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Predicting malaria vector 
distribution under climate change 
scenarios in China: Challenges for 
malaria elimination
Zhoupeng Ren1,2,3,*, Duoquan Wang4,5,6,*, Aimin Ma1,7, Jimee Hwang8,9, Adam Bennett8, 

Hugh J. W. Sturrock8, Junfu Fan10, Wenjie Zhang1,2, Dian Yang1, Xinyu Feng4,5,6, Zhigui Xia4,5,6, 

Xiao-Nong Zhou4,5,6 & Jinfeng Wang1,3,11

Projecting the distribution of malaria vectors under climate change is essential for planning integrated 

vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, 

however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we 
assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, 

An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 
2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus 

and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios 
for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% 
and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing 

(RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial 
net increase in the population exposed to the four dominant malaria vectors in the decades of the 

2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve 
and sustain malaria elimination in China will need to account for these potential changes in vector 

distributions and receptivity.

Malaria is a mosquito-borne infectious disease caused by parasites of the genus Plasmodium, and is transmitted 
by female Anopheles mosquitoes1. Malaria causes a signi�cant burden of disease at the global and regional levels2. 
In the 1940 s, more than 30 million malaria cases were recorded annually in China. A�er the establishment of 
the People’s Republic of China in 1949, the Chinese government focused on malaria control, investing signi�cant 
resources3. Following tremendous progress over the past several decades of control, the central government with 
strong political commitment in 2010 endorsed the National Action Plan for Malaria Elimination (2010–2020), 
with the goal of national malaria elimination by 20204.

Four dominant malaria vectors occupying distinct ecological niches have been identi�ed in China3. An. sinensis,  
an outdoor resting and biting species, is the only known malaria vector in areas above 33 °N latitude and is widely 
distributed in areas comprised primarily of wet rice cultivation. An. lesteri, an indoor resting and biting mosquito and 
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historically the primary vector in areas between 25 °N latitude and 33 °N latitude, is mainly found in low elevation 
areas and typically breeds in channels, rivulets, sugarcane �elds and banana �elds. In the areas below 25 °N latitude, 
An. minimus and An. dirus are the main vectors. An. minimus is indoor resting and biting, while An. dirus is usually 
outdoor resting and biting. �e typical breeding sites of An. minimus are shaded streams, swamps, pools and seepage 
in jungle areas. An. dirus is o�en found resting on rock holes, thick grass, bamboo canes and tree roots in the forest.

Scientists have come to a consensus on attributing global warming mainly to atmospheric concentration of 
man-made greenhouse gases5. A number of studies have shown that increases in global temperatures can cause 
latitudinal and altitudinal shi�s in vector distributions, changing the risk of vector borne infectious diseases6. 
Some climate-based models have shown that malaria transmission and burden could expand in temperate zones, 
while ranges may contract in other regions7,8. China is expecting a warmer climate in the mid to late 21st century 
according to future climate predictions9. Both predicted annual mean surface air temperature and precipitation 
are expected to increase, with increases varying between regions. Northern China is expected to be wetter, while 
southern China is expected to become drier9. In addition to mapping the geographical distribution and intensity 
of malaria transmission10,11, understanding the distribution of vectors is important for providing strategic and 
evidence-based information to malaria elimination programs12. Furthermore, understanding the possible e�ects 
of climate change on the future distribution of dominant malaria vectors will allow programs to adapt vector 
control strategies including response strategies for imported cases to receptive areas. Here, we assess the impact 
of various climate change scenarios on the four dominant malaria vectors in China while taking into account 
mediating factors including land use change and urbanization.

Results
Figures 1, 2 and 3 indicate the observed presence locations (county centroids) of the four dominant malaria vec-
tors in China and the predicted environmentally suitable area (ESA) for the current, 2030 s, and 2050 s time peri-
ods in China under di�erent representative concentration pathways (RCPs, see Methods), RCP2.6 (Fig. 1), RCP4.5 
(Fig. 2) and RCP8.5 (Fig. 3). Using external data, the average test area under the curve (AUC) values of our models 
were 0.977 (An. dirus), 0.941 (An. minimus), 0.889 (An. lesteri) and 0.846 (An. sinensis), indicating distinct dis-
criminative ability between suitable and unsuitable areas. �e results indicate that the predicted ESA e�ectively 
captured the observed malaria vector presence locations according to model-accuracy evaluations (see Methods).

