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The overarching aim of this paper is to explore the use of machine learning
(ML) to predict the microstructure-sensitive evolution of a three-dimensional
(3D) crack surface in a polycrystalline alloy. A convolutional neural network
(CNN)-based methodology is developed to establish spatial relationships be-
tween micromechanical/microstructural features in a cyclically loaded, un-
cracked microstructure and the 3D crack path, the latter quantified by the
vertical deviation (i.e., z-offset) of the crack along a specified axis. The pro-
posed methodology consists of (i) a feature selection and reduction scheme to
identify a lower-dimensional representation of the experimentally measured
microstructure and computed micromechanical fields, which allows for com-
putational feasibility in predicting the z-offsets; (ii) a CNN model to compute
the z-offset as a function of the local, lower-dimensional feature data; and (iii)
a radial basis function smoothing spline to ensure spatial continuity between
the independently predicted z-offsets. The proposed CNN-based methodology
is shown to improve on the accuracies obtained using existing ML models such
as XGBoost and to provide a definitive way of quantifying model uncertainty
associated with CNN predictions. To further investigate the applicability of
ML models, multiple prediction strategies with which to deploy ML algo-
rithms are proposed and the relative performance of ML algorithms corre-
sponding to each prediction strategy are analyzed. The presented work thus
provides a framework to find an encoded representation of 3D microstructure
and micromechanical data and develop methods to predict microstructure-
sensitive crack evolution based on this encoded representation, while quan-
tifying associated prediction uncertainties.

INTRODUCTION

Fatigue cracking contributes to a majority of in-
service failures of engineering structures, which are
often driven by onset and accumulation of
microstructurally small cracks.1 The initiation and
early-stage growth of these small cracks are depen-
dent on microstructural features that influence, for
example, crack interactions at grain boundaries.2

Computational modeling of crack initiation and
growth can be complex, partly because understand-
ing the effects of a broad range of microstructural
features on the constitutive response can be extre-
mely difficult to achieve using conventional contin-
uum approaches.2 While the growth rate of long
cracks can be accurately predicted using the Paris–

Erdogan law (or similar relationships),3–5

microstructurally small cracks can exhibit greater
variability in their growth behavior compared with
long cracks.4 This is evidenced by the larger scatter
in the growth rate of small cracks with the same
nominal value of stress intensity factor.4 Yet under-
standing the behavior of these small cracks is
critical, as they can account for upwards of 80% to
90% of a component’s fatigue lifetime.6 As such,
accurate predictions of crack behavior can improve
the reliability of structural components, as well as
lower associated production and maintenance costs,
as described in Ref. 7.

In an attempt to model the behavior of
microstructurally small cracks, both empirical and
numerical approaches have been employed based on
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certain underlying principles and influencing fac-
tors. Fatemi and Yang8 and Hussain5 review early
phenomenological theories on small-crack behavior,
in which plasticity effects, metallurgical effects, and
crack closure are suggested as possible explanations
for small-crack behavior. Factors such as grain
shape and crystal orientation, near-neighbor dis-
tances, grain fracture toughness, and intrinsic flaw
size are also considered as factors contributing to
crack nucleation and early-stage propagation.9,10 In
some cases, finite-element analysis using crystal
plasticity models, as originally proposed by Asaro,11

are used in literature to investigate the effect of the
spatial variability of microstructural features and
micromechanical fields on small-crack behavior
(e.g., see Ref. 12). A more comprehensive review of
empirical and numerical approaches investigating
the behavior of small cracks can be found in other
literature.5–8,13

While the aforementioned approaches often rely
on stress intensity factors12 and/or fatigue indicator
parameters14,15 as representative mesoscopic surro-
gates for the driving force behind crack initiation
and propagation, there is a need for a more com-
prehensive, general framework that accounts for
the complex spatial, nonlinear relationships
between the relevant features, i.e., microstructural
features and micromechanical fields, and a given
representation of the crack. Data-driven methods
can potentially be a viable alternative approach to
address this challenge, as they can leverage large,
high-dimensional datasets, obtained through exper-
iments or simulations, to model these complex
relationships.16–18 Machine learning (ML) models
have already exhibited a wide range of applicability
within the materials science community, including
for materials discovery,19 optimal design of exper-
iments,20 and image-based materials characteriza-
tion.21,22 In the context of predicting crack behavior,
data-driven methods such as principal component
analysis (PCA) have been employed to determine
reduced-order representations that correlate with
fatigue indicator parameters (FIPs).23,24 In similar
work,25 a random forest learning algorithm was
employed to predict stress hot spots that were
computed from full-field crystal plasticity simula-
tions, where the algorithm was trained using fea-
tures that encode the local crystallography,
geometry, and connectivity of the microstructure.
Probabilistic models such as Bayesian networks,7,26

which are nonparametric and can account for
uncertainties in predictions, have also been used
to compute fatigue-related parameters such as
residual life and equivalent stress intensity factors,
respectively.

