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The molecular dipole moment (µ) is a central quantity in chemistry. It is essential in predicting infrared and
sum-frequency generation spectra, as well as induction and long-range electrostatic interactions. Furthermore,
it can be extracted directly—via the ground state electron density—from high-level quantum mechanical
calculations, making it an ideal target for machine learning (ML). In this work, we choose to represent
this quantity with a physically inspired ML model that captures two distinct physical effects: local atomic
polarization is captured within the symmetry-adapted Gaussian process regression (SA-GPR) framework,
which assigns a (vector) dipole moment to each atom, while movement of charge across the entire molecule
is captured by assigning a partial (scalar) charge to each atom. The resulting “MuML” models are fitted
together to reproduce molecular µ computed using high-level coupled-cluster theory (CCSD) and density
functional theory (DFT) on the QM7b dataset, achieving more accurate results due to the physics-based
combination of these complementary terms. The combined model shows excellent transferability when applied
to a showcase dataset of larger and more complex molecules, approaching the accuracy of DFT at a small
fraction of the computational cost. We also demonstrate that the uncertainty in the predictions can be
estimated reliably using a calibrated committee model. The ultimate performance of the models—and the
optimal weighting of their combination—depend, however, on the details of the system at hand, with the
scalar model being clearly superior when describing large molecules whose dipole is almost entirely generated
by charge separation. These observations point to the importance of simultaneously accounting for the local
and non-local effects that contribute to µ; further, they define a challenging task to benchmark future models,
particularly those aimed at the description of condensed phases.

I. INTRODUCTION

The dipole moment µ of a molecule quantifies the
molecule’s first-order response to an applied electric field.
It is a key ingredient in the calculation of infrared (IR)1

and sum-frequency generation (SFG)2,3 spectra, as well
as the understanding of intermolecular interactions.4 De-
spite its importance, the dipole moment presents a chal-
lenge for calculation, often depending significantly on
the level of theory and the basis set used.5–7 Further-
more, while the molecular dipole moment gives informa-
tion about the distribution of charge in the molecule,
it is determined by the interplay of several physical ef-
fects, such as long-range charge transfer and local polar-
ization, which cannot be disentangled based on knowl-
edge of µ alone. A number of methods for unravel-
ling these different contributions exist, and are generally
based on partitioning the electron density into localized
atomic charges and dipoles (accounting for charge trans-
fer and polarization). While these methods are attractive
for understanding the underlying physics responsible for
µ, they are usually poorly transferable between different
molecules or classes of molecules (see Section II).

a)Current address: Atomistic Simulation Centre, School of Mathe-
matics and Physics, Queens University Belfast, Belfast BT7 1NN,
Northern Ireland, United Kingdom
b)Electronic mail: distasio@cornell.edu
c)Electronic mail: michele.ceriotti@epfl.ch

In this work, we design a new framework for the predic-
tion of gas-phase molecular dipole moments that unifies
the atomic charge–atomic dipole description rooted in
physics with the conformational and chemical sensitivity
afforded by kernel-based machine learning (ML). We be-
gin in Section II with an overview of existing methods to
describe and predict molecular dipoles. In Section III, we
formulate the different models we propose to learn and
predict polarization: we use a general symmetry-adapted
framework to give environment-centered dipole predic-
tions,8 along with a partial-charge model in the vein
of existing neural-network models,9,10 to combine good
chemical transferability with general conformational de-
pendence. In Section IV, we discuss the training of
three models–only partial charges, only environment-
centered dipoles, and a combination of the two–which
we collectively refer to as MuML. The models are fitted
to reference calculations from high-end linear-response
coupled-cluster calculations with single and double exci-
tations (LR-CCSD), and yield µ with an accuracy that
is comparable to that of hybrid density functional theory
(DFT). Next, a showcase set of larger and more complex
molecules is used to test these models rigorously. Finally,
we make a critical comparison of the performance of the
different MuML models, which reveals the interplay of
the different terms that contribute to molecular polar-
ization.
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II. THEORY

The molecular dipole moment is defined as the first
moment of the total electric charge density,

µ = −

∫

r ρe(r) d
3r+

∑

i

riZi, (1)

where ρe(r) is the electronic charge density, ri the po-
sition of the ith nucleus, and Zi is its charge. Usually
we are concerned with the permanent dipole moment–
that is, the first moment of the total charge density in
the molecule’s ground-state. However, this expression
remains valid for non-equilibrium geometries as well as
excited states.
This expression can be simplified by making the ap-

proximation that ρe(r) is concentrated at individual
atomic sites; that is, each atom i has an associated par-
tial charge qi resulting from the difference between Zi

and the partitioned electron density. The approximated
total charge density is thus ρ(r) =