As depicted in Fig. 4, the e�ect of future climate scenarios and land use change would increase the potential 
distribution of the four dominant malaria vectors under all three RCP scenarios in the 2030 s and 2050 s, except 
for An. minimus under RCP2.6 and RCP4.5 (Table 1). Total ESA would increase for the four malaria vector 
species by larger amounts under the very high emission scenario (RCP8.5) than the medium stabilization sce-
nario (RCP4.5) and the mitigation scenario (RCP2.6) in the 2030 s and 2050 s (Table 1). Further, di�erent general  
circulation models (GCMs) projected consistent changes in ESA for three species (i.e., An. dirus, An. minimus, 
and An. sinensis) in most regions of China (Supplementary Fig. S1), though uncertainty in projections of An. 
lesteri distribution was higher than for other species.

Based on the contribution of related environmental variables to model variation, we have identi�ed important 
variables (see Environmental variables contributions in Supplementary Notes) for di�erent vectors such as annual 
temperature range for An. dirus, the mean temperature of the coldest quarter for An. minimus, and precipitation 
during the driest quarter and fraction of urban area within grid cell (gurbn) for An. lesteri and An. sinensis. Since 
the predicted annual mean surface air temperature and precipitation would increase to the end of this century, 
with di�erent increase rates among di�erent regions, the projected ESA of the four dominant vectors diverged 
substantially among di�erent regions over this period. A detailed description of the relationship between vector 
occurrence and environmental variables can be found in Supplementary Notes.

Change in ESA of An. dirus. Figure 1–a1 indicates that the current predicted ESA for An. dirus covers the 
south-western region of China between 18°–25° N, including Yunnan and Hainan Provinces, as well as a section 
of coast of Guangdong Province. Predictions using all three GCMs show a consistent increase in ESA for An. 
dirus over the southwest of Guangxi and central parts of Yunnan (Supplementary Fig. S1) Provinces, though large 
uncertainties in the northwest of Yunnan and northeast of Guangdong Province can be seen from all three GCMs 
and RCPs. Conversely, a slight decrease in the ESA of An. dirus is predicted in Guangdong and Yunnan (Figs 1–3, 
a2–3) Provinces. Generally, the ensemble of simulation from three GCMs suggest that the ESA of An. dirus will 
increase in the 2030 s and then decrease in the 2050 s, for all RCPs (Table 1).

Change in ESA of An. minimus. Currently, the ESA for An. minimus (Fig. 1–b1) is predicted to cover the 
south between 18°–33° N including Yunnan, Hainan, Guangxi, Guangdong, and Fujian Provinces. In the 2030 s, 
the ESA of An. minimus is predicted to increase slightly over Guangdong and Guangxi Provinces, and decrease 
substantially over the same two provinces and Yunnan Province in the 2050 s (under all three RCPs) (Figs 1–3, 
b2–3). �e models indicate consistent increases in the predicted ESA over the central parts of Guangxi Province 
and at the border between Guangxi and Guangdong Provinces, while decreases are predicted over the northeastern 
Yunnan, northern Guangxi, and northeastern Fujian (Figs 1–3, b1–b3) Provinces, with relatively large uncertain-
ties in other regions including northwestern Hunan Province (Supplementary Fig. S1). With all three RCPs emis-
sion scenarios, our model predicted a slight increase in ESA for An. minimus in the 2030 s compared to the current 
distribution, whereas, substantial decreases in ESA are predicted in the 2050 s under RCP2.6 and RCP4.5 (Fig. 4, 
Table 1). For example, under the RCP2.6 emission scenario, our estimates indicate a predicted increase of 14.3% 
in the 2030 s, but, decreases of 18.5% in the 2050 s, compared to the current distribution, respectively (Table 1).

