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ABSTRACT

Objective: To determine the ability of clinically available volumetric MRI (vMRI) and CSF biomark-
ers, alone or in combination with a quantitative learning measure, to predict conversion to Alzhei-
mer disease (AD) in patients with mild cognitive impairment (MCI).

Methods: We stratified 192 MCI participants into positive and negative risk groups on the basis of
1) degree of learning impairment on the Rey Auditory Verbal Learning Test; 2) medial temporal
atrophy, quantified from Food and Drug Administration–approved software for automated vMRI
analysis; and 3) CSF biomarker levels. We also stratified participants based on combinations of
risk factors. We computed Cox proportional hazards models, controlling for age, to assess 3-year
risk of converting to AD as a function of risk group and used Kaplan-Meier analyses to determine
median survival times.

Results: When risk factors were examined separately, individuals testing positive showed signifi-
cantly higher risk of converting to AD than individuals testing negative (hazard ratios [HR] 1.8–
4.1). The joint presence of any 2 risk factors substantially increased risk, with the combination of
greater learning impairment and increased atrophy associated with highest risk (HR 29.0): 85%
of patients with both risk factors converted to AD within 3 years, vs 5% of those with neither. The
presence of medial temporal atrophy was associated with shortest median dementia-free survival
(15 months).

Conclusions: Incorporating quantitative assessment of learning ability along with vMRI or CSF
biomarkers in the clinical workup of MCI can provide critical information on risk of imminent con-
version to AD. Neurology® 2011;77:1619–1628

GLOSSARY
AD � Alzheimer disease; ADNI � Alzheimer’s Disease Neuroimaging Initiative; AVLT � Auditory Rey Verbal Learning Test;
CDR � Clinical Dementia Rating; FDA � Food and Drug Administration; HC � healthy control; HOC � hippocampal occu-
pancy; HR � hazard ratio; ILV � inferior lateral ventricle; MCI � mild cognitive impairment; MMSE � Mini-Mental State
Examination; NINCDS-ADRDA � National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s
Disease and Related Disorders Association; vMRI � volumetric MRI.

Amnestic mild cognitive impairment (MCI) is associated with an increased but variable rate of
progression to Alzheimer disease (AD). Severity of cognitive impairment, abnormal CSF bio-
marker levels, and atrophy on volumetric MRI (vMRI) each predict conversion to AD.1–8

Combinations of these measures improve outcome prediction.1,5,7,9–12

Neuropsychological assessment is often used to diagnose MCI13 but CSF and vMRI mea-
sures are not included in routine clinical workup of patients with MCI. These measures may be
used to rule out other causes of dementia, such as cerebral infections and inflammatory disor-
ders in the case of CSF,14,15 or subdural hematoma and cerebrovascular pathology in the case of
MRI,16 but neither measure is currently used to support a diagnosis of early AD.

Methodologic barriers have prevented implementation of vMRI in clinical practice17; how-
ever, large-scale studies, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
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clinical trials incorporating vMRI as outcome
measures, have assisted in overcoming these
barriers.18–20 Commercially available, Food and
Drug Administration (FDA)–approved medical
device image analysis software now exists for
fully automated vMRI (NeuroQuant, Cor-
Techs Labs., Inc., La Jolla, CA). Integration of
this analysis with clinical practice has been de-
scribed.17 Commercial CSF analysis services also
exist that can indicate whether CSF biomarkers
levels are consistent with AD (e.g., Athena Diag-
nostics, Worcester, MA).

The purpose of this study is to demonstrate
the ability of these clinically available biomark-
ers, alone or in conjunction with neuropsycho-
logical assessment, to predict progression to
dementia in patients with MCI.

METHODS ADNI. Data used in the preparation of this article
were obtained from the ADNI database (www.loni.ucla.edu\ADNI).
ADNI was launched in 2003 by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineer-
ing, the Food and Drug Administration, private pharmaceutical
companies, and nonprofit organizations. ADNI’s primary goal is
to determine the best set of biomarkers for early detection and
tracking of AD.

ADNI is the result of efforts of many coinvestigators from a
broad range of academic institutions and private corporations.
Subjects have been recruited from over 50 sites across the United
States and Canada. ADNI has recruited 230 healthy controls

(HCs), 399 patients with amnestic MCI, and 193 with mild AD
(for up-to-date information, see www.adni-info.org).

