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Abstract. Lung cancer has a high incidence and mortality rate. Early detection and diagnosis of lung cancers is
best achieved with low-dose computed tomography (CT). Classical radiomics features extracted from lung CT
images have been shown as able to predict cancer incidence and prognosis. With the advancement of deep
learning and convolutional neural networks (CNNs), deep features can be identified to analyze lung CTs for
prognosis prediction and diagnosis. Due to a limited number of available images in the medical field, the transfer
learning concept can be helpful. Using subsets of participants from the National Lung Screening Trial (NLST),
we utilized a transfer learning approach to differentiate lung cancer nodules versus positive controls. We exper-
imented with three different pretrained CNNs for extracting deep features and used five different classifiers.
Experiments were also conducted with deep features from different color channels of a pretrained CNN.
Selected deep features were combined with radiomics features. A CNN was designed and trained.
Combinations of features from pretrained, CNNs trained on NLST data, and classical radiomics were used
to build classifiers. The best accuracy (76.79%) was obtained using feature combinations. An area under
the receiver operating characteristic curve of 0.87 was obtained using a CNN trained on an augmented
NLST data cohort. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.011021]
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1 Introduction

Worldwide, lung cancer1 is the most frequently diagnosed

cancer, consisting of 13.3% of all cancers diagnosed. Overall,

lung cancer has a 5-year survival rate of 17.7%. In the US,

more than 200,000 are diagnosed every year, and nearly

150,000 people die from lung cancer. In the US, lung cancers

are primarily categorized into two types: small cell lung cancer

(SCLC) and nonsmall cell lung cancer (NSCLC). NSCLC,

which generally spreads and grows slower than SCLC, is the

most common type of lung cancer (80% to 85% of all lung can-

cers). Lung cancer is often asymptomatic until the disease has

reached an advanced stage. Recently, an early detection method

was shown to decrease mortality rates for NSCLC. The National

Lung Screening Trial (NLST)2 demonstrated that lung cancer

mortality was reduced significantly, by 20%, among high-risk

individuals that were screened using low-dose computed tomog-

raphy (LDCT) versus a standard chest radiograph. However, in

the NLST, 96.4% of the intermediate pulmonary nodules (IPNs)

identified by LDCT were false positives. Thus, an accurate

noninvasive approach is necessary as a clinical decision tool

to better identify nodules, especially IPNs, in the lung cancer

screening setting.

Radiomics3,4 is an approach to extract quantitative features

from the standard of care medical images. The features can

then be used in statistical analysis, machine learning, or other

high dimensional analysis. Radiomics features are expected

to provide an accurate noninvasive approach to better track

nodules during lung cancer screening.

Deep learning,5 an emerging area of research in the machine

learning field, has recently become widely used for classifica-

tion and categorization. Deep learning algorithms learn by

enabling a multilevel representation of data via multiple hidden

layers in a neural network. Though Fukushima6 introduced the

“neocognitron,” one of the first artificial neural network models,

convolutional neural network (CNN) of LeCun et al.7 gained

popularity for classification tasks. Krizhevsky et al.8 with his

“ALEXNET” architecture achieved a significant improvement

for large-scale classification of images in the ILSVRC, 2012.

Girshick et al.9 showed that, when data are scarce, it is beneficial

to use a pretrained network and then fine-tune it on new data.

Erhan et al.10 assessed how unsupervised learning could be used

to most effectively initialize a deep neural network. Donahue

et al.11 examined whether the features extracted from a CNN

can be applied to some other object recognition tasks with

few training cases. This leads to the idea of transfer learning,

applying previously learned knowledge in a different domain.

Raina et al.12 proposed an approach for supervised classification

using unlabeled data.

This work is focused on utilizing deep learning to increase

the accuracy and area under the receiver operating characteristic

curve (AUC)13–15 of classifier predictions of LDCT image lung

nodules becoming malignant within 2 years. As labeled data are
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limited, a major focus is on the transfer learning approach,

whereas existing CNNs trained on the ImageNet dataset16 are

used to extract features for classifying lung nodules. The images

that were used by others to train the CNNs and the lung nodule

images are different in two aspects: first, the lung images are

grayscale, whereas ImageNet contains color RGB images of

objects and natural scenes, and the lung nodule images are

much smaller in size, i.e., fewer pixels per object of interest.

In previous work17,18 on categorizing lung tumors by expected

survival time, we normalized grayscale CT images using just the

red channel and demonstrated that deep features extracted from

a pretrained CNN can be used effectively and classification

accuracy could be enhanced by merging classical radiomics

features with deep features.