This paper expands previous work on data-driven
methods in fatigue modeling and proposes a frame-
work using a convolutional neural network (CNN)
model to predict 3D crack paths based on
microstructural and micromechanical features.
While previous, relevant work using data-driven

approaches has primarily focused on identifying
micromechanical and microstructural variables that
contribute to the direction and rate of crack prop-
agation,26 or on mapping global variables (such as
chemical composition, grain size, heat treatment,
and cyclic stress intensity factor) to the one-dimen-
sional crack growth rate,27 the work presented
herein concerns the use of CNN to quantitatively
predict the local crack path, in 3D, as a function of
local microstructural and micromechanical fea-
tures. CNNs are particularly well suited for prob-
lems that require finding spatial, nonlinear
relationships between input and a given response
variable of interest and have been successfully used
in related applications such as classification of
microstructures based on scanning electron micro-
scopy (SEM) images20 and determination of mate-
rial properties based on microstructure.28,29 Prior to
training the CNN model, the input features (i.e.,
microstructural features and micromechanical
fields) are selected based on previous correlation
analysis by Pierson et al.30 (described below). PCA
analysis is performed to convert the relevant input
features to unique low-dimensional descriptors,
whose values are specific to a given location within
a microstructure. The 3D map of these descriptor
values is then introduced into the CNN model. As a
postprocessing step, to retain spatial continuity, a
smoothing operation is performed on the predictions
of crack surface elevations obtained from the CNN
model.

The next subsection provides background infor-
mation on the experimental and simulation data
used to train and evaluate the ML model.

Prior Work by the Authors

In previous work,30 the authors conducted a
systematic correlation analysis between computed
micromechanical fields in a 3D, uncracked polycrys-
tal and the observed path of an eventual fatigue
crack. Specifically, an experimentally measured
volume of an Al-Mg-Si alloy31 was modeled using a
high-fidelity, concurrent-multiscale, finite-element
mesh with a crystal-plasticity constitutive model.32

Cyclic loading was simulated at a load ratio of R =
0.5 (consistent with experiment), and computed
field variables (or derivatives thereof) based on
stress, strain, and slip were parameterized to a
regular 3D grid. A complete list of the 22 variables
computed at each time step during the finite-
element simulation is presented in Table I. Addi-
tionally, the cyclic change in each of the variables
was computed between the peak and minimum load
for each of five simulated loading cycles. Figure 1
shows six of the parameterized variables (five cyclic
damage metrics and the cyclic micromechanical
Taylor factor33). Once the cyclic change in the
computed field variables was shown to converge,
the spatial gradients of the variables were calcu-
lated using a finite-difference approach. In total, 88
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variables were considered in the correlation study,
of which 44 were based on spatial gradients of the
micromechanical fields. The parameterized vari-
ables were then systematically correlated with
distance to the known crack surface. Correlation
coefficients for all 88 variables are shown in Fig. 2.
In general, the spatial gradients of the microme-
chanical field variables (Fig. 2c and d) exhibited a
stronger correlation with the crack path than did
the field variables themselves (Fig. 2a and b). To

assess whether the correlation coefficient values
shown in Fig. 2c and d were meaningful, correlation
analyses were also performed between the 88
variables and alternative paths throughout the
microstructure. The correlation coefficients for the
alternative paths were consistently weaker than
those for the actual crack surface, suggesting that
micromechanical fields of the cyclically loaded,
uncracked microstructure might provide some
degree of predictiveness for the microstructurally

Table I. List of 22 variables computed during finite-element simulation30

D1 Maximum value of accumulated slip among 12 octahedral slip systems
D2 Maximum value of total accumulated slip over each slip plane
D3 Accumulated slip summed over all slip systems
D4 Maximum value of energy dissipated on a given slip plane during plastic deformation
D5 Modified Fatemi–Socie parameter
�� Symmetric strain tensor composed of �xx, �yy, �zz, �xy, �xz, and �yz

�1 Principal eigenvalue of the strain tensor
�vM von Mises strain
�r Symmetric stress tensor composed of rxx, ryy, rzz, rxy, rxz, and ryz
r1 Principal eigenvalue of the stress tensor
rvM von Mises stress

Mmicro Micromechanical Taylor factor

For each variable, the cyclic change (D), spatial gradient (r), and spatial gradient of the cyclic value (DðrÞ) were determined, resulting in
88 different variables at each point in the simulation domain.

Fig. 1. Grid data showing cyclic values of slip-based damage metrics computed for uncracked microstructure in multiscale finite-element
simulation. A description of each metric is provided in Table I. Reprinted with permission from Ref. 30.
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small fatigue crack path. Results from the previous
correlation analyses are leveraged in the current
work involving physics-informed ML to predict the
crack surface evolution.

Before describing the methods implemented in
this work, it is worth discussing both the limitations
and potential benefits of relying on fields from an
uncracked microstructure in the ML framework to
predict the crack path. The obvious limitation is
that the micromechanical fields near a traction-free
surface are not the same as fields in the same
domain without a traction-free surface. However,
the hypothesis explored here is that the microme-
chanical fields in the uncracked microstructure
encode (at least within some finite range of the
initiation site) the path that a crack will eventually
take. The potential benefit of such approach is that
physics-informed ML predictions of crack evolution
can be carried out more rapidly than current state-
of-the-art approaches for simulating

microstructurally small crack evolution. This point
is revisited in ‘‘Results and Discussion’’ section.

METHODS

Selection and Extraction of Input Features

Based on the previously described correlation
analysis, a new, low-dimensional representation of
the data is computed from the original set of
features, one that is amenable to spatial relation-
based learning algorithms, without losing high-
value information contained within the raw fea-
tures. To achieve this, the existing data are trans-
formed into a new domain that has a low
dimensionality for each point in the 3D microstruc-
ture. As an analogy, consider how an image is
represented in a low-dimensional color space (such
as RGB) and contains a vector with three entries at
each of the pixels on a two-dimensional (2D) plane.