Change in ESA of An. lesteri. �e current ESA for An. lesteri is predicted in the south between 18°–34° N  
in more than 16 provinces, with a substantially fragmented spatial pattern, especially in the eastern and central 
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Figure 1. Potential current (suitable and unsuitable) and future (suitable/stable, lost, gained, and 
unsuitable) environmentally suitable area (ESA) for the four dominant vectors under RCP2.6, the lowest 
greenhouse gas emission scenario. Row a1–a3 represent An. dirus, b1–b3 An. minimus, c1–c3 An. lesteri, and 
d1–d3 An. sinensis. Future predictions are based on an ensemble of predictions from three general circulation 
models (BCC-CSM1-1, CCCma_CanESM2 and CSIRO-Mk3.6.0). �e second and third columns indicate the 
2030 s and 2050 s, respectively. �e black dots indicate occurrence localities of the respective malaria vectors. 
Green shaded areas show stable suitable areas, blue shows lost ESA and red shows gained ESA. All the lost and 
gained areas were calculated based on the current distribution as the reference. Maps created in ArcGIS 10.2 
(Environmental Systems Resource Institute, ArcMap Release 10.2, ESRI, Redlands, California).
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Figure 2. Potential current (suitable and unsuitable) and future (suitable/stable, lost, gained, and 
unsuitable) environmentally suitable area (ESA) for the four dominant vectors under RCP4.5, the 
moderate greenhouse gas emission scenario. Row a1–a3 represent An. dirus, b1–b3 An. minimus, c1–c3  
An. lesteri, and d1–d3 An. sinensis. Future predictions are based on an ensemble of predictions from three 
general circulation models (BCC-CSM1-1, CCCma_CanESM2 and CSIRO-Mk3.6.0). �e second and third 
columns indicate the 2030 s and 2050 s, respectively. �e black dots indicate occurrence localities of the 
respective malaria vectors. Green shaded areas show stable suitable areas, blue shows lost ESA and red shows 
gained ESA. All the lost and gained areas were calculated based on the current distribution as the reference. 
Maps created in ArcGIS 10.2 (Environmental Systems Resource Institute, ArcMap Release 10.2, ESRI, Redlands, 
California).
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Figure 3. Potential current (suitable and unsuitable) and future (suitable/stable, lost, gained, and 
unsuitable) environmentally suitable area (ESA) for the four dominant vectors under RCP8.5, the worst 
greenhouse gas emission scenario. Row a1–a3 represent An. dirus, b1–b3 An. minimus, c1–c3 An. lesteri, and 
d1–d3 An. sinensis. Future predictions are based on an ensemble of predictions from three general circulation 
models (BCC-CSM1-1, CCCma_CanESM2 and CSIRO-Mk3.6.0). �e second and third columns indicate the 
2030 s and 2050 s, respectively. �e black dots indicate occurrence localities of the respective malaria vectors. 
Green shaded areas show stable suitable areas, blue shows lost ESA and red shows gained ESA. All the lost and 
gained areas were calculated based on the current distribution as the reference. Maps created in ArcGIS 10.2 
(Environmental Systems Resource Institute, ArcMap Release 10.2, ESRI, Redlands, California).
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parts of China (Fig. 1–c1). �e models indicate substantial changes in the ESA of An. lesteri by the 2030 s and 
2050 s, with considerable variations among GCMs (Figs 1–3, c1–c3, Supplementary Fig. S1). �e northeast and 
central parts of Hunan, Shaanxi and Shanxi as well as east of Fujian Province are predicted to become environ-
mentally suitable for An. lesteri under the three climate projections (Supplementary Fig. S1), while the north of 
Chongqing, southeast of Anhui, and central Jiangsu Provinces would become unsuitable for An. lesteri, with large 
uncertainties among di�erent GCMs under di�erent RCPs (Supplementary Fig. S1). Speci�cally, the CCCma_
CanESM2 climate model tends to predict a greater increase in ESA than the other two GCMs under the RCP2.6 
emission scenario (Supplementary Fig. S4–S6). Furthermore, the models indicate the largest absolute changes in 
ESA will occur for An. lesteri among the four species (Fig. 4). Compared to the current distribution, the relative 
changes of ESA of An. lesteri would increase by 24.5% in the 2030 s and decrease by 28.3% in the 2050 s under 

Figure 4. Percent change in estimated gained and lost size of environmentally suitable area (ESA) for four 
malaria vectors in the 2030 s and 2050 s compared to the present. �e projections of changes in ESA were 
based on an ensemble of simulations from three general circulation models (BCC-CSM1-1, CCCma_CanESM2 
and CSIRO-Mk3.6.0) for the 2030 s and 2050 s under three scenarios (RCP2.6, RCP4.5 and RCP8.5).

Species RCPs

ESA (thousand square kilometres) Exposed population (millions)

