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Abstract

Motivation: It has been shown that microRNAs (miRNAs) play key roles in variety of biological

processes associated with human diseases. In Consideration of the cost and complexity of bio-

logical experiments, computational methods for predicting potential associations between

miRNAs and diseases would be an effective complement.

Results: This paper presents a novel model of Inductive Matrix Completion for MiRNA–Disease

Association prediction (IMCMDA). The integrated miRNA similarity and disease similarity are cal-

culated based on miRNA functional similarity, disease semantic similarity and Gaussian interaction

profile kernel similarity. The main idea is to complete the missing miRNA–disease association

based on the known associations and the integrated miRNA similarity and disease similarity.

IMCMDA achieves AUC of 0.8034 based on leave-one-out-cross-validation and improved previous

models. In addition, IMCMDA was applied to five common human diseases in three types of case

studies. In the first type, respectively, 42, 44, 45 out of top 50 predicted miRNAs of Colon

Neoplasms, Kidney Neoplasms, Lymphoma were confirmed by experimental reports. In the se-

cond type of case study for new diseases without any known miRNAs, we chose Breast Neoplasms

as the test example by hiding the association information between the miRNAs and Breast

Neoplasms. As a result, 50 out of top 50 predicted Breast Neoplasms-related miRNAs are verified.

In the third type of case study, IMCMDA was tested on HMDD V1.0 to assess the robustness of

IMCMDA, 49 out of top 50 predicted Esophageal Neoplasms-related miRNAs are verified.

Availability and implementation: The code and dataset of IMCMDA are freely available at https://

github.com/IMCMDAsourcecode/IMCMDA.

Contact: xingchen@amss.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are a category of small non-coding RNAs

(�22 nt) which could function in the post-transcriptional regulation

of gene expression through binding to the 30-UTRs of the target

mRNAs (Bartel, 2004; Meister and Tuschl, 2004; Victor, 2001,

2004). The first miRNA lin-4 was found in the early 1990s in

Caenorhabditis elegans by Lee et al. (1993), since then, thousands of

currently annotated miRNAs have been discovered in variety of spe-

cies from plants, animals to viruses (Jopling et al., 2005; Kozomara

and Griffiths-Jones, 2011). The latest version of miRBase collects

28 645 entries among 223 species (1881 human miRNAs)

(Kozomara and Griffiths-Jones, 2014). Furthermore, more and

more studies have pointed out that miRNAs could influence mul-

tiple stages of the biological processes (Lee et al., 1993), including

early cell growth, proliferation (Cheng, 2005), differentiation

(Miska, 2005), development (Karp and Ambros, 2005), aging

(Bartel, 2009), apoptosis, viral infection (Miska, 2005) and so on. In

addition, miRNAs are suitable to be drug targets as they have
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several attractive features, such as specific secondary structures and

conserved sequences (Chen et al., 2017a,d). Therefore, it is obvious

that miRNAs have critical impact on the human diseases. For ex-

ample, Mayr et al. (2007) demonstrated that a chromosomal trans-

location at 12q5 influences the expression of let-7 and consequently

curtails repress of the oncogene High Mobility Group A2 (Hmga2).

Another example is that the expression of let-7b was proved not

only to be related to luminal tumors but also to show an independ-

ent crucial positive prognostic value according to experiments

(Quesne et al., 2012). Zhang et al. (2011) pointed that hsa-miR-31

could be chosen as a potential biomarker of Esophageal Squamous

Cell Carcinoma (ESCC) diagnosis and prevention. Hsa-miR-31 was

indicated to be up-regulated in most of the ESCC tissues and the

vitro experiments showed that miR-31 stimulated the ESCC colony

formation, migration and invasion. Besides, the overexpression of

miR-124 can effectively inhibit the invasion ability of glioma cell

in vitro (Xia et al., 2012). Identification of disease-related miRNAs

would contribute to the research of disease pathological mechanisms

and identification of disease biomarkers (Chen et al., 2017e; Goh

et al., 2016). Computational models are developed to search the

most potential disease-related miRNAs for further biological experi-

ments, decrease the time and money for miRNA–disease association

identification, and therefore reduce the difficult of disease bio-

markers detection (Calin and Croce, 2006).

Over the past few year, a plenty of models have been developed

for miRNA–disease associations prediction (Xuan et al., 2015; You

et al., 2017; Zeng et al., 2016; Zou et al., 2016). For example, Jiang

et al. (2010) proposed a novel computational method to predict po-

tential miRNA–disease associations by applying a scoring system to

the miRNA functional similarity network and human phenome

microRNAome network to assess the probability that a miRNA

may be involved in a specific disease. However, this model did

not achieve a satisfactory prediction accuracy, because only the in-

formation of miRNA neighbors has been adopted. Shi et al. (2013)

proposed a computational model by considering the functional asso-

ciations between miRNAs targets and diseases genes in protein–

protein interaction network. The miRNA targets and disease genes

were used as seeds for implementing random walk on the protein–

protein interaction network to compute the P-value and assess the

potential association between the miRNA and disease. If the P-value

exceeded the threshold, the corresponding miRNA and disease were

considered to have a link. Pasquier and Gardès (2016) presented a

model of MiRAI to identify potential miRNA–disease associations.

For each miRNA, MiRAI exploited five critical information: its

known related diseases, its target mRNAs, its family members, the

distance to its neighbors, and the abstracts of related studies in text

format to construct a high-dimensional vector space. Furthermore,

diseases and miRNA were represented by vector in the vector space.

After dimensionality reduction, MiRAI can obtain a ranked list of

the miRNAs that are related to disease d by computing their dis-

tance to the vector of disease d. The limitation of MiRAI is that

MiRAI cannot be applied for a sparse database. Mork et al. (2014)

devised a novel model of miRNA–Protein–Disease (miRPD) to un-

cover potential miRNA–disease associations in consideration of not

only the experimental and computationally predicted miRNA–

protein associations but also the text mined protein–disease associa-

tions. However, these methods could not provide satisfactory

prediction results because of the high rate of false positive and false

negative samples in the miRNA–target interactions. The first global

network similarity-based model of Random Walk with Restart for

MiRNA–Disease Association (RWRMDA) was proposed by Chen

et al. (2012). First, RWRMDA assigned an initial probability for

each miRNA in the miRNA functional similarity network (MFSN).