∑

i qiδ(r−ri), and we
can write

µ =
∑

i

riqi, (2)

which is uniquely defined with respect to the origin of
the molecular coordinate system if the total molecular
charge is zero. Charged molecules can be accommodated
by setting the origin of the molecule to its centroid, such
that

∑

i ri = 0; this makes the dipole moment invariant
to a collective shift of the qi.

The problem then becomes the determination of the
{qi} that best reproduces µ—often in addition to other
physicochemical metrics, such as reproducing the molec-
ular electrostatic potential (ESP) or characterizing chem-
ical bonding. There are many existing methods to deter-
mine these charges, varying with the objectives of the
model. Many methods are based directly on the ground-
state charge density (or even the wavefunction), such
as Mulliken11 and Löwdin12 population analyses, Hir-
shfeld decomposition13 (and its iterative extension14),
atoms-in-molecules (AIM, also known as quantum chem-
ical topology–QCT),15 and iterative stockholder atoms
(ISA).16

Another major class of atomic charge assignment
methods, known collectively as ESP fitting methods, fo-
cuses directly on reproducing the molecular ESP rather
than simply decomposing its charge density. One can im-
mediately see the relevance of such methods to Eq (2), as
the far-field limit of the electrostatic potential is domi-
nated by the dipolar term. ESP fitting methods were de-
veloped by Momany 17 , Cox and Williams 18 , Singh and
Kollman 19 ,and Breneman and Wiberg 20 ; each of these
methods finds the charges through a least-squares fit in
order to reproduce the ESP at a grid of sites fairly close
to the molecule but well outside the van der Waals ra-
dius. Notably, Momany 17 also fits the total molecular
dipole moment in order to satisfy Eq. (2). Many subse-
quent methods incorporate similar information into a fit

that makes a compromise between chemical information
(the charge density) and far-field electrostatics, such as
the DDEC21 and Hirshfeld-E22 methods. However, such
a compromise becomes a disadvantage when one is only
interested in reproducing the molecular dipole moment.
Although the methods above are all motivated by phys-

ical and chemical principles, different methods can yield
quite different results for the partial charges;4,23 even
worse, the results of certain methods may be very sensi-
tive to the details of the underlying electronic structure
calculation, such as the basis set used.18,19,24,25

Furthermore, collapsing the total charge density to a
set of points is often too severe an approximation to
obtain an accurate description of the ESP.4,23 One can
therefore augment the expression in Eq (2) to include
information based on the atom-localized anisotropy or,
informally, local polarization of the charge distribution,
by adding dipoles (or higher multipole moments) onto
the atomic sites. This is the central idea behind the
distributed multipole analysis (DMA) approach,26 which
gives for the total dipole

µ =
∑

j∈C

(

rjqj + µj

)

, (3)

where C is a list of centers (or points in real space) that
includes both atoms and interatomic positions, qj is the
partial charge associated with the jth center, and µj is
the associated partial dipole. We note in passing that
higher multipole moments do not contribute to µ, and
are therefore excluded from Eq (3).
Several other methods use this idea of representing

the molecular ESP with both charges and higher multi-
pole moments assigned to atomic sites, like the FOHI-D
model27 and the fullerene polarization model of Mayer 28 ,
the latter recently modified and incorporated into a
QM/MM context (where accurate reproduction of the
far-field ESP is essential) as the FqFµ model.29 The au-
thors of FOHI-D in particular separate intrinsic atomic
polarization, which can be calculated directly for isolated
atoms in the same iterative spirit as the classic iterative
Hirshfeld method, from atomic charge transfer, which is
described using the point-charge model. However, they
note that the agreement of their model with the ESP
is generally worse when dipoles are included, although
this could have been due to their choice of grid points
much closer to the molecule than is usually used for ESP-
fitting methods. Mayer 28 , on the other hand, discusses
the physical idea from the opposite perspective, that of
adding atomic charges, derived from a procedure sim-
ilar to the electronegativity equalization (EEQ) known
in chemistry, to an atomic-dipole model in order to de-
scribe non-local polarization. The polarization of carbon
nanostructures (nanotubes and fullerenes) is much better
described by adding atomic charges to the description, as
they can describe the large-scale flow of charge across the
conjugated π-systems typical of these nanostructures.28