2030 s 2050 s 2030 s 2050 s

Gained Lost Gained Lost Gained Lost Gained Lost

An. dirus

RCP2.6 38.5 8.0 32.2 12.1 29.9 11.7 19.3 16.7

RCP4.5 60.2 4.2 42.7 9.9 50.0 4.9 33.3 14.0

RCP8.5 47.3 7.2 48.0 9.7 33.3 11.7 31.8 14.4

An. minimus

RCP2.6 14.3 5.8 6.5 18.5 10.9 3.4 6.9 11.1

RCP4.5 16.2 4.8 8.1 13.4 12.0 2.6 9.2 7.7

RCP8.5 18.6 5.0 13.2 10.5 13.0 3.1 11.8 6.4

An. lesteri

RCP2.6 24.5 9.8 28.3 17.4 10.6 8.7 15.8 17.0

RCP4.5 24.2 9.9 35.7 16.1 9.8 8.9 21.5 15.2

RCP8.5 28.9 10.6 44.5 12.8 14.2 8.4 26.3 11.7

An. sinensis

RCP2.6 8.4 1.0 9.5 2.3 3.3 0.4 4.4 1.0

RCP4.5 7.4 0.9 9.6 2.4 3.0 0.5 4.4 1.2

RCP8.5 9.1 0.9 14.0 2.1 3.4 0.4 5.9 1.1

Table 1.  Percentage gained and lost in enviromentally suitable area (ESA) and relevant exposed human 
population for four malaria vectors in the 2030 s and 2050 s as compared with the current. All the 
estimations were based on an ensemble of simulations from three general circulation models (BCC-CSM1-1, 
CCCma_CanESM2 and CSIRO-Mk3.6.0) under RCP2.6, RCP4.5 and RCP8.5 climate scenarios.
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the mitigation scenario (RCP2.6). However, for the medium stabilization scenario (RCP4.5) and the very high 
emission scenario (RCP8.5), the relative changes of ESA of An. lesteri would increase gradually from 24.2% and 
28.9% in the 2030 s to 35.7% and 44.5% in the 2050 s, respectively (Table 1).

Change in ESA of An. sinensis. �e model indicated that the current ESA for An. sinensis covers nearly 
half of China (Figs 1–d1), from the southwest to the northeast of China, coinciding with the most populous 
regions. All GCM models consistently predicted increasing northern expansion of the ESA for An. sinensis 
(Supplementary Fig. S4–S12), with low uncertainties among di�erent GCM models (Supplementary Fig. S1). 
Averaged future predictions from the three climatic models for the 2030 s indicated that the ESA of An. sinen-
sis could increase in northern and northeastern China. Conversely, a slight decrease in the ESA of An. sinensis 
is predicted in the northeast of Jiangxi and north of Yunnan Province (Figs 1–3, d2–d3). Model predictions 
indicate a clear northward shi� in the ESA of An. sinensis in the 2050 s regardless of emission scenarios (Fig. 4), 
while central Hunan Province and southern Guangxi Province would be unsuitable (Figs 1–3, d1–d2). Although 
the models indicate a consistent slight increase in simulated ESA in the 2050 s compared to the current (Fig. 4, 
Supplementary Fig. S1) distribution, most of the current ESA are predicted to remain suitable for An. sinensis in 
the 2050 s under the climate change models explored. Under all RCPs explored, our estimates show that the ESA 
of An. sinensis could increase gradually from the 2030 s to 2050 s (Table 1).

Current and future estimates of the exposed human population. �e estimates of the percent-
age change in human population exposed to the dominant malaria vectors under the varying climate scenar-
ios (RCP2.6, RCP4.5 and RCP8.5) derived from an ensemble of simulations from three GCMs (BCC-CSM1-1, 
CCCma_CanESM2 and CSIRO-Mk3.6.0) are summarized in Fig. 5. Generally, our estimates suggested that the 
population exposed to lost ESA of all four malaria vectors tends to gradually increase from the 2030 s to the 
2050 s. �ere is a slight decrease in population exposed to the gained ESA of An. dirus and An. minimus from the 
2030 s to the 2050 s. However, our model suggested that population exposed to the gained ESA of An. lesteri and 
An. sinensis (Table 1) would increase slightly from the 2030 s to the 2050 s.

Under the RCP2.6 scenario, the human population exposed to An. dirus increased on average by 29% in the 
2030 s and 19% in the 2050 s, compared with current numbers. Larger increases were observed under the RCP4.5 
and RCP8.5 scenarios, both in the 2030 s and 2050 s. Our estimates suggested that the relative increase in exposed 
population of An. lesteri by the 2030 s would be greater under RCP8.5, followed by RCP2.6 and RCP4.5. However, 
during the 2050 s, the number of people exposed to An. lesteri was greatest under RCP8.5, followed by RCP4.5 
and RCP2.6, with respect to the current period. �e relative change in population exposed was greatest for An. 
sinensis compared with the other three malaria vectors under all three RCPs. In total, under all three RCPs, the 
population exposed to An. sinensis would be much larger than the other three malaria vectors, both in the current 
and future projections (Supplementary Table S4).

Figure 5. Percent change in estimated gained and lost exposed human population to four malaria vectors 
in the 2030 s and 2050 s compared to present. �e projections of changes in exposed population were based 
on an ensemble of simulations from three general circulation models (BCC-CSM1-1, CCCma_CanESM2 and 
CSIRO-Mk3.6.0) for 2030 s and 2050 s under three scenarios (RCP2.6, RCP4.5 and RCP8.5).
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Discussion
Understanding the current and future distributions of malaria vectors in China is vital for efficient and 
evidence-based planning for integrated vector control activities to sustain elimination and prevent reintroduc-
tion of malaria. Controlling for land use changes and using a range of climate and emission scenarios, together 
with systematic national entomological surveillance data, this study attempted to predict the current and future 
distributions of the four dominant malaria vectors. Validation of our models indicated that the predicted ESA 
accurately captured the current distribution of malaria vector presence. �is does not prove a direct causality 
between environmental variables (climate and land use) and malaria vector distributions, but suggests that cli-
mate and land use likely contribute to the overall spatial pattern in China. �e agreement between the observed 
distribution and simulated ESA also suggests our model can be used to project the spatial distribution of malaria 
vectors in future climate and land use scenarios.