Participants. ADNI eligibility criteria have been described.9

Briefly, subjects are 55–90 years old, with a study partner able to
provide independent evaluation of functioning. HCs have Mini-
Mental State Examination (MMSE) scores between 24 and 30,
and a Clinical Dementia Rating (CDR) of 0. Subjects with MCI
have MMSE scores between 24 and 30, subjective memory com-
plaint, objective memory loss measured by education-adjusted
scores on Wechsler Memory Scale Logical Memory II, CDR of
0.5, preserved activities of daily living, and absence of dementia.
Subjects with AD have MMSE scores between 20 and 26, CDR
of 0.5 or 1.0, and meet National Institute of Neurological and
Communicative Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) criteria for
probable AD.10 All participants underwent MRI at 1.5 T; ap-
proximately half underwent lumbar puncture.

Data collected and processed between August 26, 2005,
and October 14, 2010, were analyzed, including 215 HCs
and 192 mild AD. The HC group excluded 11 individuals
who converted to MCI or AD over the course of the study.
MCI participants were limited to 192 subjects with valid
baseline Auditory Rey Verbal Learning (AVLT) measures and
MRI and CSF data. Table 1 shows demographic and clinical
characteristics of the subjects with MCI, separated into those
who remained stable over the 3-year follow-up and those who
converted to dementia.

Standard protocol approvals, registrations, and patient
consents. The research protocol was approved by each local
institutional review board and written informed consent was ob-
tained from each participant or participant’s guardian.

Procedures. MRI acquisition and analyses. We downloaded
raw baseline DICOM MRI data from the public ADNI Web site
(http://www.loni.ucla.edu/ADNI/Data/index.shtml) and per-
formed fully automated volumetric segmentation with the Neu-
roquant software package, as previously described.17,21,22 Briefly,
images are corrected for gradient nonlinearity and B1 field inho-
mogeneity, followed by automated segmentation and labeling of 10
subcortical structures, including the hippocampus and the inferior
lateral ventricle (ILV), using a probabilistic brain atlas designed spe-
cifically to represent the aged population. We visually inspected seg-
mentation results and those with errors (9 out of 822) were
discarded. Volumes obtained using NeuroQuant have been vali-
dated against computer-assisted manual segmentations, and this
software has received FDA approval for clinical use.21

We computed a hippocampal occupancy (HOC) score as
an estimate of medial temporal lobe atrophy. The HOC was
computed as the ratio of hippocampal volume to the sum of
the hippocampal and ILV volumes in each hemisphere sepa-
rately. Right and left HOC scores were averaged then normal-
ized for age and sex.

The HOC is a measure of ex vacuo dilation, indicating ex-
pansion of the ILV as a function of brain tissue loss. This mea-
sure may aid in differentiation of individuals with congenitally
small hippocampi from those with small hippocampi due to a
degenerative disorder. We compared the predictive ability of the
HOC score with the more commonly used measure of hip-
pocampal volume, corrected for intracranial volume and normal-
ized for age and sex.23

CSF acquisition and analysis. CSF sample acquisition
and analysis methods have been described.24 T-tau, p-tau, and
�-amyloid1– 42 (A�1– 42) levels were determined using the

Table 1 Clinical and demographic data of patients with MCI who converted to
AD over the 3-year follow-up and those who remained stable

Stable
(n � 108)