Fig. 2. Correlation coefficients computed between the following metrics and distance to crack surface: (a) field variables, (b) cyclic change in field
variables, (c) spatial gradient of field variables, and (d) spatial gradient of cyclic field variables. Correlation coefficients of the spatial gradient
values with the known crack surface were found to be consistently stronger than with other, hypothetical crack surfaces. Reprinted with
permission from Ref. 30.
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This representation allows for feasible convolutions
and other operations during training. In this work,
the dimensionality of each point within the
microstructure is first reduced from 88 raw features
to a descriptor vector containing three elements,
while still retaining the high-value information for
predicting the crack path.

The correlation analysis described by Pierson
et al.30 is used to select the subset of features likely
to contribute to spatial deviations on the crack
surface. This feature selection is imperative to the
feasibility of efficient model training; using all 88

features at all 1:7235� 108 points in the volume
would render the computation intractable, given
hardware constraints. It was shown in Ref. 30 that
the spatial gradients of the micromechanical fea-
tures are more strongly correlated with the crack
path than are the micromechanical features them-
selves, as shown in Fig. 2. Among the 44 spatial
gradient features considered, the 22 features asso-
ciated with the cyclic change between loading and
unloading (Fig. 2d) have comparatively higher
Pearson correlation coefficients. Thus, the feature
set considered for input to the ML models is first
down-selected to these 22 features.

Principal component analysis (PCA) is subse-
quently performed on these 22 features to further
reduce the dimensionality of the feature set. PCA is
a commonly used dimensionality reduction tool that
provides the orthogonal basis vectors in decreasing
order of the amount of variance explained along
their directions.34 The 22 features are normalized
prior to performing PCA. The PCA analysis shows
that the first three modes explain 96% of the total
variance, and as such, those three principal compo-
nents (a1; a2; a3) are selected as the basis for the new
data. In other words, the 22 features at each point in
the microstructure are projected onto this basis,
resulting in a three-element descriptor vector based
on the micromechanical metrics at each point.

In addition to the features based on microme-
chanical fields, an additional feature is considered
based purely on the geometrical configuration of the
microstructure. Experimental evidence has long
suggested that microstructurally small fatigue
cracks behave very differently near grain bound-
aries than within a single grain, manifested as
crack deceleration or deflection.35–37 To account for
such a spatially dependent relationship, an addi-
tional feature called dGB, which is the distance from
a given point to the nearest grain boundary, is
added to the descriptor set to produce a location-
specific, four-element descriptor. Thus, the descrip-
tor vector xi corresponding to each location i can be
expressed as follows: xi ¼ ½a1i; a2i; a3i;dGB;i�. For
comparison, the ML models are also trained using
a descriptor vector of only the experimentally
measured Euler angles (represented within the
fundamental zone, to account for crystal symmetry)
corresponding to each location, to see how

predictions based on a simpler, more rudimentary
description of the microstructure perform in com-
parison with the feature vector xi.

General Approach to Predict Crack Path

The location-specific descriptor vector developed
in ‘‘Selection and Extraction of Input Features’’
section is passed on to machine learning (ML)
models to predict the z-offset, which represents the
vertical deviation of the crack with respect to its
neighboring location. This is analogous to predicting
the local kink angle along a specified direction.
Since the crack surface is assumed to emulate an
injective function f(x, y), the problem of predicting
the shape of the crack surface is thus reduced to
predicting the z-value for a given point (x, y). The
ML models are applied using a general prediction
approach that is agnostic to the specific ML algo-
rithm used and can be summarized as follows:

1. The local vertical deviation in the crack surface
with respect to a ‘‘neighboring point,’’ as quantified
by the z-offset (Dz), is assumed to be dependent
upon a region of influence Dxv � Dyv � Dzv lm

3

centered around that point. In this analysis, we
consider Dxv ¼ Dyv ¼ Dzv ¼ 10lm, meaning that
the z-offset at a given point is assumed to be
dependent upon microstructural and microme-
chanical features contained within a cube of
dimension 10lm, as shown in Fig. 3. The
microstructure is discretized onto a 3D grid with
resolution of 1 lm,30 with each point in the grid
being defined by the entries of the descriptor vector
xi. The selection of the neighboring point depends
on the type of prediction strategy adopted, as
explained later in this section.

2. The set of targets (i.e., z-elevation values) paired
with the corresponding features is partitioned
into training and test sets. The features and the
targets in the training set are used to train a
given ML algorithm (e.g., CNN model). The
trained ML model is used to predict the z-offset,
and subsequently compute the z-elevations at
test locations using the features in the test set.

3. Optionally, once the predicted z-elevations are
obtained, a radial basis function (RBF) smooth-
ing spline is applied on the z-elevations as a
postprocessing step to ensure spatial continuity
between independently predicted z-offset val-
ues. The RBF package in the Python package
scipy is used to perform this operation. Note that
the RBF scheme is only applied in the transla-
tional prediction strategy, which is described
later in this section. An averaging of multiple
predictions is implemented within the radial
prediction strategy (also described later), which
serves as a postprocessing smoothing operation.

4. Finally, the accuracy of the ML algorithm is
evaluated by comparing the predicted (and
subsequently corrected using RBF) z-elevations
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with the corresponding actual values using the
mean squared error and the R2 metrics.

While the representative dimension of the cubic
subvolume considered (10 lm) is small relative to
the grain size of � Oð100lmÞ,31 note that: (i) a given
ML model is used to compute the z-offset at a given
point relative to the z-elevation at a neighboring
point, ensuring that the local crack surface profile is
effectively constrained by descriptor values in
neighboring regions (i.e., regions just outside the
representative subvolume); and (ii) increasing the
dimension of this subvolume would severely
increase the number of weight parameters, making
the ML model performance prone to loss in accuracy
due to overfitting and a high computational cost.