A key limitation of most of these methods is their in-
ability to describe the dependence of electrostatic quan-
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tities across conformational and chemical space without
performing additional ab initio calculations or fitting em-
pirical parameters, which severely limits their ability to
model experimental spectra and make transferable pre-
dictions for new molecules. A natural way to incorpo-
rate the required conformational and chemical sensitiv-
ity is to draw on the large body of work over the last
two decades that uses ML to predict molecular prop-
erties10,30–37 or molecular and intermolecular potential
energy surfaces.38–44

Many existing methods are explicitly targeted to re-
produce µ, or produce it as a side effect. The earliest of
these is the neural network method of Darley, Handley,
and Popelier 30 (see also Ref. 31), where a neural net-
work is fitted to reproduce the multipole moments of a
molecule or fragment computed via QCT (a.k.a. atoms-
in-molecules theory)15. The two main drawbacks of this
strategy, which are common to many of the other meth-
ods discussed here, are the following: (1) the need to
define a local reference frame, which limits the method’s
transferability to other chemical compounds, and (2) the
need to fit to a precomputed set of atomic charges and
multipoles, the choice of which is ultimately arbitrary.
The QCT charges and multipole moments, in particular,
are known to be poorly convergent due to the irregular
shapes of the partitioned atomic volumes.4

Techniques for fitting local electrostatic properties
have evolved considerably since then, but most of the
proposed methods retain these two key drawbacks. For
example, the IPML model of Bereau et al. 34 predicts in-
termolecular interaction energies accurately by system-
atically treating several different physical energy contri-
butions. The dipole moments themselves, on the other
hand, are not as well predicted, given that their accu-
rate reproduction is not the primary goal of the model.
Part of the error may have come from using environment-
local axis systems to predict the higher-order multi-
pole moments, which is a less general and robust ap-
proach than the symmetry-adapted regression introduced
in Grisafi et al. 8 . Furthermore, the model retains the
same drawback of being fitted to a specific partitioning
scheme—in this case, the minimal-basis iterative stock-
holder method45, which was chosen for its accuracy in
modelling electrostatic interactions and not for reproduc-
ing µ.

The neural network model of Gastegger, Behler, and
Marquetand 9 , on the other hand, does explicitly target
µ. It predicts the set of environment-dependent partial
charges that best reproduces the total dipole moment,
thereby bypassing the need to choose an arbitrary charge
partitioning scheme, and uses the conformational sensi-
tivity gained through the neural network to accurately
predict infrared spectra. The PhysNet model of Unke
and Meuwly 10 uses the same idea and additionally uses
a new representation to span a large swath of chemical
space, as does the HIP-NN model of Sifain et al. 46 , which
also incorporates enough conformational dependence to
be able to predict infrared spectra. All three of these

models only predict scalar atomic properties, neglecting
contributions from atomic polarization, which we will see
are important to achieving the best accuracy and trans-
ferability.
There are several approaches to fitting properties, such

as µ, that transform as tensors–in particular, approaches
that are covariant (rather than invariant) to rotations.
The local-axis approach used in Bereau et al. 34 has al-
ready been mentioned; another approach is the covariant
kernels introduced in Glielmo, Sollich, and De Vita 47

and developed into a general symmetry-adapted regres-
sion method for any tensor order in Grisafi et al. 8 . This
method was successfully tested on dipole moments of
small molecules and clusters, as well as accurately pre-
dicting higher-order tensors such as the polarizability37.
Finally, Christensen, Faber, and von Lilienfeld 48 have

developed a formalism (OQML) for incorporating elec-
tric field gradients into a ML fit. They use a system of
arbitrary, though usually realistic, partial charges in or-
der to define an implicit local reference frame for each
atomic environment, which can then be used to fit lo-
cal dipole moments. While their formulation is quite
different from the method developed below, we believe
it is fundamentally similar to assigning an environment-
dependent partial dipole to each atom, as described in
Section III B.