Converted
(n � 84) Statistical comparison

Male, n (%) 76 (70) 51 (61) �2 � 1.97, p � 0.16

Age, y 74.4 � 0.71 74.9 � 0.81 F1,190 � 0.17; p � 0.68

Education, y 16.0 � 0.29 15.5 � 0.33 F1,190 � 1.19; p � 0.28

APOE �4 positive, n (%) 59 (45) 55 (65) �2 � 7.69, p � 0.006

MMSE 27.1 � 0.17 26.6 � 0.19 F1,187 � 4.11; p � 0.044

CDR-SB 1.4 � 0.09 1.8 � 0.10 F1,187 � 8.84; p � 0.003

ADAS-Cog 10.6 � 0.42 13.0 � 0.47 F1,187 � 14.74; p � 0.001

AVLT-Sum 33.0 � 0.76 26.9 � 0.86 F1,187 � 27.75; p � 0.001

HC/ICV 0.49 � 0.006 0.45 � 0.007 F1,188 �16.04; p � 0.001

HOC 0.70 � 0.009 0.63 � 0.010 F1,188 �19.49; p � 0.001

CSF A�142, pg/mL 177.0 � 5.02 145. 5 � 6.70 F1,190 �17.21; p � 0.001

CSF T-tau, pg/mL 95.9 � 5.85 114.0 � 6.63 F1,190 �17.21; p � 0.001

CSF P-tau, pg/mL 32.3 � 1.71 40.2 � 1.94 F1,190 � 9.72; p � 0.002

Abbreviations: AD � Alzheimer disease; ADAS-Cog � Alzheimer’s Disease Assessment
Scale, cognitive subscale; AVLT-Sum � sum of the 5 learning trials on the Auditory Rey
Verbal Memory Test; CDR-SB � Clinical Dementia Rating scale, sum of boxes score; HC/
ICV � hippocampal volume as percent of intracranial volume; HOC � hippocampal occu-
pancy score, ratio of hippocampal volume to hippocampal volume plus volume of the inferior
lateral ventricle; MCI � mild cognitive impairment; MMSE � Mini-Mental State Examination.
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multiplex xMAP Luminex platform (Luminix Crop, Austin,
TX) with the INNO-BIA AlzBio3 kit (Innogenetics, Ghent,
Belgium). CSF data are often analyzed commercially using
ELISA techniques.25 Although absolute concentrations differ be-
tween Luminix and ELISA methods, measures are highly correlated

and provide equivalent diagnostic accuracy for AD.26,27

Risk stratification. In separate analyses, we divided MCI par-
ticipants into positive and negative risk groups using published

threshold values for the AVLT learning score, defined as the sum
of correctly recalled words on the 5 list-learning trials,7 and for
CSF measures.24 For atrophy measures, we used linear discrimi-
nant analysis to determine the age- and sex-corrected value that
maximized accuracy of discriminating AD from HC data. Table
2 shows threshold values for all measures; figure e-1 on the Neu-
rology® Web site at www.neurology.org shows receiver operator
characteristic curves and table e-1 reports areas under the curve
for all measures.

We also stratified MCI participants based on paired combi-
nations of AVLT, vMRI, and CSF risk factors, and on the pres-
ence or absence of all 3 risk factors.

Statistical analyses. Using the SPSS software package (ver-
sion 15.0, SPSS, Inc., Chicago, IL), we performed Cox propor-
tional hazard analyses, correcting for age, to assess risk of
converting to AD. We used Kaplan-Meier survival analysis to
determine median dementia-free survival time. Time to event is
the difference (in months) between the baseline visit and the
halfway point between the last visit at which the patient was
diagnosed with MCI and the first visit at which the patient was
diagnosed with AD. Conversion to AD was determined accord-
ing to NINCDS-ADRDA criteria.

RESULTS Mean conversion-free follow-up time
was 29 months (SD 11.6). Figure 1 shows survival
curves from the Cox proportional hazards models for
the full MCI group and for subjects with MCI sepa-
rated into negative and positive risk groups based on
AVLT, CSF, and atrophy measures. The top portion
of table 2 reports the HRs for each risk factor when
used alone. Individuals with MCI testing positive for
each factor showed significantly greater hazard of
converting to AD than those testing negative. Since
the discriminative and predictive accuracy of the
HOC score exceeded that of the standard hippocam-
pal volume measure, we used the HOC score as the
atrophy biomarker in combined risk factor analyses.
Similarly, since the T-tau/A�1–42 ratio showed the
best discriminative and predictive ability of all CSF
measures, combined risk factor analyses used this ra-
tio as the CSF biomarker. Since A� biomarkers are of
great interest as early indicators of AD pathology28–30

we evaluated combinations of CSF A�1– 42 with
AVLT and atrophy risk and present the results in
figure e-2 and table e-2.