The general strategy presented here is adopted
for two prediction approaches based on the way the
training and test data are split: (i) translational and
(ii) radial. In the translational prediction strategy
(Fig. 4), the crack surface is split into two halves,
viz. a front half (the half containing the nucleation
point of the crack, on which the ML model is
trained) and the back half, which is used to evaluate
the accuracy of the ML-model predictions. As such,
the ML model is trained on all points in the crack
surface from 0 ton, where n is the halfway point in
the x-direction. During the test phase, the model
uses the feature vectors associated with the points
at n to predict the z-offsets of the points at nþ 1.
Then, the feature vectors associated with the

predicted z-positions for the points at nþ 1 are used
to predict the z-positions of the points at nþ 2. This
continues until the entire crack surface has been
predicted. In the translational prediction scheme,
137,445 data points are used to train the CNN
model before the trained model is used to predict on
136,710 data points.

In the radial prediction strategy, the ML model is
trained on a semicircular region emanating outward
from the nucleation point of the crack. The test data
(i.e., data for which the predictions are made)
corresponds to a region that extends radially out-
ward with respect to the training set, as shown in
Fig. 4. This prediction is done by moving pointwise
along a semicircular region of the crack surface and
predicting the z-offset for three of the adjacent
points on the x-y plane. If the predictions of multiple
‘‘known’’ points overlap for a given ‘‘unknown’’
point, the mean of all the predictions is taken. This
averaging operation serves as a smoothing opera-
tion, as mentioned earlier in this section. Once a
prediction for the z-coordinate is produced, the point
is added to the ‘‘known’’ region. This continues until
the z-coordinates of all points within the domain of
the final crack front have been predicted. Figure 4
also presents a schematic of this radial prediction
approach. In the radial prediction scheme, 33,985
data points are used to train the CNN model before
the trained model is used to predict on 17,754 data
points.

Fig. 3. Schematic of the general approach used in this analysis. A visualization of the measured fatigue failure surface embedded inside the
measured microstructural volume 383� 750� 600lm3 is shown on the left. The microstructural volume is discretized into a grid with 1 lm
spacing between points, with each point identified using a location-specific descriptor vector xi. The z-offset (Dz) at a given point is assumed to
be a function of all descriptors contained within a volume of 10� 10� 10lm3 centered around that point, as shown on the right. The goal of
machine learning models, therefore, is to find the mapping between Dz and the corresponding set of descriptors.
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The translational and radial strategies represent
two different parameterizations of the crack sur-
face. While cracks evolve physically as arbitrary 3D
shapes, expressing and predicting such evolution
requires a parametric description (i.e., the definition
of a fundamental basis or direction along which the
crack path is to be predicted).

Convolutional Neural Network Model
to Predict Crack Surface

Convolutional neural networks (CNNs) are con-
sidered as the primary ML candidate to predict the
crack surface using the general approach presented
in ‘‘General Approach to Predict Crack Path’’ sec-
tion, since CNNs account for the topology of the
input data (i.e., allow extraction of higher-level
features by considering local correlations among
spatially proximal lower-level features38). CNNs
usually employ a hierarchical structure to deter-
mine how these local feature maps correlate with
the response variable of interest. A CNN model is

defined by weight tensors that indicate the relative
influence that a spatial arrangement of features has
on a given output. Aside from ensuring a lower
number of free weight parameters, the spatial
sharing of the weights also enforces a degree of
shift invariance within the model.38 Through an
optimization process, the CNN model ‘‘learns’’ how
the spatial arrangement of the specific features is
related to the output variable to be predicted. Once
trained, the CNN model can then be used in a
computationally efficient, forward sense to make
predictions.

The application of CNNs is pertinent to the
problem of predicting the z-offset presented here,
as the z-offset at a given point is likely to be
dependent on the relative spatial arrangement of
the descriptors (as developed in ‘‘Selection and
Extraction of Input Features’’ section) within a
given region—in our case, a cubic volume surround-
ing that point. It is thus hypothesized that the
proposed CNN model would perform comparatively
better than other ML algorithms. XGBoost, a

Fig. 4. Two parameterization strategies for predicting the rate-independent evolution of a 3D crack surface. The translational prediction strategy
(top left) evolves the crack surface incrementally along the x direction. The radial prediction strategy (top right) evolves the crack surface in a
nominally radial direction. Dots represent points on the crack surface at a given time step during the evolution procedure. The boundary between
training and testing data for each parameterization strategy is shown for reference.

Pierson, Rahman, and Spear2686



scalable tree boosting algorithm that has achieved
state-of-the-art results in several ML challenges39

and has been previously employed in materials
science-related applications,40 is selected as the
primary ML model for comparison with the pro-
posed CNN. Note that support vector regression
(SVR) was also initially considered as an ML
candidate; however, SVR exhibited significantly

poor performance (e.g., R2 < 0:6 for the radial strat-
egy), aside from suffering from poor scalability of
computational time with increasing size of training
data.41

