1b

Covariate OR [95% CI] p OR [95% CI] p OR [95% CI] p

Age
< 60 1.00 (reference) n/a 1.00 (reference) n/a 1.00 (reference) n/a
60–69 0.48 [0.29, 0.79] 0.004 0.58 [0.35, 0.96] 0.033 0.51 [0.35, 0.74] < 0.001
70–79 0.51 [0.32, 0.83] 0.007 0.39 [0.23, 0.64] < 0.001 0.41 [0.27, 0.61] < 0.001
> 80 0.51 [0.31, 0.85] 0.009 0.38 [0.21, 0.67] < 0.001 0.35 [0.22, 0.57] < 0.001
Sex
Male 1.00 (reference) n/a 1.00 (reference) n/a 1.00 (reference) n/a
Female 1.52 [1.09, 2.13] 0.014 1.01 [0.70, 1.47] 0.953 0.91 [0.68, 1.23] 0.545
Tumor Grade
G1 1.00 (reference) 1.00 (reference) 1.00 (reference) n/a 1.00 (reference) n/a
G2 0.72 [0.45, 1.15] 0.166 1.09 [0.75, 1.57] 0.65 0.78 [0.58, 1.04] 0.094
G3 1.18 [0.70, 1.99] 0.534 1.66 [0.81, 3.41] 0.169 1.29 [0.68, 2.43] 0.44
T-Category
T2 n/a n/a n/a n/a 1.00 (reference) n/a
T3 1.00 (reference) n/a 1.00 (reference) n/a 1.56 [1.14, 2.13] 0.005
T4 1.24 [0.81, 1.88] 0.319 1.04 [0.60, 1.81] 0.884 1.87 [1.11, 3.16] 0.018
Lymphatic Invasion
L0 1.00 (reference) 1.00 (reference) 1.00 (reference) n/a 1.00 (reference) n/a
L1+ 1.76 [1.16, 2.68] 0.008 5.48 [3.36, 8.96] < 0.001 4.06 [2.76, 5.96] < 0.001
Venous Invasion
V0 1.00 (reference) 1.00 (reference) 1.00 (reference) n/a 1.00 (reference) n/a
V1+ 1.85 [1.12, 3.04] 0.016 1.58 [0.83, 2.99] 0.163 1.53 [0.88, 2.66] 0.132
Machine-learned Features
1 1.88 [1.33, 2.68] < 0.001 1.31 [0.47, 3.64] 0.611 1.54 [0.67, 3.54] 0.31
2 0.50 [0.20, 1.29] 0.154 0.59 [0.32, 1.08] 0.086 0.66 [0.42, 1.05] 0.078
3 2.18 [1.48, 3.21] < 0.001 1.64 [1.18, 2.27] 0.003 1.45 [1.13, 1.86] 0.003
4 0.80 [0.60, 1.07] 0.13 0.62 [0.44, 0.88] 0.007 0.63 [0.46, 0.85] 0.003
5 0.87 [0.58, 1.32] 0.516 1.04 [0.58, 1.86] 0.907 0.77 [0.49, 1.21] 0.264

Odds ratios (OR) from multivariable logistic regression model baseline clinicopathologic variables (age, sex, tumor grade, T-category, lymphatic invasion, venous invasion) and 5 machine-learned
features.

Table 3 AUROC for LNM prediction

Model Temporal validation External validation 1a External validation 1b

Clinical 0.667 [0.626, 0.708] 0.716 [0.674, 0.762] 0.719 [0.684, 0.752]
Clinical+ML 0.715 [0.674, 0.753] 0.740 [0.701, 0.780] 0.738 [0.705, 0.770]
Delta 0.048 [0.027, 0.069] 0.024 [−0.001, 0.047] 0.019 [0.000, 0.037]

AUROCs for LNM predictions for logistic regressions with various feature sets. Clinical baseline clinicopathologic variables (age, sex, tumor grade, T-category, lymphatic invasion, venous invasion).
Clinical+ML baseline clinicopathologic variables plus 5 machine-learned features. Delta the difference between Clinical+AI and Clinical. 95% confidence intervals computed via bootstrapping.
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demonstrate that this approach can generalize to an external
dataset, and even to an external cohort comprising different
characteristics than those in the training cohort (e.g., stage I/IV
cases, T2 disease). Additionally we have demonstrated good
performance while using a pretrained deep learning model to
generate fixed embeddings (without requiring fine tuning on our
specific task), substantially reducing the computational cost to
develop such an algorithm29,30.

The deep learning-extracted feature most strongly associated
with LNM in our study (cluster #1) consisted of inflammatory
cells and adipose tissue with occasional tumor cells. Interestingly,
this finding is consistent with a recent finding from Brockmoeller
et al of “inflamed adipose tissue” as a highly predictive feature for
LNM presence19. Our study of T3 and T4 cases complements
their study of T1 and T2 cases and further establishes inflamed fat
as a feature that is not simply associated with depth of invasion.
Additionally, this feature shares intriguing similarity with the
tumor adipose feature (TAF) previously identified as predictive of
disease-specific mortality in colorectal cancer16, albeit with less
predominant tumor cell involvement than TAF. While under-
standing the interaction of adipose tissue, inflammation, and
tumor and potential biological underpinnings in these different
contexts warrants further investigation, these findings provide
compelling corroboration of one another as an important feature
associated with morbidity in colorectal cancer. Additionally,
machine-learned feature clusters as used in this study may com-
prise a diversity of individual morphological features, such that
precise definitions of features that apply to all patches might not be
possible. The potential to further define the most relevant mor-
phological findings is an important future direction for this type of
work. It is our hope that additional research into these emerging
associations may yield insights into pathogenesis of LNM that are
yet to be characterized and whose discovery may provide important
avenues for improvement of clinical management.