Figure 2 shows survival curves for risk groups de-
fined by the combination of risk factors. Combining
information from any 2 risk categories dramatically
improved risk discrimination (table 2, lower por-
tion). The combination of AVLT and medial tempo-
ral atrophy provided the best predictive ability.
Individuals testing negative for severe learning im-
pairment and for atrophy were at very low risk of
converting to AD: 95% of these patients remained
stable through the 3-year follow-up period. In con-
trast, individuals with both atrophy and learning im-
pairment were at very high risk of converting to AD:
only 15% were free of dementia at 3 years. Almost

Table 2 Hazard ratios, from Cox proportional hazard models, controlling for
age, as a function of risk factor groupa

Risk factor
Threshold
value

No. positive
(% positive) HR (95% CI)

AVLT 33 words 134 (70) 4.1b (2.2–7.8)

HOC �1.02 z score 86 (45) 3.9b (2.3–6.2)

HC % ICV �0.96 z score 114 (59) 2.3b (1.4–3.7)

A�1–42 192 pg/mL 143 (74) 3.4b (1.7–6.9)

t-tau 93 pg/mL 84 (44) 1.8c (1.1–2.7)

p-tau 23 pg/mL 137 (71) 2.9b (1.6–5.3)

t-tau/A�1–42 ratio 0.39 134 (70) 4.1b (2.1–8.0)

p-tau/A�1–42 ratio 0.10 150 (78) 3.8b (1.8–8.2)

Risk factor combinations No. (%) HR (95% CI)

Atrophy and AVLT

Negative atrophy,
negative AVLT

38 (20)

Negative atrophy,
positive AVLT

68 (35) 9.7b (2.31–41.04)

Positive atrophy,
negative AVLT

20 (10) 12.3b (2.67–57.2)

Positive atrophy,
positive AVLT

66 (35) 29.0b (7.0–120.03)

tau/A�1–42 and AVLT

Negative CSF,
negative AVLT

27 (14)

Negative CSF,
positive AVLT

31 (16) 4.4d (0.92–20.2)

Positive CSF,
negative AVLT

31 (16) 4.5d (0.94–21.0)

Positive CSF,
positive AVLT

103 (54) 13.8b (3.38–57.6)

Atrophy and tau/A�1–42

Negative atrophy,
negative CSF

38 (20)

Negative atrophy,
positive CSF

68 (35) 4.1e (1.4–11.9)

Positive atrophy,
negative CSF

20 (10) 4.5c (1.3–15.8)

Positive atrophy,
positive CSF

66 (35) 13.8b (5.0–38.5)

Abbreviations: AVLT � Auditory Rey Verbal Learning Test; CI � confidence interval; HC �

healthy control; HOC � hippocampal occupancy; HR � hazard ratio; ICV � intracranial volume.
a HRs are expressed relative to the negative risk group for each risk factor alone. No. posi-
tive � number of subjects (%) testing positive when each risk factor was examined alone.
For the analysis of combinations of risk factors, HRs are expressed relative to the group
testing negative on both factors. Number (%) of subjects in each of the 4 categories de-
fined by the combination of each 2 sets of risk factors is shown.
b p � 0.001.
c p � 0.05.
d p � 0.06.
e p � 0.01.
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half the sample was discordant for these 2 measures.
These individuals were also at elevated risk of conver-
sion, although risk was not as high as when both
factors were present: approximately 50% of these pa-
tients remained free of dementia at 3 years.

We also created groups based on concordant neg-
ative (n � 18) or positive risk for all 3 factors (n �
55). None of the individuals in the concordant
negative-risk group converted to AD whereas more
than 85% of those who tested positive on all 3 mea-

Figure 1 Survival curves according to risk category

Survival curves for the full mild cognitive impairment (MCI) cohort, and for negative and positive risk groups defined accord-
ing to learning performance (Auditory Rey Verbal Learning Test [AVLT]), CSF T-tau, A�1–42, and the tau/A�1–42 ratio, as well
as for medial temporal atrophy determined from the hippocampal occupancy score (HOC). Cox proportional hazard models
controlled for age. The x-axis shows months to conversion to AD; the y-axis shows proportion of subjects who have not
converted to Alzheimer disease. High risk is shown in red, low risk in blue.
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sures had converted to AD within 3 years (figure 2).
Since there were no converters in the low-risk group,
we could not compute a HR.

Figure 3 shows median survival times for the
high-risk group for each risk category. Median sur-
vival time was significantly shorter (as determined by
the nonoverlapping error bars) for those at risk due
to atrophy, alone (15.5 months) or in combination
with other factors (15.0 months), than for those at
risk from any other measure or combination of mea-
sures (range 20.5–28.5 months).