Figure 5 presents a schematic of the CNN archi-
tecture implemented to predict the crack surface, as
quantified by the z-offsets. For any given point on
the crack surface, we consider as input a 10 lm�
10 lm� 10lm volume surrounding the point, where

each voxel within the input volume occupies 1 lm3

and has associated with it the feature vector xi (or
an input vector describing the Euler angles). A filter
(which can be thought of as a scanning volume) of
size 3lm� 3 lm� 3lm then convolves (or scans)
through the input volume. Each position within the
scanning volume has an initially arbitrary coeffi-
cient, or weight value, associated with it, which,
considering the entire scan volume, can be repre-
sented by a weight tensor, �x. This weight tensor for
a given filter is initialized at the beginning of the
training phase. As the scanning volume convolves
throughout the larger input volume, each element
in the feature vector xi at a given point in the
scanning volume is multiplied by the corresponding
weight value at that location. This convolution
process continues until the scanning volume has
scanned the entire input volume. The output from
the convolution step is a matrix of weighted values
representing the spatial arrangements of the xi

features. The next step shown in Fig. 5 is to apply a
nonlinear transfer function to the elements of the
matrix, whose effect (over subsequent iterations, or
epochs) is to emphasize important features and
deemphasize nonimportant features. In this work,
we apply a rectified linear (or ReLu) transfer

function. Once the matrix is updated to reflect the
application of the nonlinear transfer function, a
process known as ‘‘max pooling’’ is carried out, in
which the updated matrix is subdivided into regions
that correspond to neighborhoods from the original
input volume. The maximum value from each
subregion of the matrix is extracted and input to a
new, lower-dimensional matrix that represents a
new set of intermediate features for the volume
(rather than the original set of xi features). All of
the above steps are carried out using multiple
independent filters. In this work, four filters are
applied, which results in four new, lower-dimen-
sional feature matrices.

As shown in Fig. 5, the process of convolving is
repeated after max pooling, this time using the
resulting, lower-dimensional, feature matrices just
described. As before, a nonlinear transfer function,
followed by max pooling, is applied after the convo-
lution. The result now is an even lower-dimensional,
but high-value, representation of the spatial
arrangements of the original features. The matrix
is then flattened and mapped to the output (z-offset)
via a multilayer perceptron (i.e., a conventional
artificial neural network). A technique called ‘‘drop-
out’’ is also applied, which is a regularization
technique used in deep neural networks that pre-
vents overfitting. In this paper, the dropout opera-
tion is also used to predict the uncertainty
associated with the CNN predictions, which is
described later in ‘‘Computing Model Uncertainty
Associated with CNN Predictions’’ section. The
error in the predicted z-offset at the given training
point on the crack surface is then backpropagated to
update the weight values (coefficients) in the CNN
model. During training, the weight tensors are
optimized through gradient descent and backprop-
agation using ADAM,42 a stochastic optimization
algorithm. The CNN model is thus defined by the
weight tensors in the convolution and the fully
connected layer. Once the model is optimized, it can
be used in a forward prediction with significant
computational efficiency.

Fig. 5. Architecture of the convolutional neural network used in this work.
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XGBoost as a Comparative ML Model

The performance of the CNN is compared against
that of XGBoost, a type of gradient-boosting algo-
rithm39 that does not take into account the spatial
arrangements of features. Gradient-boosting algo-
rithms make predictions by using an ensemble of
predictive ML models, where these predictive mod-
els are added sequentially over multiple iterations
to minimize a given loss function.43 In the case of
gradient tree boosting algorithms, the predictive
ML model takes the form of a decision tree, in which
first- and second-order derivatives of the loss func-
tion with respect to the function value (i.e., predic-
tion of each decision tree architecture) are used to
determine the optimal decision tree architecture.

XGBoost is a variant of gradient tree boosting
algorithm with multiple algorithm modifications
and parallelization techniques to improve its com-
putational efficiency, the details of which are avail-
able in other literature.39 The CNN is hypothesized
to perform better than XGBoost for two main
reasons: (i) the CNN inherently accounts for the
spatial arrangement of local features within the
microstructure (as represented by the descriptor
vector or by the set of Euler angles), and (ii) the
CNN model might be better suited to predicting a
continuous variable such as z-offset compared with
XGBoost, which constructs a piecewise-constant
model for each leaf in the decision tree. This
hypothesis is explored in ‘‘Results and Discussion’’
section.

Computing Model Uncertainty Associated
with CNN Predictions

Uncertainty quantification of parameters pertain-
ing to fatigue phenomena is critical for reliability
analysis and safety evaluation of structural compo-
nents.44,45 The sources of such uncertainties can be
diverse, such as variability in material properties,
data uncertainty, and model uncertainty.46 In our
study, quantification of model uncertainty is most
relevant.46 Previous work by Rovinelli et al.7 has
successfully explored Bayesian approaches for esti-
mating the uncertainties associated with predic-
tions of global measures (viz., residual life);
however, it is of interest in this work to quantify
the uncertainties associated with estimation of local
parameters relating to small cracks. One of the
contributions of this paper, therefore, is to demon-
strate how we can leverage the CNN model pre-
sented in ‘‘Convolutional Neural Network Model to
Predict Crack Surface’’ section to compute the model
uncertainty associated with the predictions of local
z-elevation at given location (x, y), based on
microstructural and micromechanical features in
proximity to that location.

As such, the dropout operation mentioned in
‘‘Convolutional Neural Network Model to Predict
Crack Surface’’ section is utilized to quantify the
uncertainty in local z-elevation prediction. As

mentioned in ‘‘Convolutional Neural Network
Model to Predict Crack Surface’’ section, the drop-
out layer can be used to stochastically regularize the
CNN model against overfitting by aggregating over
multiple neural network configurations.47 When
dropout is applied between two layers l and lþ 1
(see Fig. 5), the interconnection between a given
intermediate feature (also known as a ‘‘node’’ in the
multilayer perceptron) in layer l and another inter-
mediate feature in layer lþ 1 is retained with
probability p. This means that, in a given single
iteration during training, the set of intermediate
features in layer lþ 1 is obtained by means of
randomly subsampling from the set of intermediate
features in the previous layer l with probability p.