Then, a random walk algorithm was introduced to MFSN until the

probability of each miRNA get stable. The stable probability of

miRNA is used to assess the potential association between the

miRNA and given disease. RWRMDA has shown a superior per-

formance to previous local network-based methods. However,

RWRMDA is not suitable for those new diseases without any

known related miRNAs. Yu et al. (2017) has proposed a method by

modifying the existing maximizing information flow (Maxflow) to

infer novel miRNA–disease associations by exploiting multiple sour-

ces of information including the miRNA functional similarity net-

work, the disease semantic and phenotypic similarity network and

the miRNA–disease association network and combining them to

form a directed miRNAome-phenome network graph.

Xuan et al. (2013) developed a computational model of Human

Disease-related MiRNA Prediction (HDMP) by considering the k

most similar neighbors of each miRNA. The k nearest neighbors of

each miRNA and miRNA functional similarity were combined to

estimate more reliable relevance scores of the unlabeled miRNAs.

Besides, HDMP assigned higher weight to the miRNAs in the same

miRNA family or cluster. However, HDMP cannot be implemented

to infer the potential related miRNAs for those diseases with

few known related miRNAs or without any known related

miRNAs. Chen et al. (2017b) proposed a model of Ranking-based

K-Nearest Neighbors for miRNA–Disease Association prediction

(RKNNMDA) by searching the k-nearest-neighbors both for

miRNAs and diseases. After using the SVM ranking model to re-

rank these k-nearest-neighbors, they can obtain the final ranking of

all miRNA–disease pairs through weighted voting. Liu et al. (2016)

developed a model to predict miRNA–disease association by intro-

ducing random walk to the heterogeneous network which was con-

structed by multiple data sources (disease semantic similarity,

Disease functional similarity, Gene similarity, miRNA–target gene

associations, miRNA–lncRNA associations, lncRNA similarity).

Zeng et al. (2018) applied structural perturbation method (SPM) on

the miRNA–disease bilayer network to predict potential miRNA–

disease associations. Zou et al. (2015) introduced two computation-

al methods of KATZ and CATAPULT to make prediction for

miRNA–disease pairs based on social network analysis methods.

Chen et al. (2016a) released a new reliable model named Within and

Between Score for MiRNA–Disease Association prediction

(WBSMDA). The Within-Score was defined to capture the similar-

ities between disease-related miRNAs and the similarities between

miRNA-related diseases, and Between-Score was defined to capture

the similarities between disease-uncorrelated miRNAs and the

similarities between miRNA-uncorrelated diseases. Then WBSMDA

integrated the Within-Score and Between-Score to calculate the

miRNA–disease association prediction score. Recently, another

model Heterogeneous Graph Inference for MiRNA–Disease

Association prediction (HGIMDA) was proposed by Chen et al.

(2016b). In HGIMDA, the integrated similarity networks and the

known miRNA–disease association network were combined to gen-

erate a heterogeneous graph, in which an iterative equation was

used for the prediction for potential miRNA–disease associations.

HGIMDA has a superior performance to previous methods, but the

selection of the parameter is still not well solved.

Machine learning has been applied in extensive scientific fields,

and it is highly effective to solve most of the research problems

(Chen et al., 2016c, 2017c). For example, Xu et al. (2011) proposed

a computational method by integrating miRNA–target interactions

and expression levels of miRNAs and mRNAs. In addition, they

constructed a support vector machine (SVM) classifier based on
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feature vectors including four features (the number of dysregulated

target genes, the number of its coregulators, the proportion of pros-

tate cancer miRNAs in its coregulator set, the fraction of targets

which are coregulated by itself and other prostate cancer miRNAs).

However, it’s almost impossible to get the negative samples in this

filed. So negative sample sets were usually artificially constructed by

randomly pairing miRNAs and diseases and then removing the pairs

existed in the positive sample sets. Such negative samples are not

real negative samples, some of which may be positive samples which

are not experimentally validated, and therefore decreases the predic-

tion accuracy of this SVM-based model. Chen and Yan (2015) pre-

sented a semi-supervised learning-based model of Regularized Least

Squares for MiRNA–Disease Association (RLSMDA) based on

semi-supervised learning framework so that negative samples were

not required in this model. The drawback of RLSMDA is how to

choose the appropriate parameters and way to combine the classi-

fiers trained from the miRNA space and disease space. Chen et al.

(2015) also released a model of Restricted Boltzmann Machine for

Multiple types of MiRNA–Disease Association prediction

(RBMMMDA) which was based on Restricted Boltzmann Machine

(RBM). The RBMMMDA was not only a model that could uncover

novel miRNA–disease associations but also the first model which

could estimate the corresponding types of miRNA–disease associa-

tions. Li et al. (2017) released an effective computational model of

Matrix Completion for MiRNA–Disease Association prediction

(MCMDA). A matrix completion algorithm of high efficiency is

adopted in MCMDA, which updated the low-rank miRNA–disease

association matrix. But it cannot be applied to predicting the poten-

tial miRNAs associated with the new diseases without any known

related miRNAs and potential diseases associated with new

miRNAs without any known related diseases. The optimal parame-

ters of MCMDA is still hard to choose.

In this study, we proposed a novel computational model of

Inductive Matrix Completion for MiRNA–Disease Association pre-

diction (IMCMDA). This model exploited not only the known

miRNA–disease associations but also the integrated similarity for

miRNA and disease. To evaluate the effectiveness of IMCMDA,

Leave-one-out cross validation (LOOCV) was carried on the known

miRNA–disease association data downloaded from HMDD V2.0

(Li et al., 2014). Furthermore, three types of case studies were

carried on five high-risk human diseases. In the first type of case

study, three diseases (Colon Neoplasms, Kidney Neoplasms and

Lymphoma) were used to evaluate the prediction ability of imple-

menting IMCMDA on the data collected from HMDD V2.0. All the

candidate miRNAs of these three diseases were ranked according to

their prediction score, respectively. Then the top 50 predicted

miRNAs of these three diseases were examined in dbDEMC (Yang

et al., 2010) and miR2Disease (Jiang et al., 2009). As a result, 42,

44 and 45 out of the top 50 potential related miRNAs of Colon

Neoplasms, Kidney Neoplasms, Lymphoma were respectively con-

firmed by recent experimental discoveries. In the second case study,

Breast Neoplasms was selected to evaluate the performance of

IMCMDA for the new disease without any known related miRNAs.