Here, the data consist of LDCT screening images of lung

nodules, which may or may not become malignant. There are

several ways to use CNNs. In transfer learning, the features

from a CNN are used with a conventional machine learning

algorithm to build a classification model. Experiments were per-

formed with several learning algorithms, as the best for this type

of work is currently unknown. A CNN with augmented training

data may be directly learned. With limited data, the CNN must

be small to enable learning and minimize overfitting. Once

trained, a CNN can be used for predictions or features can be

extracted from the network. Experiments were performed with

both approaches to see how they compared.

Our data consisted of two cohorts from NLST data: cohort 1

used for training and the independent cohort 2 data used for

evaluating trained classifiers. As deep neural networks are noto-

riously affected by their many parameters, we designed several

small CNN architectures trained on cohort 1 of NLST data. For

the trained CNN architectures, two approaches were experi-

mented with: classification by using the sigmoid output layer

of the CNN, extracting features from the last fully connected

hidden layer of the CNN architecture, and then applying feature

selection and using the selected features to build a classifier.

This paper examines four ways to increase the prediction

power of classifiers built from screening CT images of lung nod-

ules that are currently benign. First, we investigate whether clas-

sification using deep features extracted from a CNN trained on

camera images can yield similar or improved results compared

to using classical radiomics features like textures, shape, and

size.19 To do this, features were extracted from three slightly

different trained deep neural networks, each trained on the

same data. The reason for this is to see how parameters affect

performance. Second, we hypothesized that the combination of

classical radiomics features with deep features improves the

classification result. We did not attempt to decide the right num-

ber of features on the training data. Instead, we used 5, 10, 15,

and 20 of the best features from a feature selection method.

Third, as the lung nodule images are grayscale, we examined

the effects on classification results after sending nodule images

through different color channels (red/green/blue) of a network

trained on camera images. Fourth, even with small data, we

evaluated the hypothesis that lung nodules can be effectively

put into groups, which will remain benign or will become malig-

nant by designing new CNN architectures and using features

extracted from the new CNN. There were three architectures

tried with an attempt to progressively minimize the number

of weights. While more weights can provide more complex

classifiers, with small data, they can overfit or simply train

poorly, but small networks may not give good accuracy, hence,

the spread of 3. Performance was measured by accuracy and

AUC on unseen data. While we did not use results on the

test data to modify experiments, the number of experiments

could have yielded a result that would not otherwise have

been found.

Comparisons with previous work,19 which used classical

radiomics features for classification, show that deep neural net-

works can be used to recreate the results with no explicit feature

selection/extraction even with small training data. Furthermore,

performance can be improved by combining classical and deep

features.

2 Materials and Methods

2.1 Study Participants, Data, and Feature Extraction

In this study, we utilized LDCT images and data from the NLST

study. Briefly, the NLST2 was a randomized clinical trial com-

paring LDCT and chest X-rays conducted on 53,454 current or

former smokers at 33 medical centers across the US. The NLST

study had a baseline (T0) screening and two follow-up screen-

ings ∼1 year (T1) and 2 years (T2) after the baseline.

The pixel size varied across the image set as follows. Average

image pixel size was 0.6642 mm, the standard deviation was

0.072 mm, the min was 0.4844 mm, and the max was

0.8594 mm. Normalizing the pixel size can introduce artifacts

and was not done. The slice thickness in mm varied from

3.2 (maximum slice thickness) to 1 (minimum slice thickness)

across the image set. The majority of cases of both cohorts had

a 2.5-mm slice thickness with the rest mostly at 2 mm. The

reconstruction field-of-view ranged between 248 and 460 mm.

Tube potential varied from 140 to 120 kVp. No corrections were

done based on the variations, and this is a potential limitation of

this study.

Based on prior work from Schabath et al.,20 we selected sub-

sets of participants of screen-detected lung cancers (SDLC) and

nodule positive controls from the LDCT-arm of the NLST. We

chose two SDLC patient cohorts for this study, as depicted in

Fig. 1. The lung cancer cases and the nodule positive controls

were 1:2 frequency matched on age at randomization, sex, and

smoking. At the baseline (T0) screen, both the lung cancer cases

and the nodule positive controls had a positive screen that was

not diagnosed as lung cancer. The lung cancer cases were diag-

nosed at either the first (T1) or second (T2) follow-up screen

while the nodule positive controls had three consecutive positive

screens (T0 to T2) not diagnosed as lung cancer. The lung

cancer cases and nodule positive controls were split into a train-

ing cohort and a testing cohort. For both cohorts, we used cases

from time T0, baseline screening, for training. Cohort 1 con-

sisted of 261 cases of which 85 nodules became cancer and

176 did not become cancer. Cohort 2 consisted of a unique

set of 237 cases of which 85 nodules became cancer and 152

did not become cancer. Cohort 1 was used as the training set

and cohort 2 as the test set in our study.21 Figure 1 shows a flow-

chart of the two cohorts. Nodule size was not used in selecting

cohorts. Dataset selection is described in more detail in Refs. 19

and 20.