Gal and Ghahramani48 suggested that, beyond
simply preventing overfitting during training, the
dropout layer can be further exploited during
prediction to compute the uncertainty of a deep
neural network model prediction, without needing
any modifications to the model or the optimization
objective function, and without compromising the
prediction accuracy. They showed that the loss
function for a neural network model with dropout
is equivalent to a loss function that minimizes the
Kullback–Leibler divergence between an approxi-
mate distribution and the posterior distribution of a
deep Gaussian process.48,49 The approximate distri-
bution of predictions in this case is obtained through
multiple samplings of the z-offset using the CNN
model with dropout. As the objective here is to
obtain a distribution of predictions, the training
configurations are retained for inference as well;
i.e., rather than rescaling the predictions by p, the
interconnections between nodes are each dropped
with probability p during prediction, just as was
done during the training phase.

In this analysis, therefore, we leverage this
finding from Gal and Ghahramani to not only
predict the crack path, but also to compute the
uncertainty associated with the CNN predictions of
the crack path at a given location. The prediction of
the crack path at a given point can depend on prior
predictions at neighboring points, and as such, the
associated uncertainty propagation is accounted for
using the uncertainty propagation rules, as pre-
sented in Ref. 50.

RESULTS AND DISCUSSION

Table II presents the accuracies of the 3D crack
path predictions using CNN and XGBoost, as
obtained using the translational prediction strategy
shown in Fig. 4. To indicate the relative benefits of
using these ML algorithms, the accuracies obtained
are compared with a baseline hypothetical crack
surface, which is obtained by simply extruding the
crack surface in the x-direction at the end of the
training region through the entire prediction region.
This hypothetical crack surface is treated as the

naive prediction. The improvements in the R2 value
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relative to the naive prediction are presented in the
final column of Table II. All of the models, with the
exception of XGBoost trained using only the Euler
angles, lead to better predictions of 3D crack path
than simply taking the naive approach of extending
the crack forward. Overall, the CNN with RBF
smoothing outperforms the XGBoost model for a
given training set.

The results in Table II show that both the CNN
(with RBF smoothing) and XGBoost models exhibit
improvement in accuracy when the descriptor vec-
tor (i.e., PCA values and dGB) developed in ‘‘Selec-
tion and Extraction of Input Features’’ section is
used as the feature type, compared with cases
where only Euler angles are used. However, note
that the improvement in accuracy is significantly

higher in the case of XGBoost (improvement in R2

from 0.669 to 0.88), compared with the relatively
marginal improvement when CNN is selected as the

ML algorithm (improvement in R2 from 0.844 to
0.891). While this observation supports our initial
hypothesis that the encoded descriptor vector xi can
serve adequately as a local reduced-order represen-
tation of the microstructural and micromechanical
features, it also indicates that, in comparison with
the XGBoost model, the CNN gains less relative
benefit from having access to the high-fidelity,
finite-element-based inputs than simply having
access to the crystal orientations at each point in
the discretized domain. One possible reason for this
is that the CNN’s ability to account for the spatial
arrangement of crystal orientations allows it to
learn the relevant relationships that would other-
wise be learned from the finite-element results. For
a non-spatially-aware ML model, such as XGBoost,
it is imperative that the training dataset accounts,
a priori, for the spatial relationships of crystal
orientations, whereas this is not necessarily
required for the CNN model. In the future, consid-
ering alternative features that represent crystal
orientations more uniquely than Euler angles (see
work by Mangal and Holm25) could help to gener-
alize the CNN’s predictive capability across
microstructural datasets.

In addition to the quantitative error measures
provided in Table II, Fig. 6 provides a visualization
of the crack surfaces predicted using the differentML
models with different input feature types under the

translational prediction strategy. Figure 6c and f
correspond to the predictions made using the CNN
(withRBF) andXGBoost, respectively, bothusing the

Table II. Prediction results of crack surface elevation for different combinations of ML model and input
feature type

Model Feature type R2 RMSE (lm) % Increase in R2

Naive approach N/A 0.788 14.17 –
CNN (with RBF) Descriptor vector, xi 0.891 10.16 +13.1
CNN (with RBF) Euler angles 0.844 12.16 +7.1
CNN (without RBF) Descriptor vector, xi 0.832 12.60 +5.73
XGBoost Descriptor vector, xi 0.888 10.31 +12.6
XGBoost Euler angles 0.669 17.69 �15.2

Fig. 6. 3D crack surface obtained using the translational
parameterization strategy for predicting crack path: (a) actual crack
surface, (b) naive prediction, (c) CNN prediction using proposed
descriptor vector (xi) and RBF smoothing, (d) CNN prediction using
Euler angles and RBF smoothing, (e) CNN prediction using
proposed descriptor vector (xi) and without RBF smoothing, (f)
XGBoost prediction using proposed descriptor vector (xi), and (g)
XGBoost prediction using Euler angles.
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descriptor vector xi. These two predictions corre-
spond to a 13.1% and 12.6% improvement, respec-

tively, in R2 compared with the naive prediction,
representing the greatest relative improvements
among all of the approaches considered. Interest-
ingly, Fig. 6g shows that, when XGBoost is usedwith
Euler angles for training and prediction, highly
anomalous behavior is predicted in the crack surface.
While the resulting crack surface looks, qualita-
tively, very realistic, it in fact has the lowest perfor-

mance (a 15.2% relative reduction in R2 compared
with simply taking the naive approach to predict the
crack surface).