Here, we artificially removed all the experimentally validated Breast

Neoplasms-related miRNAs so that Breast Neoplasms could be con-

sidered as a new disease. As a result, 50 out of top 50 predicted

Breast Neoplasms-related miRNAs were included in one of the three

databases HMDD V2.0, dbDEMC and miR2Disease. In the third

Case, Esophageal Neoplasms was chosen as the test example to

demonstrate the robustness of IMCMDA by testing the model on

the database HMDD V1.0. Finally, 49 out of the top 50 predicted

potential Esophageal Neoplasms-related miRNAs were included in

one of the three databases: dbDEMC, miR2Disease and

HMDD V2.0. In conclusion, the model of IMCMDA with a reliable

performance could be help for miRNA–disease association

prediction.

2 Materials and methods

2.1 Human miRNA–disease associations
The data of known human miRNA–disease associations, which we

used in this article were retrieved from the HMDD V2.0 database

(June, 2014). After sorting and standardizing the downloaded data,

we obtained 5430 experimentally verified human miRNA–disease

associations between 383 diseases and 495 miRNAs. An nd � nm

adjacency matrix A was defined as:

A d ið Þ;m jð Þð Þ¼1 diseased ið Þhas association with miRNAm jð Þ

A d ið Þ;m jð Þð Þ¼0 diseased ið Þhas no association with miRNAm jð Þ

(

(1)

2.2. miRNA functional similarity
The miRNA functional similarity was calculated based on a basic

assumption that functionally similar miRNAs tend to connect with

similar diseases, and vice versa (Goh et al., 2007; Lu et al., 2008).

Thanks to the excellent work of Wang et al. (2010), we can down-

load the miRNA functional similarity data from http://www.cuilab.

cn/files/images/cuilab/misim.zip. With these data, we constructed

anm� nmmatrix FS to represent the miRNA functional similarity.

The element FS(m(i), m(j)) denotes the functional similarity between

miRNA m(i) and m(j).

3 Methods

3.1 Disease semantic similarity model 1
A Directed Acyclic Graph (DAG) was constructed to describe a dis-

ease based on the MeSH descriptors downloaded from the National

Library of Medicine (Lipscomb, 2000). The DAG of disease D

included not only the ancestor nodes of D and D itself but also the

direct edges from parent nodes to child nodes.

The semantic score of disease D could be defined by the follow-

ing equation:

DV1 Dð Þ ¼
X

d2T Dð Þ
DD1 dð Þ (2)

where we defined the contribution score of disease d in DAG(D) to

the disease D by:

DD1 dð Þ ¼ 1 if d ¼ D

DD1 dð Þ ¼ maxfD �DD1 d0ð Þjd0 2 children of dg if d 6¼ D

(
(3)

Here, D is the semantic contribution factor. The contribution score

of disease is decreased as the distance between D and other diseases

increases.

Based on the assumption that two diseases with larger shared

area of their DAGs may have greater similarity score, the semantic

similarity score between disease d(i) and disease d(j) could be

defined by the following equation:

SS1 d ið Þ; d jð Þð Þ ¼
P

t2T d ið Þð Þ\T d jð Þð Þ Dd ið Þ1 tð Þ þDd jð Þ1 tð Þ
� �

DV1 d ið Þð Þ þDV1 d jð Þð Þ (4)
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3.2 Disease semantic similarity model 2
Supposing for two diseases in the same layer, if one disease appears

in less disease DAGs than the other disease, obviously we can con-

clude that the first disease would have a greater contribution to the

semantic value of disease D than the second disease. In conclusion,

different disease terms in the same layer of DAG(D) may have

the different contribution to the semantic value of disease D.

Considering about the above factor, we use a new model to describe

the contribution of a disease d in DAG(D) to the semantic value of

disease D:

DD2 dð Þ ¼ �log
the number of DAGs including d

the number of disease

� �
(5)

The semantic value of disease D is defined as follows:

DV2 Dð Þ ¼
X

d2T Dð Þ
DD2 dð Þ (6)

Based on the assumption that two diseases with larger shared area

of their DAGs may have higher similarity score, we defined the se-

mantic similarity score between disease d(i) and disease d(j) as

following:

SS2 d ið Þ; d jð Þð Þ ¼
P

t2T d ið Þð Þ\T d jð Þð Þ Dd ið Þ2 tð Þ þDd jð Þ2 tð Þ
� �

DV2 d ið Þð Þ þDV2 d jð Þð Þ (7)

3.3 Gaussian interaction profile kernel similarity for

diseases and miRNAs
Based on the basic assumption that similar diseases tend to be

associated with functionally similar miRNAs and vice versa

(Bandyopadhyay, 2010; Goh et al., 2007; Lu et al., 2008; Wang

et al., 2010), we calculated Gaussian interaction profile kernel simi-

larity to represent the miRNA similarity and disease similarity.

Firstly, we used vector IP(d(i)) to represent the interaction profile of

disease d(i) by observing whether there is known association be-

tween disease d(i) and each miRNA or not. Then, Gaussian inter-

action kernel similarity between disease d(i) and d(j) was calculated

as follows.

KD d ið Þ; d jð Þð Þ ¼ exp �cdkIP d ið Þð Þ � IP d jð Þð Þk2
� �

(8)

where, cd is used to control kernel bandwidth which is obtained by

normalizing a new bandwidth parameter c0d by the average number

of associations with miRNAs for all the diseases. cd is defined as

follows:

cd ¼ c0d=
1

nd

Xnd

i¼1

kIP d ið Þð Þk2
 !