Projections suggest that changes in ESA for the four dominant vectors will occur in future decades, but the size 
of this change varies according to the climate change scenarios assumed. Compared to the current distribution, 
results suggest a signi�cant increase in ESA for An. dirus in the southwest of Guangxi Province and central parts 
of Yunnan Province with a slight decrease in Guangdong. For An. minimus, the ESA are predicted to increase in 
the central parts of Guangxi Province and its bordering areas within Guangdong Province, with some decrease in 
the northern parts of Yunnan, Guangxi and Fujian Provinces. �e northeast and central parts of Hunan, Shaanxi 
and Shanxi Provinces as well as the eastern part of Fujian Province would become suitable for An. lesteri, while the 
north part of Chongqing Province and the southeast part of Anhui Province as well as central Jiangsu Province 
are predicted to become unsuitable for An. lesteri. �e ESA of An. sinensis are predicted to increase in the north 
and northeastern regions of China.

�e distribution of the predicted ESA for An. dirus may be related to the change of potential breeding sites due 
to deforestation and future land use shi�s in China. An. dirus, the main malaria vector in parts of Southeast Asia, 
seems to adapt well to man-made habitats such as orchards and plantations in Myanmar13 and Bangladesh14. It is 
possible that the southwest of Guangxi Province and southeast of Yunnan Province could provide suitable habitat 
in the future. As we incorporated land use in our model, the e�ect of urbanization on malaria vectors could be 
captured partly through land use data. Some changes in ESA of An. lesteri and An. sinensis can be attributed to 
urbanization (i.e., growth in fraction of urban area within grid cell). �is �nding was demonstrated by the con-
tribution of the land use variable to niche models of these two species, as well as the relationship between vector 
occurrence and environmental variables. With urbanization and global climate change, there would be more 
ESA for An. lesteri and An. sinensis. However, the impact of urbanization on changes in ESA of An. dirus and An. 
minimus would be limited, because bioclimatic variables overwhelmed land use variables for these two species.

Historically, An. lesteri was considered a primary vector of malaria in the eastern, central and southern areas 
of China15,16. During 1998 to 2001, it was found in 245 counties in 15 provinces, while during 2005 to 2010, it was 
captured only in 13 counties17. In China, An. lesteri prefers cool habitats and hibernates through winter in the egg 
stage in water and moist soil18. �e projected fragmented spatial pattern in the eastern and central parts of China 
is consistent with many historical �ndings that An. lesteri was distributed in the foothills of mountain ranges in 
central parts of China.

Increases in the ESA of An. sinensis toward the north and northeastern part of China are likely related to pre-
dicted warmer climates in currently colder regions, which would result in more suitable habitats for An. sinensis 
in the future.

�e overall predicted increase in ESA for the four dominant malaria vectors represents a potential challenge 
to China’s ambitious goal of achieving and sustaining malaria elimination. �roughout most of their current 
geographical distribution, An. dirus and An. minimus are associated with high malaria prevalence and occurrence 
of drug resistant P. falciparum19. �e biological speci�cities of these two vectors, including exophilic behavior, 
early biting habits and insecticide avoidance, undermine the e�cacy of most vector control measures and pose a 
challenge for achieving and sustaining malaria elimination. Although An. sinensis is an ine�cient vector, mainly 
because of its zoophilic habit, it was the primary vector implicated in recent P. vivax epidemics in central China 
due to its high density under suitable conditions20. Historically, there have been many local malaria outbreaks 
caused by imported cases in China including Zhejiang21, Hainan21, Shandong22, and Guangxi23 Provinces. �ough 
the distribution of An. lesteri has shrunk due to the success of malaria control interventions and improvements in 
socioeconomic conditions24, the ESA for this e�cient vector are predicted to increase in the northeast and central 
parts of Hunan Province with large numbers of imported P. vivax cases (7.0% of total country)25.