Table 1 presents the demographics of the lung cancer

cases and nodule positive controls. There were no statistically

significant differences between the lung cancer cases and nodule

positive controls for age, sex, race, ethnicity, and smoking.

Nodule segmentation was performed using the Definiens soft-

ware suite (Cambridge, Massachusetts).22
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In previous work, 219 radiomics features (see Ref. 19),

consisting of size, shape, gray level co-occurrence matrix, wavelet,

and laws features, were extracted from nodules. We merged radio-

mics features with deep features extracted from warped nodules.

In our study, for each cohort’s cases, we chose the single slice

that had the largest nodule area. We then extracted only the

nodule region from each slice by taking a rectangular box of

the image that completely covered the nodule region. Since it

would be resized to match the input size of a CNN, as discussed

in the proceeding, we called the resized nodule “warped.”

In Fig. 2, we show a resized nodule along with the actual LDCT

scan slice. While each nodule was a different size, the input size

required by pretrained CNN was 224 × 224 and, hence, a bicubic

interpolation was used for resizing the images. In the Appendix,

we show six additional lung images with nodules outlined and

resized to 224 × 224. The range includes very small nodules,

medium-sized and large-sized nodules.

2.2 Convolutional Neural Networks and Transfer
Learning

CNNs,23,24 a variant of multilayer feed forward networks,

are recently used widely in image classification and object

recognition tasks. A CNN architecture can be designed using

a few convolutional layers, often followed by a max pooling

layer, then fully connected layers and an activation function

layer. As CNN consists of many layers, it needs to learn many

connection weights, and for a big network, a lot of data are

typically needed to avoid under- or overfitting. The dataset

Table 1 Demographic and clinical characteristics of dataset.

Characteristic
Lung cancer

cases (n ¼ 170)
Nodule positive
cases (n ¼ 328)

p

value

Age, mean� SD, years 63.7� 5.11 63.5� 5.1 0.66

Sex, n (%)

Male 94 (55.3) 192 (58.5) 0.28

Female 76 (44.7) 136 (41.5)

Race, n (%)

White 161 (94.7) 315 (96.0) 0.49

Black, Asian, other 9 (5.3) 13 (4.0)

Ethnicity, n (%)

Hispanic or Latino 0 (0.0) 2 (0.6) 0.55

Neither Hispanic nor
Latino and unknown

170 (100.0) 326 (99.4)

Smoking, n (%)

Current 89 (53.4) 175 (53.4) 0.85

Former 81 (47.6) 153 (46.6)

Pack-years smoked,
mean� SD

Current smokers 63.2 (25.8) 62.0 (21.3) 0.69

Former smokers 64.5 (27.6) 63.7 (26.8) 0.83

Stage, n (%)

I 117 (68.8)

II 12 (7.1)

III 21 (12.3)

IV 18 (10.6)

Carcinoid, unknown 2 (1.2)

Histologic subtype, n (%)

Adenocarcinoma 108 (63.5)

Squamous cell carcinoma 38 (22.4)

Other, NOS, unknown 24 (14.1)

Fig. 1 Flowchart of (a) cohort 1 and (b) cohort2.

Fig. 2 (a) Lung image with nodule inside outlined by red (pixel size ¼
0.527 mm) and (b) nodule resized to 224 × 224.
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we were using has just 276 cases for training, which is rather