(9)

Similarly, Gaussian interaction profile kernel similarity between

miRNA m(i) and m(j) is defined in a similar way:

KM m ið Þ;m jð Þð Þ ¼ exp �cmkIP m ið Þð Þ � IP m jð Þð Þk2
� �

(10)

cm ¼ c0m=
1

nm

Xnm

i¼1

kIP m ið Þð Þk2
 !

(11)

3.4 Integrated similarity for diseases and miRNAs
In fact, we could not get DAGs for all diseases. That is to say,

for the specific disease without DAG, we could not calculate the

semantic similarity score between the disease and other diseases.

Therefore, for those disease pairs with semantic similarity score, we

used the semantic similarity score to denote the disease similarity,

for the others, the Gaussian interaction profile kernel similarity

score was used to denote the disease similarity. The disease similar-

ity matrix between disease d(i) and disease d(j) is constructed as

follows:

Sd d ið Þ;d jð Þð Þ¼

SS1 d ið Þ;d jð Þð ÞþSS2 d ið Þ;d jð Þð Þ
2

d ið Þandd jð Þhas

semanticsimilarity

KD d ið Þ;d jð Þð Þ otherwise

8>>>>><
>>>>>:

(12)

Similarly, the new similarity matrix between miRNA m(i) and m(j)

is defined as follows:

Sm m ið Þ;m jð Þð Þ ¼

FS m ið Þ;m jð Þð Þ m ið Þ and m jð Þ has

functional similarity

KM m ið Þ;m jð Þð Þ otherwise

8>>>><
>>>>:

(13)

3.5 IMCMDA
In this paper, we presented a novel matrix completion-based model

named IMCMDA for miRNA–disease associations prediction. This

model of IMCMDA was implemented based on the known miRNA–

disease associations, disease semantic similarity, miRNA functional

similarity, Gaussian interaction profile kernel similarity for miRNAs

and diseases. The specific implementation process of IMCMDA is

shown in Figure 1.

After data collection and similarity calculation, we can

obtain the human miRNA–disease association matrix A 2 Rnd�nm,

disease similarity matrix Sd 2 Rnd�nd, miRNA similarity matrix

Sm 2 Rnm�nm. Obviously, adjacency matrix A is a very sparse matrix

(Matrix density is 0.028) because only 5430 experimentally verified

human miRNA–disease associations were collected between 383

Fig. 1. Flowchart of IMCMDA model to infer the potential miRNA–disease

associations

MiRNA–disease association prediction 4259

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/24/4256/5043011 by guest on 21 August 2022



diseases and 495 miRNAs. Our goal is to complete the missing

entries of A. Here, we chose disease similarity matrix Sd 2 Rnd�nd

and miRNA similarity matrix Sm 2 Rnm�nm as the feature matrix of

nd diseases and nm miRNAs, respectively, Sd ið Þ denote the feature

vector of disease d(i), and Sm jð Þ denote the feature vector of miRNA

m(j). The main idea of IMC is to recover a matrix Z 2 Rnd�nm using

the known entries from the miRNA–disease associations matrix

A, the form of Z is Z ¼WHT , where W 2 Rnd�r and H 2 Rnm�r, r

is the desired rank which is equal to min(rank(W), rank(H)). The

parameter r will affect the convergence speed of the inductive matrix

completion algorithm, but the impact on the result is very small.

The element Score d ið Þ;m jð Þð Þ is calculated to denote the predicted

association possibility between disease d(i) and miRNA m(j). The

matrices W and H can be obtained as the solutions to the following

optimization problem:

min
W;H

u ¼ 1

2

����A� SdWHTST
m

����
2

F

þ k1

2

����W
����

2

F

þ k2

2

����H
����

2

F

such that; W � 0;H � 0:

(14)

where k1; k2 is the regularization parameters and usually we set

k1 ¼ k2 ¼ 1k•kF is the Frobenius norm of matrix. 1
2 kA� SdWHTST

mk
2
F

is the least square cost function, k1

2 kWk
2
F and k2

2 kHk
2
F are set to over-

come over-fitting problem, we can solved the minimum problem with a

method proposed by Jain and Dhillon (2013). Firstly, we set W and H

as random dense matrix, then we updated W and H using an iterative

equation, the iterative process should stop when the convergence criter-

ion is met, usually we set the convergence criterion as 10�6. The

detail algorithm steps to solve the minimum problem is given in

Figure 1 with an iterative equation. We can use W and H to calculate

the prediction score between disease d(i) and miRNA m(j) by the fol-

lowing equation

Score d ið Þ;m jð Þð Þ ¼ Sd ið ÞWHTST
m jð Þ (15)

If we have a new disease newdðiÞ without any known related

miRNAs, the entry Score newd ið Þ; jð Þ still can be computed for all

miRNAs as long as we have the feature vector of disease newd ið Þ:

4 Results

4.1 Performance evaluation
To evaluate the prediction accuracy of IMCMDA, we implemented

LOOCV frameworks on the known miRNA–disease associations in

the following way: For the disease d(i), each known miRNA–disease

pair (take miRNA–disease pair (m(j)-d(i)) as an example) was

selected in turn as test sample, while all the other known miRNA–

disease pairs were considered as training samples. Firstly, we artifi-

cially changed the known miRNA–disease pair (m(j)-d(i)) into an

unverified miRNA–disease pair. The unverified miRNAs-disease

pairs of disease d(i) were considered as candidate samples, and

then we ranked the predicted score of the test miRNA–disease pair

(m(j)-d(i)) with the candidate samples. If the rank of the test

miRNA–disease pair (m(j)-d(i)) exceeded the given threshold, the

model could be considered to be successful in predicting the

miRNA–disease pair (m(j)-d(i)). We have compared our method

with RLSMDA, HDMP, RWRMDA, MCMDA, MiRAI and

Maxflow based on the framework of LOOCV. The known miRNA–

disease association dataset used for this comparison was the same,

i.e. the 5430 known associations between 495 miRNAs and 383

diseases in the HMDD v2.0 database. As for other input datasets

required by these six methods, we either downloaded the

corresponding data from the supplementary files in the methods’ lit-

eratures or collected the data from the sources specified in the

literatures.