Although climate change is probably a contributing factor to range shi�s in ESA for malaria vectors, other 
factors associated with globalization are also important. Globalization results in explosive growth in the mobility 
of people and the exchange of goods. With the increasing investment in overseas work and increasing numbers 
of Chinese persons who are working abroad (e.g., in Africa), imported malaria poses major challenges to malaria 
elimination in China26. Because imported malaria is widely distributed throughout China, the disease could be 
introduced into malaria-free localities during the transmission season, especially when a large number of cases 
are clustered in areas in which Anopheles species are prevalent. For example, ESA for An. dirus are predicted to 
expand in parts of Guangxi and Yunnan Provinces where imported cases from Africa and South East Asia occur 
and may be responsible for previous outbreaks27. Travel is a potent force in disease spread and emergence with air 
travel moving human reservoirs or insect vectors great distances in short times.

Like other impact assessments of climate change on species distributions28, this study has several limitations. 
First, our approach did not incorporate the biotic interactions between the four malaria species and other species, 
such as �sh, ditch shrimp29 and dragon�y larvae30. Predation and competition between species are two common 
ways biotic interaction and may in�uence the distribution of mosquitoes31. Previous studies indicate that some 
mosquito species would avoid habitats where competitors are present32. Also mosquito species in habitats where 
predators are present are o�en absent or in low abundance33. Additionally, biotic interactions between other 
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species will be more uncertain due to the spatial distribution of other species that may also change under climate 
change. Further analysis could combine joint species distribution models and Maxent to estimate the e�ects 
of biotic interactions on in the spatial distribution of mosquitoes29. Second, we assumed that the association 
between malaria vector presence and predictor variables based on current or historic data hold true under di�er-
ent climate projection scenarios28. �is assumption may not hold. �e possible evolution of malaria vector char-
acteristics in response to climate change, namely dispersal probability, temperature tolerance (or niche width) 
and temperature preference (optimal habitat) could also a�ect the geographical range shi�s34. Models assumed 
that the vector species: (1) fully disperse into the projected new ESA; (2) are limited to current ESA; (3) are una-
ble to track the climate change. �ese assumptions are overly simplistic. One possible solution is to incorporate 
plausible dispersal scenarios into bioclimatic model projections35 to account for the uncertainty of dispersal prob-
ability of malaria vectors under climate change. Another issue to consider is that species may evolve to be more 
adaptable to climate change. Although the impact of climate change on species distributions could be a�ected 
by evolutionary changes36,37, many species evolve slower than climate change38 and may not evolve at all. �ird, 
some important variables have not been included in our model due limitations in data availability. For example, 
changes in farming activities, in particular rampant use of chemical pesticides in rice �elds, have created adverse 
breeding environments, greatly reducing the An. lesteri population in some areas39. Additionally, estimation of 
the exposed population to the four malaria vectors in the 2030 s and 2050 s could be biased, as future changes in 
urban extent were not incorporated. �ough there is likely to be some uncertainty in the estimated range shi�s of 
malaria vectors, the performance in the models’ extrapolation capacity according to model-accuracy evaluations 
(see Model performance in Supplementary Notes) suggest that niche modeling is a reasonable approach40 to 
describe macro-scale patterns of vector distributions.

Although our model predicted that ESA decrease for these four malaria vectors in some geographical regions 
in 2050 s (Table 1), it is important to consider how the length of the malaria transmission season41 may change 
in the future, as changes in seasonality could increase the number of person-months at risk1 in some regions. 
However, estimating the seasonal patterns of malaria vector persistence using dynamic temperature models41 
may be better. Future work needs to synthesize dynamic models and species distribution models to provide more 
detailed information on malaria vector persistence.

Malaria is an extremely climate-sensitive tropical disease, making the assessment of potential change in risk 
due to projected warming trends one of the most important climate change health questions to address. Our 
study is the �rst to assess the potential impact of climate change scenarios on the four dominant malaria vector 
distributions using three GCMs and maximum entropy species distribution modeling for the 2030 s and 2050 s 
in China. Given likely limited resources to adequately tackle potential e�ects of climate change on malaria in the 
future, this study result will provide the government with the strategic and evidence-based information to adapt 
and target vector control strategies to achieve and sustain malaria elimination in the future.

Methods
Data sources. Vector presence data collected from 62 malaria surveillance sites between 2005 to 2008 were 
extracted from the national malaria surveillance program database42. In addition, a comprehensive and system-
atic search from CNKI literature system (http://epub.cnki.net/kns/default.htm) of published Chinese language 
literature was conducted using the following terms malaria vectors, Anopheles, An. dirus, An. minimus, A. lesteri, 
and An. sinensis (see Supplementary Methods). �e search included mainstream peer-review journals in the �elds 
of parasitology, tropical medicine, biology and entomology. From these searches, 247 articles were identi�ed and 
the full articles were downloaded. We removed the articles that did not contain information relating to these 
four malaria vectors occurrence. In order to ensure the quality of malaria vectors presence data, we only kept 
the administrative unit indicating one or more con�rmed occurrence of malaria vectors in a given calendar year. 
Finally, data from a total of 120 published articles from 2000 to 2010 were compiled (Supplementary Table S1). 
We recorded the county names and reported Anopheles species. �ese data were then matched with county level 
administrative maps in order to assign a location to each presence observation. Based on the National Malaria 
Surveillance Program, a technical advisory group of 45 experts has been established including malaria epidemi-
ologists, entomologists, and ecologists with more than 5 years of local malaria vector surveillance experiences, 35 
from National and Provincial CDC, 10 from University and Institute. All the surveillance results were reviewed 
by the technical advisory group at the annual program symposium, and all the suspicious samples of Anopheles 
species (di�erent from recent 2–3 years) were discussed and con�rmed using morphological integrated with the 
molecular methods.