small for a CNN. So, a transfer learning approach was tried

using a large network trained on the ImagNet set of camera

images. Transfer learning25,26 is a method where previously

learned knowledge is applied to another task and the task

domains may be different. In our case, the domain is very differ-

ent. ImageNet consists of natural camera images and does not

include any type of lung nodule or cancer image. Our image set

consists of only lung nodules in CT images. We experimented

with three different pretrained CNN’s [vgg (visual geometry

group)-m/vgg-f/vgg-s]27 in this study using a MATLAB toolbox

named MATCONVNET.28 The f, m, and s after vgg- stand for

fast, medium, and slow and refer to training time (so partly the

number of weights). We obtained deep features from the outputs

of the last fully connected layer after applying the activation

function using a rectified linear unit (post-ReLU), which

changes all values <0 to be 0. The LDCT images were grayscale

(no color component and we changed the voxel intensities of

LDCT images to 0-255 or 8 bit), but the pretrained network

was trained on RGB images, so we normalized the images

by the average red, green, and blue channel images, and exper-

imented by using each channel separately. The RGB images

have three color channels (24-bit image), but the grayscale

image had only a single grayscale image (8-bit image). In our

previous experiment, we normalized the images of the pre-

trained network by each color channel separately. This approach

lost the information provided by the other two channels. Here,

we used the same grayscale LDCT image for each channel to

make it somewhat analogous to an RGB image for the CNN.

Doing so engages all the weights and exploits all the learned

knowledge when extracting features from the pretrained net-

work. Since the images experimented with were smaller than

the required input size of the pretrained CNN (224 × 224),

we used bicubic interpolation for resizing. The dimension of

a deep feature vector extracted for each image was 4096. The

features were the output of the last fully connected layer

(the full 2 layer as shown in Table 2) before the output layer in

an ImageNet pretrained CNN. The architectures and parameters

for the pretrained CNNs used are described in Table 2.

We further experimented with three different CNN architec-

tures by training from scratch (i.e., a random set of initial

weights). We designed the architectures using Keras29 with

Tensorflow30 as the CNN library. The architectures and param-

eters used are described in Tables 3–5. For each locally trained

CNN architecture, the input image size was 100 × 100 pixels

(used bicubic interpolation for resizing). Different size nodule

images (their area varies from 16 to 10,354 pixels) were

interpolated to 100 × 100. We performed the experiment with

different input image sizes but obtained the best result from

Table 2 Pretrained CNN architectures [each architecture contains five convolutional layers (conv 1 to 5) and three fully connected layers
(full 1 to 3)]. In the conv layers, the first number indicates how many convolutions and the next two numbers indicate the kernel size. St. is stride
and pad is the number of 0s added to the right of the image. LRN indicates a type of regularization layer. The number in front of pool is the size of
the max pool region.

Arch. Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Full 1 Full 2 Full 3

Vgg-F 64 × 11 × 11 256 × 5 × 5 256 × 3 × 3 256 × 3 × 3 256 × 3 × 3 4096 dropout 4096 dropout 1000 softmax

St. 4, pad 0 St. 1, pad 2 St. 1, pad 1 St. 1, pad 1 St. 1, pad 1

LRN, x2 pool LRN, x2 pool x2 pool

Vgg-M 96 × 7 × 7 256 × 5 × 5 512 × 3 × 3 512 × 3 × 3 512 × 3 × 3 4096 dropout 4096 dropout 1000 softmax

St. 2, pad 0 St. 2, pad 1 St. 1, pad 1 St. 1, pad 1 St. 1, pad 1

LRN, x2 pool LRN, x2 pool x2 pool

Vgg-S 64 × 11 × 11 256 × 5 × 5 512 × 3 × 3 512 × 3 × 3 512 × 3 × 3 4096 dropout 4096 dropout 1000 softmax

St. 4, pad 0 St. 1, pad 1 St. 1, pad 1 St. 1, pad 1 St. 1, pad 1

LRN, x3 pool x2 pool x3 pool

Table 3 CNN Architecture 1.

Layers Parameter
Total

parameters

Input image 100 × 100 841,681

Conv 1 64 × 5 × 5, pad 0, stride1

Leaky ReLU alpha ¼ 0.01

Max pool 1 3 × 3, pad 0, stride3

Conv 2 64 × 2 × 2, pad 0, stride1

Leaky ReLU alpha ¼ 0.01

Max pool 2 3 × 3, pad 0, stride3

Dropout 0.1

Fully connected 1 + ReLU 128

Fully connected 2 + ReLU 8

L2 regularizer 0.01

Dropout 0.25

Fully connected 3 1 sigmoid
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100 × 100. Here, we used the same grayscale CT image for each

channel to make it somewhat analogous to an RGB image for

the CNN. Doing so engages all the weights and exploits all

the knowledge and information during feature extraction from

the pretrained network.

The total number of epochs for training was 200. The

learning rate for each architecture was kept constant at

0.0001 with the RMSprop31 (root mean square propagation)

algorithm, which was used for gradient descent optimization.