To validate the performance of our method, we compared it

with a number of baseline methods. The details of baselines were

provided as follows: Maxflow (Yu et al., 2017): exploited multiple

sources of information including the miRNA functional similarity

network, the disease semantic and phenotypic similarity network

and the miRNA–disease association network. Subsequently,

these three networks were further combined to form a directed

miRNAome-phenome network graph (the parameters we used for

comparison are a ¼ 0.1, b ¼ 0.6, c ¼ 100, g ¼ 6, r ¼ 10). HDMP

(Xuan et al., 2013): The k nearest neighbors of each miRNA and

miRNA functional similarity were combined to estimate more reli-

able relevance scores of the unlabeled miRNAs. Besides, HDMP

assigned different weight to the miRNAs based on miRNA family or

cluster (the parameters we used for comparison are a ¼ 4, b ¼ 4,

k¼20). MCMDA (Li et al., 2017): MCMDA introduced the matrix

completion algorithm on the known miRNA–disease association

matrix A to predict potential miRNA–disease associations (the

parameters we used for comparison are e ¼ 10�4, max_iter¼500).

RLSMDA (Chen and Yan, 2015): the method has combined two

classifiers trained from the miRNA space and the disease space re-

spectively based on the framework of regularized least squares algo-

rithm (the parameters we used for comparison are gM ¼ 1, gD ¼ 1,

x ¼ 0:9). RWRMDA (Chen et al., 2012): Chen has introduced ran-

dom walk on the miRNA functional similarity network (MFSN) to

predict potential miRNAs for disease (the parameters we used for

comparison are r¼0.2, threshold ¼ 10�6). MiRAI (Pasquier and

Gardès, 2016): This model exploited multiple sources of informa-

tion including miRNA-neighbor associations MN, miRNA–target

associations MT, miRNA–word associations MW, miRNA–family

associations matrix MF, the miRNA–disease association MD (the

parameter we used for comparison is r¼400).

A Receiver Operating Characteristics (ROC) curve is plotted by

using the result of LOOCV. The X-axis of the ROC graph is the true

positive rate (TPR) while the Y-axis is the false positive rate (FPR).

The ROC curve based on LOOCV have been plotted in Figure 2.

From the ROC curve, Area under curve (AUC) could be calculated

as an evaluation metric for the model. As a result, IMCMDA,

MCMDA, RWRMDA, Maxflow, HDMP, RLSMDA and MiRAI

had obtained AUCs of 0.8034, 0.7718, 0.7891, 0.7774, 0.7702,

0.6953 and 0.6229 in the LOOCV, respectively. The core of MiRAI

is collaborative filtering so that this method cannot be well applied

for a sparse database, our training database is very sparse, that’s

why MiRAI did not have satisfying AUCs as shown in their studies

(Pasquier and Gardès, 2016). Therefore, in comparison with the pre-

vious models, we can intuitively observe the improvement in predict-

ing the miRNA–disease associations with IMCMDA.

Furthermore, Precision-Recall (PR) curve is plotted by using the re-

sult of LOOCV in Figure 3. As showed in the PR curve, obviously, our

method outperformed MCMDA, Maxflow, RLSMDA, RWRMDA

and MiRAI, but underperformed HDMP. However, a great drawback

of model HDMP is that HDMP cannot be used to predict miRNAs for

new diseases, conversely, IMCMDA is performed well in this context.

Especially, the differences of inference capability of these algo-

rithms were further analyzed by paired t-test. The paired t-test was

performed on the result of LOOCV. We can observe the significance

difference between IMCMDA and previous models (MCMDA,

HDMP, MiRAI, RLSMDA, RWRMDA, Maxflow), with the

P-value of 2.14E-15, 5.67E-27, 2.20E-233, 2.07E-195, 9.01E-10,

9.85E-19, respectively.
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4.2 Performance of models on new disease
An important criterion for evaluating the usefulness of the model is

whether the model can be used to predict potential related miRNA

for new disease. We adopted the cumulative distribution of the

ranks as a measure for comparing the performances of different

models for predicting potential related miRNA for new disease.

Several articles (Fantine and Jean-Philippe, 2011; Natarajan and

Dhillon, 2014; Singh-Blom et al., 2013) have adopted this per-

formance measure for evaluation. The motivation for using this

performance measure is to distinguish methods based on the prob-

ability of recovering a true association in the top-r predictions

for a new disease. Step 1, we chose a test disease like Breast

Neoplasms in the second type of case study by setting all the

known associations between miRNAs and test disease as unknown

ones. Step 2, we implemented different models on this test set to

obtain the ranks of miRNAs which were actually related to the test

disease. Step 3, we chose all 383 diseases as test diseases to repeat

steps 1 and 2 in turn. After that, we can plot the cumulative distri-

bution function (CDF) in Figure 4, x-axis denotes the top-r pre-

dicted miRNAs, y-axis denotes the probability of recovering a true

association in the top-r predictions. Since the models of MCMDA,

RWRMDA, HDMP cannot be applied for new diseases, we com-

pared the rest three models of IMCMDA, MiRAI and RLSMDA.

We can see a significant increase in the performance of IMCMDA

around top 50–100 predictions in Figure 4 with almost 60%

chance to recovering a true association in the top-100 predictions.

We can conclude that IMCMDA is more effective for predicting

miRNAs for new disease.

4.3 Permutation test to assess contributions of different

data sources
We have performed permutation test to assess the contributions of

miRNA and disease similarity matrix and miRNA–disease associ-

ation matrix for the improvement of performance, respectively. The

main idea of permutation test is to randomize one of the three ma-

trix and keep the other two matrices unchanged based on the

LOOCV framework. For each type of data matrix, we will random-

ize it 50 times and calculate the median of the resulting AUCs for

permutation tests. If a particular data type contributes more for the

performance of model, then the result of permutation test based on

this data will be more similar to a random prediction. As shown in

Table 1, the average AUC of our model based on randomized

miRNA–disease association matrix is much lower than another two

types permutation, which indicates that the contribution of

miRNA–disease association is the most important. Furthermore, we

can conclude that the miRNA similarity matrix is more important

than disease similarity matrix for the improvement of performance.