Scenario analysis allows researchers to explore possible future outcomes under climate change and uncertain 
future interactions between climate and environmental factors like land use43. To estimate impacts of plausible 
future climate conditions (temperature and precipitation) on malaria vectors, we used the newly developed rep-
resentative concentration pathways (RCPs) under the three general circulation models (GCMs) – BCC-CSM1-1, 
CCCma_CanESM2 and CSIRO-Mk3.6.0 from Coupled Model Inter-comparison Project 5 (CMIP5). �e selected 
GCMs were chosen because a previous study suggested that these provide the best simulation performance for 
temperature and precipitation in China44. Future climate scenario data were obtained for two time periods (30-y 
averages): the 2030 s (2020 to 2049) and the 2050 s (2040 to 2069).

�e GCMs are mathematical representations of climate system processes including atmosphere, ocean, cry-
osphere and land surface, and are the primary tools available for simulating the responses of the global climate 
system to variability in natural and anthropogenic radiative forcing45. �e RCPs were used as input for general 
circulation models (GCMs) to simulate future climate trajectories in near and long-term periods. �e climate 
trajectory (i.e., RCP) is used in climate modeling experiments to provide plausible descriptions of how the future 
climate may evolve with respect to a range of variables, including emissions of greenhouse gases, socio-economic 
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change, land use, and climate change mitigation43,46–47. �ree RCPs (RCP2.6, RCP4.5 and RCP8.5) were selected 
to be representative of three plausible scenarios and included one mitigation scenario (RCP2.6), one medium sta-
bilization scenario (RCP4.5) and one very high emission scenario (RCP8.5)47. �e RCP2.6 concentration scenario 
is a representative of mitigation scenarios aiming to limit the increase of global mean temperature to 2°C48. To 
achieve this target, emissions of greenhouse gases would need to decline substantially in order to reach a level of 
2.6 W/m2 (radiative forcing) by the end of the century. Mitigation strategies including substantial improvement 
of energy e�ciency, replacement of unabated use of fossil fuels by a combination of fossil-fuel use with bioenergy 
and carbon capture and storage, renewable energy and nuclear power would be used to reduce the cumulative 
emissions of greenhouse gases by 70% compared to a baseline scenario from 2010 to 210048. �e reason we 
selected di�erent GCMs and RCPs is that prediction results from multiple models and di�erent RCPs could 
provide uncertainty information for policymakers concerned with impacts and adaptation planning for malaria 
vector control strategies49. Additionally, GCMs can better capture the uncertainty associated with future climate 
projections and allow for the di�erences in projections of malaria vector distributions among di�erent GCMs to 
be assessed40.

We used gridded bioclimatic variables (5× 5 km), which were based on weather station records obtained from 
the WorldClim database50 to describe the current climate conditions in China. Future bioclimatic variables at 
the same resolution were obtained from the Climate Change, Agriculture and Food Security climate data por-
tal (http://www.ccafs-climate.org/)51. To incorporate the e�ect of land use change on malaria vectors, a harmo-
nized set of land use scenarios at 0.5°× 0.5° resolution (approximately 50 ×  50 km) were used to represent current 
and future (2030 s and 2050 s) land use conditions52. Also the impact of urbanization could be captured partly 
through land use data. �e original dataset was resampled to 5× 5 km using bilinear interpolation in ArcGIS 
10.2 (Environmental Systems Resource Institute, ArcMap Release 10.2, ESRI, Redlands, California) to maintain 
consistent spatial resolution with the current and future bioclimatic variables. �ese bioclimatic and land use var-
iables are biologically and statistically plausible for characterizing the four malaria vectors’ ESA (Supplementary 
Methods).