Though we experimented with different batch sizes (8/16/24/

32), a batch size of 16 was used for both training and validat-

ing the deep convolutional architecture, because it gave

the best result. Leaky ReLU (alpha ¼ 0.01), where negative

values are occasionally allowed to propagate, was applied in

convolutional layers 1 and 2. This provided nonlinearity

on the output of the convolutional layers. As all our architec-

tures were shallow, to prevent overfitting, both dropout32 and

L2 regularization33 were applied before the classification

layer.

In Architecture 1, we used two fully connected layers with

128 and 8 units, respectively, before the final classification layer.

The total number of parameters was 841,681.

In Architecture 2, we incorporated one fully connected layer

with 128 units, followed by one long short term memory

(LSTM)34 layer with 8 units before the final classification

layer. LSTM is a type of recurrent neural network layer, consist-

ing of a memory to remember information for a short or long

time and various gates to control the flow of information going

in or out of the memory. Using this architecture, we investigated

whether the advantage of remembering information using

LSTM was useful when it was the last layer before final clas-

sification instead of a fully connected layer. After using LSTM

instead of a fully connected layer, the classification accuracy

was further improved. The total number of parameters was

a slightly larger 845,033.

Architecture 3 was a cascaded architecture,35 where images

were fed to both the “left” branch of the network, where there

was a max pooling layer and more complex “right” branch.

The right branch consisted of convolution and max pool layers.

The cascading happened after getting the same size output

(10 × 10 vector) from both the left and right branches.

Another convolution and max pool layer were used after the

cascade instead of using a fully connected layer or LSTM.

As a result, the number of total parameters was reduced

by almost 100%35 and classification accuracy was improved.

The total number of parameters used was 39,553. In this

architecture, we took image information more directly after

applying max-pooling and merged it with information

generated after convolutions. Features in the convolution

layer are more generic (e.g., blobs, textures, edges, etc.). So,

adding image information directly will create more specific

information for each case. After merging, another convolution

and max pooling layer before the final classification layer

maintains the generic information about the image and can

provide more features of about the image for getting a better

classification result. Figure 3 shows a flowchart of CNN

Architecture 3.

Table 4 CNN Architecture 2.

Layers Parameter
Total

parameters

Input image 100 × 100 845,033

Conv 1 64 × 5 × 5, pad 0, stride1

Leaky ReLU alpha ¼ 0.01

Max Pool 1 3 × 3, pad 0, stride3

Conv 2 64 × 2 × 2, pad 0, stride1

Leaky ReLU alpha ¼ 0.01

Max Pool 2 3 × 3, pad 0, stride3

Dropout 0.1

Fully connected 1 + ReLU 128

LSTM 1 + ReLU 8

L2 regularizer 0.01

Dropout 0.25

Fully connected 2 1 sigmoid

Table 5 CNN Architecture 3.

Layers Parameter
Total

parameters

Left branch

Input image 100 × 100 39,553

Max pool 1 10 × 10

Dropout 0.1

Right branch

Input image 100 × 100

Conv 1 64 × 5 × 5, pad 0, stride1

Leaky ReLU alpha ¼ 0.01

Max pool 2a 3 × 3, pad 0, stride3

Conv 2 64 × 2 × 2, pad 0, stride1

Leaky ReLU alpha ¼ 0.01

Max pool 2b 3 × 3, pad 0, stride3

Dropout 0.1

Concatenate left branch + right branch

Conv 3 + ReLU 64 × 2 × 2, pad 0, stride1

Max pool 3 2 × 2, pad 0, stride2

L2 regularizer 0.01

Dropout 0.1

Fully connected 1 1 sigmoid

Journal of Medical Imaging 011021-5 Jan–Mar 2018 • Vol. 5(1)

Paul et al.: Predicting malignant nodules by fusing deep features. . .



3 Experiments and Results

In the pretrained network, each image had to be normalized by

an average image first, and as we know, the nodule images were

grayscale images, so they were normalized by one channel

(red, green, or blue) only. Experiments were performed with red,

green, and blue channels separately, taking one channel at a

time and ignoring the other two (i.e., removing the weights and

connections of the other two from the CNN). We also used the

grayscale image three times to simulate an image with three

color channels and did normalization using the appropriate

color channel image.

Deep features of dimension 4096 were extracted from the

last fully connected layer after applying the ReLU activation

function for each image.