The cumulative uncertainties associated with the
crack path predictions using the translational
parameterization strategy are shown in Fig. 7. In
Fig. 7, three arbitrary sections (AA¢, BB¢, and CC¢)
are shown to demonstrate the actual versus pre-
dicted crack paths along the nominal crack growth
direction. The predictions correspond to the CNN
model, trained with the descriptor vector xi (with-
out RBF smoothing, to isolate the uncertainty
associated with the CNN model). For each section,
the entire crack path is shown, including the portion
used for training. The portion used for blind pre-
diction by the CNN model is magnified, and the

predicted crack path is colored by the cumulative
uncertainty associated with the CNN model’s pre-
diction. Note that the cumulative uncertainty in the
x-direction is computed using the pointwise uncer-
tainty that is associated with only the CNN model
and does not account for the uncertainties in inputs
or in modeling choices made prior to the application
of the CNN. While the CNN predictions generally
capture the trends of the crack path, there are
obvious deviations between the predicted and actual
crack paths in certain regions. The uncertainty
values, however, do not track directly with these
deviations, since uncertainty in the model predic-
tions is independent of the known crack surface.
Generally, the CNN model uncertainty is higher in
regions where the model predicts a steep change in
the z-offset value. This is visualized in Fig. 8, which
shows two maps from a top-down view of the
prediction region. One map shows the pointwise
(noncumulative) uncertainty, while the other shows
the corresponding prediction of the z-offset by the
CNN model. Visually, there is a clear correspon-
dence between the regions where a steep change in
crack path is predicted (either positive or negative)
and where the model estimates a relatively large
uncertainty value. By presenting the model with

Fig. 7. Comparison of measured versus CNN-predicted crack path along with cumulative uncertainty for the translational parameterization
strategy (crack path predicted along the x direction): (a) location of three arbitrary reference sections (AA¢, BB¢, and CC¢) depicted on a rendering
of the actual crack surface; entire crack path along (b) AA¢, (c) BB¢, and (d) CC¢, with a magnified view of the region containing the prediction. The
predicted path is colored based on the cumulative uncertainty associated with the CNN model. For interpretation of color, please see online
version.
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more training data that include instances of steep
elevation changes, the uncertainty in such predic-
tions is expected to decrease.

TheMLalgorithms are now compared for the radial
prediction strategy, focusing on the CNN and
XGBoost models with the descriptor vector, xi, used
as input. Table III presents the accuracies of the ML
algorithms corresponding to the radial prediction
strategy, which is more likely to resemble crack front
profiles than the translational strategy. Figure 9a
presents the actual crack surface, with the boundary
indicating the split between the training and test
regions. Note that the outer profile of the predicted
region is not perfectly semicircular. This is because
thepredictionswere truncatedat the lastknowncrack
front profile from experiment.31 The comparison in

Table III shows that, for the radial prediction strat-
egy, CNN performs marginally better than XGBoost.
Inspection of Fig. 9b, c and comparison with 9a also
reveals that CNN performs noticeably better than
XGBoost in regions where the crack surface elevation
is abnormally high (i.e., z-elevation� 340 lm). Hence,

note that, while global measures such as R2 and
RMSEprovide valuable, quantitative, information for
an aggregated measure of accuracy of a given ML
model, these measures are homogenized over the
entire crack surface domain and do not necessarily
convey information about howML algorithms predict
the crack surface in these anomalous, local regions. A
qualitative comparison of the ML-predicted crack
surface with the actual crack surface—particularly
in such anomalous regions—can, therefore, provide
additional insight into the performance of the ML
model in predicting the crack path.

As stated in ‘‘General Approach to Predict Crack
Path’’ section, the size of the training data corre-
sponding to the radial prediction strategy is less
than 25% of that corresponding to the translational
case, so it is possible that the CNN is able to
generalize comparatively better than XGBoost
when fewer training data are available. One poten-
tial reason for the improved generalizability of the

Fig. 8. Top-down view of prediction region for the translational parameterization strategy (crack growth is nominally in the x direction). Map of
pointwise (noncumulative) uncertainties associated with the CNN predictions of z-offset (Dz) along with a map of corresponding Dz values
predicted by the CNN (trained with descriptor vector xi and no RBF smoothing). The y-axis scale is shown in lm.

Table III. Crack surface height prediction results
for different ML models using the proposed
descriptor vector (radial prediction strategy)

Model Feature type R2 RMSE (lm )

CNN Descriptor vector, xi 0.842 8.410
XGBoost Descriptor vector, xi 0.784 9.344
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CNN could be due to its ability to account for the
spatial distribution of descriptors, as discussed in
‘‘Convolutional Neural Network Model to Predict
Crack Surface’’ section—for which XGBoost does not
inherently account. In the context of a regression
problem, XGBoost, which is a decision tree-based
algorithm, constructs a piecewise-constant model
with each leaf fit to a single value during training.
When the size of the training data is comparatively
smaller, it is possible that the leaf values are fit to a
discrete value (corresponding to a z-offset) that is
not sufficiently resolved.

Figure 9d shows the cumulative uncertainty
maps corresponding to the predictions presented
in Fig. 9b using the method presented in ‘‘Comput-
ing Model Uncertainty Associated with CNN Pre-
dictions’’ section. The figure shows that the
uncertainties in CNN predictions are comparatively
high in regions where the z-elevations are high,
which could be due to the relative lack of data points
with high z-elevations in the training region, as
mentioned previously.