To determine whether random-censoring differed
by risk group, we examined censoring as a function of
AVLT risk. A total of 43 cases were random-censored
(i.e., they did not complete all study visits and were
classified as MCI at the last available visit). Most of
these patients were at high risk (n � 30; �2 � 5.13; p �

0.024). Length of follow-up did not significantly differ:

15.3 � 9.2 vs 20.5 � 10.6 months for the high- vs
low-risk groups (F1,41 � 2.6; p � 0.11).

DISCUSSION Clinically available behavioral, CSF,
and vMRI biomarkers each predict risk of conversion
to AD in MCI, but combinations of these measures
substantially improve prediction. We found that se-
verity of learning impairment assessed with the
AVLT predicted increased risk of conversion to
AD, with a HR similar to that reported in a study
of a smaller subset of ADNI participants.7 Abnor-
mal CSF biomarkers levels were also predictive of
conversion to AD, with HRs equivalent to those in
a prior study of all ADNI MCI participants with
CSF data.8 Importantly, we also found that medial
temporal atrophy quantified with commercially
available vMRI analysis software predicted conver-
sion to AD with larger HRs than those reported in

Figure 2 Survival curves as a function of risk factor combinations

Survival curves are shown for patients with mild cognitive impairment stratified according to the combination of learning
(Auditory Rey Verbal Learning Test [AVLT]) and atrophy (hippocampal occupancy score [HOC]) risk, learning and CSF risk,
atrophy and CSF risk, and for individuals concordant on risk for all 3 measures. Cox proportional hazard model controlled
for age. Green lines show those testing negative on all measures in the analysis, red lines show those testing positive on all
measures. Blue and purple lines show survival for those with discordant risk factors.
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studies of ADNI data that used research vMRI
analysis tools.5,7,10

Because diagnosis of AD and MCI are based, in
part, on severity of cognitive dysfunction, use of neu-
ropsychological test performance as a predictor is cir-
cular. However, MCI is associated with a range of
severity. The more severe the cognitive impairment,
the more likely the patient is to decline to dementia.
While we used the AVLT in our models as a “predic-
tor,” it might be better conceptualized as a measure
of severity within the MCI category.

Recently updated guidelines for diagnosis of
MCI in research studies incorporate vMRI and
CSF biomarkers.30 The goal of biomarker charac-
terization is to increase certainty that a person di-
agnosed with MCI has or does not have
underlying AD pathophysiology. Besides provid-
ing etiologic specificity, studies such as ours and
many others show that patients with MCI with
AD biomarkers are more likely to decline to de-
mentia within a few years than patients without
AD biomarkers. Thus, assessment of etiology also
provides important prognostic information.

Our results showed that combining AVLT per-
formance with CSF or vMRI biomarkers substan-
tially improved risk prediction, consistent with prior
findings demonstrating the complementary nature of
behavioral, CSF, and MRI measures.5,7,9,10,12,31 We
found that the combination of impaired learning
ability and medial temporal atrophy was associated
with the greatest risk of developing dementia. Fur-
ther, we found that the presence of medial temporal
lobe atrophy, when considered alone or in combina-

tion with other factors, was associated with the most
rapid rate of conversion, with median survival times
of approximately 15 months. Individuals at risk due
to severity of learning impairment or abnormal CSF
biomarkers showed a less rapid course of decline,
with median survival times of 20 to 28 months. This
is consistent with the previously suggested dynamic
cascade of AD pathology, in which atrophy is the
pathologic event that immediately precedes, and un-
derlies, functional decline to dementia.32

In contrast to the immediacy of medial temporal
atrophy to functional decline, much research sug-
gests that A� pathology develops years or decades
prior to cognitive symptoms.29,32–34 A� pathology is
observed in a substantial number (20%–40%) of
cognitively healthy elderly individuals35 (including
38% of ADNI’s healthy controls24). It is not clear
whether these individuals will eventually develop
AD. Evidence suggests that some healthy elderly who
test positive for A� pathology are at risk for cognitive
decline.29,33,36 When A� pathology occurs with mem-
ory impairment, however, it is associated with signif-
icantly higher risk of converting to AD.10

Using evidence of A� pathology from CSF mea-
sures or Pittsburgh compound B amyloid imaging, a
recent study reported equivalent HRs for hippocam-
pal atrophy and A� biomarkers when subjects with
MCI were separated into those with highest and low-
est quartile scores.10 Further, the study reported that
patients with MCI testing positive for A� pathology
were more likely to convert to AD when hippocam-
pal atrophy was present. The current results are con-
sistent with this, but also show that absence of A�

Figure 3 Median survival times for those testing positive on each risk factor or combination of risk factors

Median survival time (in months) reflects the last time at which 50% of the subjects in the group retained the MCI diagnosis.
AVLT � Auditory Rey Verbal Learning Test.
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pathology in MCI does not imply a benign clinical
course. Individuals in the current study with normal
A�1–42 levels but with medial temporal atrophy (fig-
ure e-2) showed almost as high risk of converting to
dementia as individuals testing positive for both fac-
tors (HR 9.8 vs 14.3; see table e-2). Although cau-
tion in interpretation is warranted by the few subjects
in this subgroup (n � 14), these results might reflect
a lack of sensitivity of CSF A�1–42 to the oligomeric
form of A�, which has been shown to be synapto-
toxic.37 Alternatively, dementia in these patients may
be due to causes other than AD. In any case, these
results suggest that patients with medial temporal at-
rophy require close monitoring of functional status
over time, regardless of A� status.

Presently, CSF measures are not routinely included
in clinical evaluation of suspected AD in the United
States, although such measures are routinely used in
some European countries. Multisite studies have dem-
onstrated significant variability in CSF measures across
laboratories, but have also shown that uniform collec-
tion, handling, and analysis methods can reduce vari-
ability, enabling meaningful clinical interpretation.4

Further efforts are underway to allow standardization of
measures across international centers.4

Structural MRIs may be included in the clinical
workup, but typical scanning protocols are not con-
ducive to automated volumetry. However, obtaining
suitable scans in clinical practice requires minor, eas-
ily implemented changes in the imaging protocol:
ADNI-compatible 3-dimensional T1-weighted scans
take about 7 minutes to acquire. These scans can
then be analyzed, using fully automated procedures
followed by qualitative review by an imaging expert
or trained technician, to obtain volumes for various
brain structures implicated in AD, including hip-
pocampus, ventricles, and whole brain volume, rela-
tive to sex- and age-matched normative values.17,21,38

The improved predictive prognostic information
available from combined use of these measures argues
strongly for their inclusion in the clinical investiga-
tion of suspected AD. Evidence of negative CSF or
negative atrophy risk factors, with relatively intact
learning ability, may allow a clinician to offer reassur-
ance to patients with MCI that the likelihood of pro-
gressing to AD in the near term is small.
Approximately 95% of patients with MCI in this
study who tested negative for learning and atrophy
risk factors and 92% of those testing negative for
learning and CSF risk factors remained dementia-
free after 3 years. When all 3 risk factors were nega-
tive, none of the individuals with MCI converted to
AD. However, the very few subjects in this group
warrants caution in generalizing these findings be-
yond the present study.

In contrast, a more aggressive course of treatment
and care planning would be called for when either
atrophy or CSF risk factors are present. When both
occur in the presence of learning impairment, risk of
AD within 3 years is close to 90%. Although no
disease-altering treatments are yet available for AD,
information on increased risk of imminent clinical
decline would enable clinicians to better anticipate
potential problems in management of other chronic
conditions and would enable patients and their fam-
ilies to better plan for the future. If disease-modifying
therapies become available, accurate early diagnosis
will be essential for risk:benefit assessments in treat-
ment decisions since these therapies may be associ-
ated with risk of significant adverse effects.39

Accurate, early detection of prodromal AD would
then enable patients to be treated at the earliest pos-
sible stage to preserve cognitive abilities without ex-
posing individuals unlikely to progress to AD to
undue risk.40

One limitation of this study is the loss of some
subjects with MCI to follow-up, which may have re-
sulted in a conservative bias in estimate of conversion
rates: individuals who dropped out of the study were
more likely to fall into the high-risk group based on
the learning measure than into the low-risk group,
and several may have converted to AD within the
timeframe of the follow-up without our knowledge.
Other important limitations include lack of histo-
pathologic verification of AD and the highly selected
amnestic MCI population. MCI participants within
ADNI were carefully selected to include individuals
with documented memory impairment and to ex-
clude those whose impairment could arise from other
potential causes. Thus the MCI population studied
here is not representative of the general clinical pop-
ulation. There is a strong need to gain more experi-
ence with currently available clinical tools for aiding
in the prediction of AD in the clinical setting, so that
if disease-modifying treatments become available,
these techniques will have been validated on typical
clinical populations and be ready for routine use.
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