Estimation of future population distribution. To estimate current human populations exposed to the 
dominant vector species, we used a gridded population dataset, available at 1 by 1 km resolution for the year 
201053. In order to estimate future population exposed to ESA of malaria vectors, future human population dis-
tributions were estimated by multiplying the population in each grid cell by the urban and rural population 
growth rate. Urban and rural population growth rates were obtained from World Bank population projection 
dataset from 2010 to 205054. �is dataset accounts for predicted future declines in population growth and dis-
tinguishes population growth rates in urban and rural areas. Urban extent data were derived from the Defense 
Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) nighttime light data, which has 
been widely used to estimate urban limits55,56. �e DMSP/OLS data we used is a set of composite images in which 
pixel gives the annual average brightness level in units of 6 bit digital numbers with a spatial resolution of 1 km57. 
We used a threshold of digital numbers > 12 to de�ne urban areas based on previous urbanization studies in 
China58,59.

Modelling methods. We used the Maximum entropy (Maxent) species distribution model60 with 
presence-only data and bioclimatic and land use variables (Supplementary Table S2) to predict the current and 
future potential ESA for the four dominant malaria vector species. Maxent models, using presence only data, 
have been widely used for modeling species distributions, and have been shown to have excellent predictive 
performance compared to other structured decision making models, including those using presence-absence 
data61,62. Further, Maxent models have been used to project species distributions under future climate change 
conditions63,64. �e principle of Maxent models is to estimate the probability of species presence by �nding the 
distribution of the maximum entropy (i.e., closest to uniform), with constraints imposed by the observed spa-
tial distributions of the species and environmental data60. As only county level (polygon level) vector presence 
data were available, whereas the explanatory variables were available at 5 ×  5 km, we used an approach termed 
“point sampling” to model the data. �is approach has been previously used to generate species distribution 
predictions at �ne resolutions from coarse-scale presence records (e.g., county level presence records)65. Point 
sampling involves assigning the presence data a random location within each county. Explanatory variables are 
then extracted at that point and assigned to the presence data for modeling with Maxent. To incorporate the 
uncertainty introduced by the random assignment of presence location within each county, we repeated this pro-
cess 100 times and calculated the mean prediction value at each pixel. To get more information of assumptions, 
limitations and evaluation of the point sampling approach, see Supplementary Notes.

We then projected the spatial distribution of each species ESA over two time periods (decades of the 2030 s 
and the 2050 s) by applying the models to future climate and land use scenario data. We also compared the ESA 
distribution projected by three di�erent GCMs to investigate variation in predictions under di�erent GCMs (see 
Supplementary Notes and Supplementary Fig. S12). In order to map the distribution of ESA for dominant vectors, 
we used a 10th percentile training presence threshold based on the mean value of 100 random point sampling 
processes to convert continuous presence probability maps into binary ESA maps (suitable and unsuitable)64. 
Current and future exposed populations were estimated by overlaying the binary ESA maps of each species on a 
gridded population distribution map. All maps were created in ArcGIS 10.2 (Environmental Systems Resource 
Institute, ArcMap Release 10.2, ESRI, Redlands, California).

Validation and evaluation of models. To evaluate model performance, we split the data into two parts 
randomly: training and validation datasets. In this study, 75% of the presence data were randomly selected to act 
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as training data, with the remaining 25% acting as validation data64,66. In order to take into account uncertainty 
introduced by training and validation set splits, 30 models for each species were produced by 30 replicate runs of 
the Maxent model. All the data were used to make the �nal predictions.

�e most o�en reported measure of Maxent output is the threshold-independent assessment using the area 
under the curve (AUC) metric of the Receiving Operator Curve (ROC). �e ROC was used to investigate the 
trade-o� between sensitivity and speci�city over a range of classi�cation thresholds61. While the AUC evaluates 
the ability of models to correctly predict a higher probability of occurrence where species are present than where 
they are absent61. �e AUC value has a range between 0 and 1, 0.5 indicates random prediction, and higher values 
correspond to better models.

Selection of predictor variables. We selected bioclimatic variables (Supplementary Table S2) that met 
three criteria40: those that (1) are statistically important for �tting the anopheles presence data, (2) are biologically 
important for anopheles survival, and (3) do not display collinearity with other bioclimatic variables. Variables 
were compared using univariate models and AUC values. For variables with high predictive accuracy but high 
collinearity with other variables, we selected the variables that produced the highest AUC when included in a 
univariate model, excluding the most correlated variables (e.g., mean temperature in the coldest month and mean 
minimum temperature) (Pearson’s correlation coe�cients> 0.75). We also inspected the relationship between 
the probability of anopheles presence and bioclimatic variables in a response curve plot (Supplementary Notes 
and Supplementary Fig. S2). �is process led to a �nal set of 13 predictor variables (Supplementary Table S2),  
which were used in the �nal model. All the land use variables were selected for modeling distributions of all 
four dominant species, due to their importance for malaria vector distributions and low collinearity with other 
variables.
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