We used the symmetric uncertainty36 feature selector to

select the top (5/10/15/20) features.37

For classification, we compared five classifiers: naïve

Bayes,38 SVM,39 decision trees,40 nearest neighbor,41 and

random forests [200 trees and log2ðnÞ þ 1 features].42

We used the area under the receiver operating characteristic

(ROC) curve13–15 for performance measurement. For an ROC

curve, at different cut-off points, the true-positive rate (Y-axis)

is plotted against the false-positive rate (X-axis). For each

decision threshold, the point on the ROC curve illustrates

a true-positive/false-positive pair. The area under the ROC

curve or AUC is a measurement of how well a model can differ-

entiate the lung cancer cases from the control nodules. The

maximum possible area under the ROC curve is 1. So, AUC

values closer to 1 signify a better predictive model.

Cohort 1 had 261 cases, which is too small for training a new

convolutional network from scratch. We performed image aug-

mentation on cohort 1 by rotating each image 15 deg and then

applying horizontal and vertical flipping. The total number of

images generated from cohort 1 was thus 18,792. We randomly

selected 70% of cohort 1 data for training and the remaining

30% was used for validation and each example is a particular

subject at T0. The input size for the convolutional network

was 100 × 100 pixels from “warped” images. A sigmoid layer

was used for the classification in our CNN architectures.

Architecture 3, which gave us the best classification accuracy

from the sigmoid layer, was used to extract features of dimen-

sion 1024 from the last layer before the classification layer.

These new deep feature vectors were used for further analysis

by selecting 5/10/15/20 features using symmetric uncertainty

and classifiers, as discussed previously.

We experimented with six different approaches to predict

malignancy of cohort 2 subjects lung nodules imaged at T0:

first, only deep features extracted from warped nodules using

a pretrained CNN; second, merging deep features and classical

radiomics features; third, constructing new CNN architectures

and using a sigmoid layer for classification; fourth, deep features

extracted from the newly trained CNN architecture; fifth, merg-

ing deep features from a lung nodule trained CNN and classical

radiomics features; and finally, merging deep features from

lung nodules, classical radiomics features, and deep features

from a network pretrained on a camera image dataset (i.e.,

vgg architectures). Cohort 2 cases were not used in training

and served as an unseen test set to validate the predictive

power of our approaches.

With just deep features from a pretrained CNN, the best

accuracy of 75.1% with a 0.74 AUC was obtained from warped

nodules using the deep features obtained from vgg-s. The

classifier used to obtain the result was a nearest neighbor

(11 neighbors) classifier. In Table 6, we show only the best

results obtained by using each color channel separately.

We then merged the 219 radiomics features with deep

features extracted from warped nodules. We selected the top

5/10/15/20 features using the symmetric uncertainty feature

selector separately on both deep features and classical radiomics

features and merged them together to make a feature vector of

Fig. 3 CNN Architecture 3.

Table 6 Best results using each color channel using deep features only.

Color channel Pretrained net No. of features Classifier AUC (SE) Accuracy

Red Vgg-m 15 Nearest neighbor (7 neighbors) 0.65 (0.0359) 71.3

Blue Vgg-s 15 Nearest neighbor (7 neighbors) 0.72 (0.0329) 73.4

Green Vgg-s 20 Random forests (200 trees) 0.68 (0.0347) 68.3

RGB Vgg-s 5 Nearest neighbor (11 neighbors) 0.74 (0.0318) 75.1
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10/20/30/40 features. The best accuracy of 75.1% was obtained

by merging the top 15 selected features from classical radiomics

features and deep features from a vgg-s pretrained network

using a random forests classifier. The best AUC of 0.793 was

obtained by merging the top 20 selected features from classical

radiomics features and deep features from a vgg-m pretrained

network. The classifier used to obtain the result was a random

forests classifier. In Table 7, we show only the best result

obtained by merging deep features from each channel and

classical radiomics features.

We designed three convolutional architectures and trained

them on augmented images of cohort 1 and tested on cohort 2.

Maximum classification accuracy of 76% with AUC 0.87 was

obtained from Architecture 3.