One interesting, unanticipated challenge identified in this work
was the confounding between scan date and LNM positivity (see
Methods). For the development cohort, LNM negative cases were
predominantly scanned before positive cases (because scanning
proceeded by cancer stage). Early in model development we were
achieving very high AUROC on the development set, and upon
investigation discovered that the model had apparently learned an
association between scan dates and lymph node status with cases
scanned before a certain date receiving uniformly lower prob-
ability of metastasis. After investigating the scanner settings,
image metadata, and viewing representative slides before and
after this cutoff date, we were unable to identify a difference in
these scans that might explain the observations, but clearly there
was some confounding feature(s) learned by the model, a possi-
bility shown previously31. The ability of neural networks to learn
confounding associations has been well-documented, including
computer vision applications in healthcare settings32,33, and
weakly-supervised settings such as the present work may be at
increased susceptibility to this issue due to relatively low signal-
to-noise ratio. Our findings underscore the importance of the
data ingestion process as it relates to model development overall,
highlighting that care should be taken to avoid the introduction
of spurious associations.

Our study has several limitations. First, the data that was used
for training and model development included only Stage II and
III cases, which potentially limits the generalizability of our model
outside of these stages. As such, our primary analysis focused on
evaluation of the subset of stage II and III cases available within
the external validation set. However, in secondary analysis we
observed that the machine-learned features also provided sig-
nificant predictive signal when including all stages. Additionally,
given the confounding association between T-category and LNM
amongst stage II and III cases (e.g., by definition, T1/T2 cases are
never found in stage II), we excluded stage III T1 and T2 cases in

Fig. 3 Kaplan-Meier Curves for LNM risk groups (temporal validation set). Kaplan-Meier Curves for disease specific survival (DSS) amongst stage II and
stage III cases, respectively. A logistic regression model using the five machine-learned features identified for LNM prediction was fit on the development
cohort for predicting DSS. Risk groups were defined within each stage by binarizing using the median LNM model score for the most recent 5-years of the
development cohort (2003 to 2007). The resulting regression models and risk group thresholds were then evaluated on the temporal validation set. The
logistic regression model provided significant risk stratification within both node-negative and node-positive disease groups, suggesting the potential of
such a model to aid in improving prognostication and therapeutic decision making.
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model development. As a result, our models may not capture the
full association between T category and lymph node metastasis18.
Additionally the lack of T1 cases and endoscopic resections in our
dataset limited our ability to investigate model performance in the
important use case detailed above of metastasis prediction when
doing endoscopic resection for T1 cases. Second, we also note that
Graph-Rise, the CNN architecture used for feature generation,
while described publicly25, is not available in off-the-shelf deep
learning frameworks. Acknowledging this limitation, we repeated
our approach and analyses using a commonly available model
architecture, and found that good performance can be achieved
using public models and datasets. Supplementary Fig. S7 shows
top clusters from these models, and interestingly an adipose tissue
predominant feature is one of two most predictive clusters in both
cases, adding support to the above hypothesis that this has an
important association with LNM in colorectal cancer. Third, our
evaluation of this model as a risk stratification tool (in the DSS
analysis) is limited as this is a retrospective study, and treatment
pathways present an important confounding factor that is diffi-
cult to control for, including potential differences in neoadjuvant
and adjuvant therapy. Though treatment guidelines within stage
II and within stage III colorectal cancer cohorts are fairly uni-
form, at least some variability in treatment likely exists in the real
world. Fourth, while our methodological approach does yield
inherent interpretability to our predictive model and as men-
tioned we do add to a growing body of literature regarding the
important of inflamed adipose tissue, an extensive interpretability
analysis is beyond the scope of the present work which focuses on
controlling for known variables when selecting deep learning
embeddings to maximize model performance. Further explora-
tion of the morphological features may be the subject of
further work.

In summary, we developed and evaluated a method for gen-
erating machine-learned histomorphological features that provide
novel signal for LNM in colorectal cancer. We showed that the
machine-learned features produced by our method were sig-
nificantly associated with LNM after controlling for known
clinicopathologic variables in an external validation set. We also
show that a model incorporating these features provides risk
stratification for disease specific survival for patients with and
without identified metastasis in a temporal validation set. These
results support the potential value in further refinement and
validation of our method for clinical risk stratification for col-
orectal cancer as well as exploring our proposed methodology in
the context of other important prediction tasks in pathology and
oncology.

Data availability
This study utilized archived anonymized pathology slides, clinicopathologic variables,
and outcomes from the Institute of Pathology and the Biobank at the Medical University
of Graz and Stanford University. Interested researchers should contact K.Z. to inquire
about access to Biobank Graz data and J.S. to inquire about access to Stanford University
data; reasonable requests for research use will be considered and require ethics review
prior to access. The source data used to generate Fig. 3 is available as Supplementary
Data 2.

Code availability
In this work we use pre-trained deep learning models from 3 different approaches
(Graph-RISE, BiT, SimCLR) to produce embeddings, and show that machine-features
derived from these embedding achieve similar performance in LNM prediction. The BiT
model has been open sourced and is available on TFHub (https://tfhub.dev/google/bit/s-
r50x1/1). Code for generating and evaluating the machine-learned features while
controlling for baseline features is available on GitHub (https://github.com/Google-
Health/google-health/tree/master/colorectal_lymph_node_metastasis_prediction)34.
Code for pretraining a SimCLR model is available at (https://github.com/google-
research/simclr).
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