4.4 Case studies
Three different types of case studies were implemented to demon-

strate the accuracy of IMCMDA for novel miRNA–disease associ-

ation prediction. All of them had shown excellent results. The first

case study included three common human diseases (Colon

Neoplasms, Kidney Neoplasms and Lymphoma). The predicted

miRNAs of those diseases were examined according to two data-

bases: dbDEMC and miR2Disease. Through the case study, we can

further validate the effectiveness of the IMCMDA. And then we

observed the number of the verified miRNAs in the top 10 and top

50 ones which are related to the three diseases respectively accord-

ing to the two databases.

Colon Neoplasms is a most common malignancy in the gastro-

intestinal tract (Jemal et al., 2011; Ogata-Kawata et al., 2014). In

2018, there are 97 220 estimated new cases and 50 630 estimated

deaths from Colon Neoplasms in U.S. (Siegel et al., 2018). Several

Colon Neoplasms-related miRNAs have been confirmed by recent

biological experiments. For example, the expression level of miR-

106a in Colon Neoplasms line is lower than in normal human colon

epithelia (Dı́az et al., 2008). It also has been demonstrated that mir-

145 could down-regulates the IRS-1 protein in Colon Neoplasms

cells and thereby inhibit the growth of Colon Neoplasms cells

through targeting the IRS-1 30-untranslated region (UTR) (Shi et al.,

2007). In this case study, IMCMDA was implemented to predict

Fig. 2. Performance comparisons between IMCMDA and baseline methods

(RLSMDA, HDMP, RWRMDA, MCMDA, MiRAI, Maxflow) in terms of AUC

based on LOOCV. As a result, IMCMDA achieved an AUC of 0.8034, outper-

forming the previous models

Fig. 3. Performance comparisons between IMCMDA and baseline models

(RLSMDA, HDMP, RWRMDA, MCMDA, MiRAI, Maxflow) in terms of PR curve.

Fig. 4. Performance comparisons between IMCMDA and baseline models

(RLSMDA, MiRAI, Maxflow) in predicting potential miRNAs for new diseases
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potential Colon Neoplasms-related miRNAs. As a result, 10 out of

the top 10 and 42 out of the top 50 predicted Colon Neoplasms-

related miRNAs were included by either dbDEMC or miR2Disease

(see Table 2).

Kidney Neoplasms is one of the common human genitourinary

malignancies which accounts for 3% of adult malignancies, with

more than 250 000 new cases of Kidney Neoplasms diagnosed

every year (Jemal et al., 2006; Seigel et al., 2012). Some

miRNAs could be help for the treatment of Kidney Neoplasms. For

example, the expression of miR-141 is significantly lower in

Kidney Neoplasms cells when compared to normal kidney cells

(Senanayake et al., 2012). Furthermore, Proline oxidase (POX) is

known as a tumor suppressor that can effectively inhibit cell prolif-

eration and induce cell apoptosis and recent study shows that the

expression of miR-23b and POX protein is negatively correlated.

So down-regulation of miR-23b could be a considerable way to

inhibit Kidney Neoplasms cell growth (Liu et al., 2010). We intro-

duced IMCMDA to uncover the potential Kidney Neoplasm-

related miRNAs. As a result, 9 out of the top 10 candidates and

44 out of the top 50 candidates of Kidney Neoplasms-related

miRNAs were confirmed by either dbDEMC or miR2Disease (see

Supplementary Table S1).

Lymphoma is a malignant tumor originating in the lymphoid

hematopoietic system (Wan and Tian, 2014). Lymphoma is divided

into non-Hodgkin’s Lymphoma (NHL) and Hodgkin’s lymphoma

(HL) according to tumor cells (Harrison, 2013). About 90 percent

of people with Lymphoma would be non-Hodgkin’s Lymphoma

(McDuffie et al., 2009). Researchers have pointed that the deletion

or downregulation of mir-15a results in increased expression of the

antiapoptotic B cell Lymphoma 2 (BCL2), and overexpression of

BCL2 protein has been reported in many cases of Lymphoma

(Cimmino et al., 2005). Lymphoma was chosen as the third case

studies. As a result, 9 out of the top 10 candidates and 45 out of the

top 50 predicted Lymphoma-related miRNAs were included by ei-

ther dbDEMC or miR2Disease (see Supplementary Table S2).

In the second type of case study, we want to evaluate the per-

formance when IMCMDA was implemented to the new disease

without any known related miRNAs. Breast Neoplasms was used as

an example in our experiment. Therefore, we hid the association in-

formation between the miRNAs and the Breast Neoplasms by set-

ting all the known associations between them as unknown ones.

Then, we implemented IMCMDA to obtain the ranking list of the

miRNA-Breast Neoplasms association prediction scores. We show

the result of Breast Neoplasms in Table 3. We can conclude that 10

out of the top 10 and 50 out of the top 50 predicted miRNAs were

confirmed by at least one of the three databases HMDD V2.0,

dbDEMC and miR2Disease. For example, hsa-mir-21 was ranked

first and recent research has confirmed that hsa-mir-21 is strongly

expressed in numerous cancers like Breast Neoplasms, Glioblastoma

and Pancreatic Neoplasms (Wiemer, 2007).

In the third type of case study, we chose Esophageal Neoplasms

as the test disease to validate the robustness of IMCMDA based on

the database HMDD V1.0. There are respectively 10 and 49 out

of the top 10 and 50 predicted Esophageal Neoplasms-related

miRNAs included by dbDEMC, miR2Disease and HMDD V2.0

Table 1. Permutation test was implemented 50 times to assess the

contributions of miRNA and disease similarity matrix and miRNA–

disease association matrix, respectively

Randomized Data sources Average value of AUCs

miRNA–disease association matrix 0.4988 6 0.005639

miRNA similarity matrix 0.6497 6 0.009217

Disease similarity matrix 0.7985 6 0.000291

Note: The corresponding average values are shown in the second columns.