We assessed the significance of the improvement of the

AUC values between the current and previous best result19

by calculating the standard error (SE) of the area for each

AUC score using Eq. (1):

EQ-TARGET;temp:intralink-;e001;63;418SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Að1 − AÞ þ ðna − 1ÞðQ − A2Þ þ ðnn − 1ÞðQ − A2Þ

na � nn

r

;

(1)

where A is the calculated AUC, na and nn are the number of

benign and malignant cases, respectively, and Q1 and Q2 are

estimated by Q1 ¼ A∕ð2 − AÞ and Q2 ¼ 2 � ðA � AÞ∕ð1þ AÞ.
Using the SE values from the two AUCs, AUC1 and AUC2,

we calculated the z value using Eq. (2):

EQ-TARGET;temp:intralink-;e002;326;561z ¼
jAUC1 − AUC2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
AUC1

þ SE2
AUC2

q : (2)

From the z score, the p value was obtained and perfor-

mance significance was evaluated at p ¼ 0.1 and p ¼ 0.05.

Improvement of AUC was not statistically significant at

p ¼ 0.05, as it was 0.0656. In Table 8, we show the best result

obtained from different CNN architectures.

CNN Architecture 3 was used as a pretrained network and

1024 features were extracted from the last layer (max pool 3 −

4 × 4 after pooling and 64 convolutions) before the classifica-

tion layer. The symmetric uncertainty feature ranking algorithm

was used to extract the top 5/10/15/20 deep features. Random

forests, nearest neighbor, SVM, naïve Bayes, and decision tree

classifiers were applied on the extracted new deep features for

classification.

We further investigated merging the new deep features with

the classical radiomics features to make a feature vector of

size 10/20/30/40 and obtained 76.37% accuracy (AUC 0.75).

We obtained further improved accuracy of 76.79% (AUC 0.78)

by merging new deep features, classical radiomics features,

and deep features obtained from the pretrained Vgg-s network

(feature vector size 15/30/45/60). In Table 9, we show the best

result obtained by extracting features from our CNN architec-

tures and when combined with other features. Figure 4 shows

a flowchart of the feature fusion process.

Table 7 Best results using each color channel and merging deep and classical radiomics features.

Color channel Pretrained net No. of features Classifier AUC (SE) Accuracy

Red Vgg-m 20 Random forests (200 trees) 0.793 (0.0285) 74.7

Blue Vgg-f 5 Random forests (200 trees) 0.79 (0.0287) 74.2

Green Vgg-m 15 Random forests (200 trees) 0.78 (0.0294) 73

RGB Vgg-s 15 Random forests (200 trees) 0.78 (0.0294) 75.1

Table 8 Results using different CNN architecture.

CNN architectures AUC (SE) Classification accuracy

CNN Architecture 1 0.82 (0.0266) 75.1%

CNN Architecture 2 0.86 (0.0242) 75.5%

CNN Architecture 3 0.87 (0.0224) 76%

Table 9 Best results by extracting deep features from CNN Architecture 3.

Features No. of features Classifier AUC (SE) Accuracy

Deep features only 15 Random forests (200 trees) 0.62 (0.0369) 68.7

Deep features + classical radiomics features 20 Random forests (200 trees) 0.75 (0.0312) 76.37

Deep features + classical radiomics features+
vgg-f architecture’s deep features

15 Random forests (200 trees) 0.77 (0.03) 75.1

Deep features + classical radiomics features +
vgg-m architecture’s deep features

15 Random forests (200 trees) 0.76 (0.0306) 72.5

Deep features + classical radiomics features +
vgg-s architecture’s deep features

10 Random forests (200 trees) 0.78 (0.0294) 76.79
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4 Discussion and Conclusions

Using transfer learning, features can be obtained from the last

fully connected layer of a pretrained network using lung LDCT

image data as input. LDCT screening data with labels will likely

be a small set for training a new deep neural network, as it is in

this research. Predictions were performed on baseline lung nod-

ules from an unseen test set (cohort 2) to predict which patients

would develop lung cancer by the second follow-up screen (T2).

In this paper, we show transfer learning features, as well as

training a new CNN will yield higher AUC when compared to

our previous study19 using only quantitative radiomics features.

Quantitative radiomics features are mainly generated based on

the tumor size, shape, histogram-based features, and texture.

Deep features likely have a relation to texture-based features

and, perhaps, shape, but are more opaque. So, we also fused

deep features with quantitative radiomics features to evaluate

whether fusing different types of features will provide better

results.

In our study, three different convolutional networks pre-

trained on the ImageNet dataset were used and features were

obtained from the last hidden layer after applying the ReLU

activation function (post-ReLU). In this paper, we discussed

two different approaches: using deep features only from warped

nodules and merging deep features from warped nodules with

classical radiomics features. In our previous study,19 we used the

red channel to normalize input images. In our current study, we

performed further analyses, using red, green, and blue channels

separately and using all three channels simultaneously. We gen-

erated a multichannel simulated RGB image, by using the same

grayscale image three times. The best result obtained using only

deep features extracted from the vgg-s pretrained network was

75.10% (AUC 0.74) with three channels using a nearest neigh-

bor classifier. The accuracy is nearly as good as handcrafted

features yet based on features from a network trained on color

camera images. By merging the deep features with quantitative

features, an improved AUC of 0.79 using a random forests

classifier was enabled.