The implementation of the ML framework pre-
sented here is subject to several limitations. One of
the limitations of the presented work is that only
one set of experimental data of the crack surface,
along with the corresponding raw microstructural
and micromechanical features from the uncracked

volume, is available to train the ML models. While
the current crack surface does exhibit anomalous
regions in crack path deviation, the same frame-
work is anticipated to be applicable to (and perhaps
even more useful for) more tortuous crack surfaces.
In that regard, there is still a need to investigate the
performance of the proposed ML framework on
similar high-resolution datasets beyond the one
presented here. The proposed framework also does
not explicitly handle crack initiation, but instead
predicts the crack surface path once the initiation
site is known. Finally, as mentioned at the end of
‘‘Prior Work by the Authors’’ section, one could view
the lack of an explicit discontinuity in the training
data as a limitation of the framework. However, the
hypothesis explored here is that the micromechan-
ical fields in the uncracked microstructure encode
(within some spatial range of the initiation site) the
path that a crack will eventually take. It is expected
that, beyond this finite range, the fields will hold
less predictive information, at which point an actual
crack surface might need to be modeled. In fact, it is
anticipated that a hybrid of the ML framework
could be integrated with a computationally expen-
sive, high-fidelity model of an actual evolving
discontinuity to help advance the crack in a more
computationally efficient manner. This is an area
for future investigation.

Fig. 9. 3D crack surface obtained using the radial parameterization strategy for predicting crack path: (a) actual crack surface, (b) CNN prediction
using proposed descriptor vector (xi) and RBF smoothing, (c) XGBoost prediction using proposed descriptor vector (xi), and (d) cumulative
uncertainty associated with CNN predictions. Each surface has been cropped to the shape of the final crack-front profile measured in experiment
presented in Ref. 31.
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The proposed framework for predicting crack
paths could prove useful in various materials
science applications. For example, the same method
for predicting the crack surface elevation could be
implemented for predicting the local crack growth
rate, which could lead to improved structural-prog-
nosis capabilities. In addition to structural progno-
sis, the ML framework for predicting crack paths
could also be applied in materials design applica-
tions. For example, rapid predictions of crack paths
could be made for various microstructural instanti-
ations under a given set of boundary conditions to
identify or downselect optimal microstructural
arrangements for controlled crack propagation.

In summary, the proposed framework presents an
approach by which relevant features, i.e.,
microstructural features and simulated (computed)
micromechanical fields under cyclic loading using
the uncracked material, can be used to predict the
evolution of a 3D crack path in a polycrystalline
material. The promising predictive capability of the
ML framework indicates that one can potentially
predict the evolution of the crack surface (with some
prior knowledge of crack initiation), without model-
ing the explicit discontinuity inside the high-fidelity
model, and encourages future research to poten-
tially address the existing limitations mentioned
above. Based on the presented work, the scope for
future research includes, but is not limited to: (i)
development of new benchmark datasets for inves-
tigating the performance of the proposed ML frame-
work (or that of any other predictive models); (ii)
analysis of the CNN model by adapting/modifying
existing methods for model interpretation of deep
neural networks, with the aim of gaining insight
into the factors and mechanisms that govern small
crack growth; and (iii) development of methodolo-
gies that allow coupling/information flow between
the CNN model and existing techniques for compu-
tational fracture mechanics.

CONCLUSION

A methodology is presented to leverage
microstructural and micromechanical data from an
uncracked polycrystal to train a machine learning
(ML) model to predict a 3D fatigue crack path
(assuming some prior knowledge of crack initiation).
The framework presented includes a data parame-
terization strategy, ML model setup, uncertainty
quantification associated with ML model predic-
tions, and ML model assessment. The data used as a
proof of concept are derived from previous experi-
mental measurements and high-fidelity, crystal-
plasticity modeling of an Al-Mg-Si alloy. The high-
dimensional data are reduced to a low-dimensional,
high-value representation and subsequently passed
to a convolutional neural network (CNN). A portion
of the crack surface is used for training, while the
remaining portion is predicted using the ML model.

A number of comparisons are made regarding the
prediction performance, including the effect of using
a radial basis function (RBF) to ensure spatial
continuity of the independent predictions of crack-
surface elevation and the effect of using only Euler
angles as the input feature rather than the low-
dimensional feature vector that includes microme-
chanical information. The predictions from the CNN
model are also compared with predictions from
XGBoost, a scalable tree-boosting algorithm that
has recently been used in materials science-related
applications. The following key conclusions can be
drawn from this analysis:

– The proposed descriptor vector, which is used as
a reduced-order representation of local microme-
chanical and microstructural features, performs
better (in terms of R2 and RMSE) than Euler
angles in predicting the 3D crack surface when
used as the feature set in a given ML algorithm.
However, the improvement in accuracy is only
significant for the XGBoost algorithm. In the
case of CNN, the relative advantage in using the
descriptor vector is marginal.

– In the absence of micromechanical fields, i.e.,
with only crystal orientations as inputs, the
CNN performs fairly well (R2 ¼ 0:844Þ in pre-
dicting the crack path. A likely reason for this is
that the CNN’s ability to account for the spatial
arrangement of crystal orientations allows it to
learn the relevant relationships that would
otherwise be learned from finite-element simu-
lations.

– The CNN model also allows for computation of
model uncertainties associated with its predic-
tions by using the dropout operation, which can
be used to compute (and visualize) the uncer-
tainty maps corresponding to the predicted crack
surface.

Once trained, the ML model could offer a powerful
approach to predicting, relatively rapidly, the
expected crack evolution through an otherwise
uncracked microstructure (within some limited
domain). More experimental observations would
enhance the training data and facilitate model
generalization.
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