Table 2. Prediction results of the top 50 predicted Conlon Neoplasms-related miRNAs based on known associations in HMDD V2.0

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdeMC; miR2Disease hsa-mir-16 dbDEMC

hsa-mir-155 dbdeMC; miR2Disease hsa-mir-127 dbdeMC; miR2Disease

hsa-mir-19b dbdeMC; miR2Disease hsa-mir-29b dbdeMC; miR2Disease

hsa-mir-18a dbdeMC; miR2Disease hsa-mir-146b unconfirmed

hsa-mir-20a dbdeMC; miR2Disease hsa-mir-101 unconfirmed

hsa-let-7a dbdeMC; miR2Disease hsa-mir-92b unconfirmed

hsa-mir-19a dbdeMC; miR2Disease hsa-mir-9 dbdeMC; miR2Disease

hsa-mir-143 dbdeMC; miR2Disease hsa-mir-214 dbDEMC

hsa-mir-125b dbDEMC hsa-mir-1 dbdeMC; miR2Disease

hsa-mir-34a dbdeMC; miR2Disease hsa-mir-30c dbdeMC; miR2Disease

hsa-let-7e dbDEMC hsa-mir-181b dbdeMC; miR2Disease

hsa-let-7d dbDEMC hsa-mir-191 dbdeMC; miR2Disease

hsa-mir-223 dbdeMC; miR2Disease hsa-mir-222 dbDEMC

hsa-let-7c dbDEMC hsa-let-7g dbdeMC; miR2Disease

hsa-let-7b dbdeMC; miR2Disease hsa-mir-106b dbdeMC; miR2Disease

hsa-mir-132 miR2Disease hsa-mir-210 dbDEMC

hsa-let-7f dbdeMC; miR2Disease hsa-mir-205 dbDEMC

hsa-mir-199a unconfirmed hsa-mir-203 dbdeMC; miR2Disease

hsa-mir-92a unconfirmed hsa-mir-24 miR2Disease

hsa-let-7i dbDEMC hsa-mir-20b unconfirmed

hsa-mir-125a dbdeMC; miR2Disease hsa-mir-29a dbdeMC; miR2Disease

hsa-mir-200b dbDEMC hsa-mir-34c miR2Disease

hsa-mir-146a dbDEMC hsa-mir-150 unconfirmed

hsa-mir-141 dbdeMC; miR2Disease hsa-mir-200a unconfirmed

hsa-mir-221 dbdeMC; miR2Disease hsa-mir-34b dbdeMC; miR2Disease

Note: The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.
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(see Table 4). It is worth noting that only the candidate miRNAs for

Esophageal Neoplasms were ranked and confirmed by experimental

evidences. As has been defined, the candidate miRNAs are the miRNAs

which was unassociated with the Esophageal Neoplasms according to

HMDD v1.0. Therefore, none of the top 50 predictions existed in

HMDD v1.0 so that validation of the predictions using HMDD v2.0

was completely independent of this training database HMDD v1.0.

The results in independent case studies on five major human dis-

eases have indicated excellent prediction performance of IMCMDA.

We have provided the prediction scores of all the unknown human

miRNA–disease pairs (see Supplementary Table S3). We hope the

prediction results could be helpful in searching potential disease-

related miRNAs in the future.

5 Discussion

The researches for potential miRNA–disease associations prediction

would help us understand the pathogenesis of disease and promote

the treatment of diseases. In this paper, we developed a model of

Inductive Matrix Completion for MiRNA–Disease Association pre-

diction (IMCMDA). In model of IMCMDA, the known miRNA–

disease associations and the integrated miRNA similarity and

disease similarity were combined to calculate the prediction score of

each miRNA–disease pair. The AUC of IMCMDA is 0.8034 based

on LOOCV, which showed a better performance than previous

methods. Furthermore, the predicted disease-related miRNAs of five

major human diseases: Colon Neoplasms, Kidney Neoplasms,

Lymphoma, Breast Neoplasms and Esophageal Neoplasms were re-

spectively confirmed by the experimental literatures.

The reasons of the reliable performance of IMCMDA are as fol-

lows: IMCMDA predicts the miRNA–disease associations by using

Table 3. Prediction results of the top 50 predicted Breast Neoplasms-related miRNAs when we set the known associations of Breast

Neoplasms as unknown ones

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdemc; miR2Diseaes; hmdd hsa-mir-200b dbdemc; miR2Diseaes; hmdd