Tuning a pretrained ImageNet with our cohort 1 examples

was attempted. However, the tuned networks features did not

result in accuracy or AUC that was better than reported here.

We also trained our own CNN architectures using

augmentation and obtained 76% accuracy (AUC 0.87) from

Architecture 3. The AUC was significantly better compared

to the previous best result19 of 0.81 (SE ¼ 0.273). We used

our CNN Architecture 3 as a pretrained network to extract

features of 1024 dimension from the max pool—layer 3. Using

only the new deep features, the best accuracy obtained was

68.77% (AUC 0.62). We then merged the new deep features

with the classical radiomics features and obtained an accuracy

of 76.37% (AUC 0.75). By merging the new deep features,

classical radiomics features, and the deep features from the pre-

trained vggs architecture, the best overall accuracy of 76.79%

(AUC 0.78) was obtained. This matched the best accuracy

previously attained with just radiomics features.

As the nodule images were grayscale and input images for

pretrained CNN were color (RGB), how to choose a single-color

channel from red, green, blue, or whether to use all of them is

unclear. Here, we did a detailed analysis on the tradeoffs

between color channels for extracting features from pretrained

CNNs. We extracted deep features from an ImageNet trained

CNN by sending nodule images through different color channels

(red/blue/green) separately, as well as copied the nodule image

to generate a RGB (24 bit image) and extract features. We

noticed that features from the RGB outperformed the individual

red, blue, and green channel. So, it shows that color channels

can have a serious impact on performance while using pre-

trained CNNs to extract features from medical images. Merging

ImageNet trained CNN features with radiomics features gener-

ates a newly designed feature vector for predictive analysis.

Fig. 4 Flowchart of feature fusion approach.
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Our work also shows that it is possible to train a good perform-

ing deep neural network on small medical datasets using

augmentation. The best-known AUC (0.87) on this data was

obtained from a deep neural network trained on cohort 1.

Using our designed CNN network trained on the NLST data

as a pretrained CNN for feature extraction was also helpful,

as it was solely trained on augmented nodule images. Merging

these newly obtained deep features with classical radiomics

features generates more powerful feature vectors, which even-

tually improved performance.

Generally, features that have at most small correlations

are preferable for classification. We checked the correlation

between deep features (transfer learning features/CNN extracted

features) and traditional features and found the correlation

between those features was low (in ½0.5;−0.5�). So, constructing
a new feature column by fusing quantitative features with deep

features potentially added more information to the newly con-

structed feature column to enhance classification performance.

From this paper, three conclusions were obtained, which will

be utilized in future research. First, we proposed a simple and

effective CNN architecture with a small number of parameters

useful for smaller (medical) datasets. Second, we show features

obtained using transfer learning from all the channels of a CNN

pretrained on a large corpus of camera images performed better

than features extracted using any single channel. Third, we also

constructed a new feature set by fusing quantitative features

with deep features, which in turn enhanced classification

performance.

One limitation of our study is not using a validation set for

the transfer learning approach. So, we simply report all results

on the test data. It might be that with a validation set, some com-

binations would not be tested. We will assess this limitation in

our future work.

Appendix

In this appendix, we show six representative lung images with

nodules outlined in red along with the nodule resized by bicubic

interpolation to 224 × 224. Figures 5 and 6 represent the larger

nodules, Figs. 7 and 8 represent medium sized nodules and

Figs. 9 and 10 represent very small nodules.

Fig. 5 (a) Lung image with nodule inside outlined by red
(pixel size ¼ 0.625 mm) and (b) nodule resized to 224 × 224.

Fig. 6 Larger nodules: (a) lung image with nodule inside outlined by
red (pixel size ¼ 0.74 mm) and (b) nodule resized to 224 × 224.

Fig. 7 Medium sized nodules: (a) lung image with nodule inside
outlined by red (pixel size ¼ 0.74 mm) and (b) nodule resized to
224 × 224.

Fig. 8 Very small nodules: (a) lung image with nodule inside outlined
by red (pixel size ¼ 0.703 mm) and (b) nodule resized to 224 × 224.
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