hsa-mir-17 miR2Disease; hmdd hsa-mir-221 dbdemc; miR2Diseaes; hmdd

hsa-mir-155 dbdemc; miR2Diseaes; hmdd hsa-mir-141 dbdemc; miR2Diseaes; hmdd

hsa-mir-19b dbdemc; hmdd hsa-mir-29b dbdemc; miR2Diseaes; hmdd

hsa-mir-145 dbdemc; miR2Diseaes; hmdd hsa-mir-16 dbdemc; hmdd

hsa-mir-18a dbdemc; miR2Diseaes; hmdd hsa-mir-146b dbdemc; miR2Diseaes; hmdd

hsa-mir-20a miR2Disease; hmdd hsa-mir-127 dbdemc; miR2Diseaes; hmdd

hsa-let-7a dbdemc; miR2Diseaes; hmdd hsa-mir-92b dbDEMC

hsa-mir-19a dbdemc; hmdd hsa-mir-9 dbdemc; miR2Diseaes; hmdd

hsa-let-7e dbdemc; hmdd hsa-mir-101 dbdemc; miR2Diseaes; hmdd

hsa-mir-34a dbdemc; hmdd hsa-mir-106a dbDEMC

hsa-mir-125b miR2Disease; hmdd hsa-let-7g dbdemc; hmdd

hsa-mir-223 dbdemc; hmdd hsa-mir-106b dbdemc; hmdd

hsa-mir-126 dbdemc; miR2Diseaes; hmdd hsa-mir-210 dbdemc; miR2Diseaes; hmdd

hsa-mir-92a hmdd hsa-mir-191 dbdemc; miR2Diseaes; hmdd

hsa-let-7d dbdemc; miR2Diseaes; hmdd hsa-mir-200c dbdemc; miR2Diseaes; hmdd

hsa-mir-143 dbdemc; miR2Diseaes; hmdd hsa-mir-29a dbdemc; hmdd

hsa-let-7c dbdemc; hmdd hsa-mir-222 dbdemc; miR2Diseaes; hmdd

hsa-let-7b dbdemc; hmdd hsa-mir-181b dbdemc; miR2Diseaes; hmdd

hsa-let-7f dbdemc; miR2Diseaes; hmdd hsa-mir-20b hmdd

hsa-mir-146a dbdemc; miR2Diseaes; hmdd hsa-mir-150 dbDEMC

hsa-mir-199a dbdemc; hmdd hsa-mir-30c dbdemc; hmdd

hsa-mir-132 dbdemc; hmdd hsa-mir-214 dbdemc; hmdd

hsa-let-7i dbdemc; miR2Diseaes; hmdd hsa-mir-24 dbdemc; hmdd

hsa-mir-125a dbdemc; miR2Diseaes; hmdd hsa-mir-203 dbdemc; miR2Diseaes; hmdd

Note: The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.

Table 4. Prediction results of the top 50 predicted Esophageal

Neoplasms -related miRNAs based on known associations in

HMDD V1.0

miRNA Evidence miRNA Evidence

hsa-mir-20a dbdemc; hmdd hsa-mir-127 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-222 dbDEMC

hsa-mir-18a dbDEMC hsa-mir-106b dbDEMC

hsa-mir-155 dbdemc; hmdd hsa-mir-9 dbDEMC

hsa-mir-19a dbdemc; hmdd hsa-mir-25 dbdemc; hmdd

hsa-mir-19b dbDEMC hsa-mir-125a dbDEMC

hsa-mir-92a hmdd hsa-mir-29a dbDEMC

hsa-mir-221 dbDEMC hsa-mir-146b dbDEMC

hsa-let-7a dbdemc; hmdd hsa-mir-141 dbdemc; hmdd

hsa-mir-146a dbdemc; hmdd hsa-mir-132 dbDEMC

hsa-mir-34a dbdemc; hmdd hsa-mir-191 dbDEMC

hsa-let-7e dbDEMC hsa-let-7g dbDEMC

hsa-mir-145 dbdemc; hmdd hsa-mir-92b dbDEMC

hsa-mir-223 dbdemc; miR2Diseaes;

hmdd

hsa-mir-214 dbdemc; hmdd

hsa-let-7b dbdemc; hmdd hsa-mir-93 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-34c dbdemc; hmdd

hsa-let-7d dbDEMC hsa-mir-181b dbDEMC

hsa-let-7f unconfirmed hsa-mir-15a dbdemc; hmdd

hsa-let-7i dbDEMC hsa-mir-20b dbDEMC

hsa-mir-199a dbdemc; hmdd hsa-mir-200a dbdemc; hmdd

hsa-mir-125b dbDEMC hsa-mir-101 dbdemc; hmdd

hsa-mir-126 dbdemc; hmdd hsa-mir-24 dbDEMC

hsa-let-7c dbdemc; hmdd hsa-mir-30c dbDEMC

hsa-mir-200b dbDEMC hsa-mir-34b dbdemc; hmdd

hsa-mir-16 dbDEMC hsa-mir-18b dbDEMC

Note: The first column records top 1–25 related miRNAs. The third col-

umn records the top 26–50 related miRNAs.
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the low-rank inductive matrix completion (IMC) algorithm. A cru-

cial advantage of IMC is that it utilizes disease similarity and

miRNA similarity as the feature of disease and miRNA to complete

the missing miRNA–disease association. It means that we can use

the feature vector of a new disease without any known related

miRNAs to predict the relevance-scores between this new disease

and all miRNAs. That’s why IMCMDA can be applied to new dis-

ease without any known related miRNAs (Natarajan and Dhillon,

2014). In addition, searching the optimal solution with an alternat-

ing gradient descent algorithm made sure the reliability of the dis-

ease eigenvectors and the miRNA eigenvectors. Finally, the model is

a semi- supervised model. The advantage of semi-supervised model

is that it doesn’t rely on negative samples. It only needs positive sam-

ples and unlabeled samples, which greatly reduces the difficulty of

building models. Therefore, this model fits in with our current re-

search topic (almost no negative samples).

Yet, there are some limitations that influence the performance of

IMCMDA. Firstly, the materials we used including human miRNA–

disease associations, disease semantic similarity and miRNA function-

al similarity possibly contains noise and outliers. Secondly, IMCMDA

uses the least square error function which is well known to be un-

stable with noises and outliers. Besides, due to the limitations of la-

boratory conditions, we are not able to do wet experiments to verify

the predictions. As the laboratory conditions allow, we will certainly

supplement the relevant experiments in the future. We have provided

the prediction results in Supplementary Table S3, we expect to receive

validation from other teams on biological experiments. Finally, to our

knowledge, the hallmarks of cancer are one of the most widely

acknowledged organizing principles for research on cancer. Some lit-

eratures pointed out that there are some associations between cancer

hallmarks and genes (Gao et al., 2016). For example, hsa-mir-21

obtained the highest score in the case studies of Colon Neoplasms and

Breast Neoplasms, while according to data from NanoString’s

Hallmarks of Cancer Panel collection (https://www.nanostring.com/),

the target of hsa-mir-21, APP, has been identified to be associated

with Hallmark inflammation. In the future, new biological informa-

tion, such as the types of disease–miRNA associations (Chen et al.,

2015), cancer hallmark-gene associations and gene sequence informa-

tion (Wang et al., 2015), could be also incorporated into our future

research. We should exploit the information of disease-microRNA

associations, cancer hallmark-gene associations and gene sequence to

establish miRNA–disease similarity networks thus improve the accur-

acy of our model. With the huge amount of biological data, the pre-

diction of models could be more reliable and useful.
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