III. METHODS

A. Partial-Charge Model

We begin by building a ML model that incorporates
local environment sensitivity into the simple partial-
charge model of Eq. (2) using Gaussian process regression
(GPR)49. To do this, we exploit the fact that GPR uses
a linear fit in kernel space, and can therefore be used
to fit the result of any linear operator applied to atomic
quantities50. The vector of weights w is required that
minimizes the regularized loss function,

L2 = ‖LKPMw − y‖2Λ−1 + ‖w‖2
KMM

(4)

where Λ is a diagonal matrix whose entries σ2
µ—a quan-

tity known as the “dipole regularization”, usually kept
the same for all molecules—are chosen to optimize the
error of the fit along with its transferability to new molec-
ular databases, L a linear operator, and

w = (KMM + (LKPM )TΛ−1LKPM )−1LKPMΛ−1y.
(5)

The fit uses an “active set” of M basis functions (which
in practice is a small fraction of the total number P of
atoms in the database). Following the same notation in-
troduced in Ref. 50, we use M and P to indicate both
the sets and the number of entries. The kernel matrices
KMM and KPM contain the kernel evaluated between
all sparse points (M) and themselves, as well as with all
atoms in the training database (P ). In principle, any
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sufficiently representative set of configurations could be
used to form the active set of basis functions, but in
practice they are almost always chosen from the environ-
ments present in the molecules in the training set using
an algorithm such as farthest point sampling (FPS) or a
CUR decomposition.51. The entries of the kernel matrix
are (KIJ)ij = k(X (i),X (j)), where the SOAP kernel41 is
used as the similarity function k(·, ·) between two atomic
environments X (i) and X (j).

To build up a model for µ, we predict partial charges
q(Ai) for atom i in molecule A

q(Ai) =
∑

j∈M

wjk(X
(i),X (j)) (6)

(where the sum runs over all basis points, i.e. environ-
ments in the active set), such that

µ(A) =
∑

i∈A

riq(Ai). (7)

We can then define the transformed kernel matrix be-
tween dipoles and basis points as

(LµKPM )A,j =
∑

i∈A

rik(X
(i),X (j)), (8)

allowing us to use Eq. (5) to determine the weights. The
expression in Eq. (8) represents a block of 3 rows from
the 3N ×M matrix LµKPM , where N is the number of
molecules in the training set, one row for each Cartesian
component of the dipole moment of molecule A. The
columns index j runs over the M environments in the
active set. The ri are defined with respect to the co-
ordinate system in which the dipole is given, with the
origin set to the centroid of the respective molecule so
that the prediction is insensitive to a shift in the total
charge. The target data y are then defined as a concate-
nation of the Cartesian components of the training-set
dipole moments.
The insensitivity of the model to the total molecular

charge is advantageous because the model’s total charges,
QA =

∑

i∈A qi, need not be constrained to reproduce
exactly the total molecular charge. As noted in Unke
and Meuwly 10 , applying this constraint to the training
set would not guarantee that the model gives the correct
charges for prediction on a new molecule. Furthermore,
we found that including exact total-charge constraints
into the fit via Lagrange multipliers severely reduced the
quality of the fit—in most cases simply giving all partial
charges as zero—because the procedure used to select the
sparse active set of M environments also discarded the
basis functions necessary to satisfy this constraint whilst
also satisfactorily reproducing µ.
However, it is usually beneficial to include some sort of

restraint (even if not an exact constraint) on total charge,
as a model insensitive to this quantity can predict unrea-
sonably large total charges, ultimately compromising its
transferability to other datasets. We therefore include

the total charge as extra information to the fit by ap-
pending to y the list of total charges of the molecules in
the training set, and appending to the transformed kernel
matrix LµKPM the extra N rows representing the sums
of the model’s partial charges:

(LQKPM )A,j =
∑

i∈A

k(X (i),X (j)), (9)

and extending the diagonal regularization matrix Λ with
an extra N entries σ2

Q—the charge regularizer—in order
to be able to regularize the two target quantities sepa-
rately.

B. Partial Dipole Model

An alternative method for predicting µ is to build
up the prediction as a sum of atom-centered dipole mo-
ment predictions using symmetry-adapted Gaussian pro-
cess regression (SA-GPR)8, a modification of standard
GPR that allows tensor properties to be learned. A SA-
GPR prediction of the dipole moment µ of a test molecule
A is given by:

µ(A) =
∑

j∈M

∑

i∈A

kV (X (i),X (j))wj , (10)

where kV (Xi,Xj) is an element of an extended kernel
matrix, being the tensor (concretely a 3×3 matrix) whose
components kVαβ(Xi,Xj) give the coupling between the

Cartesian component µ
(i)
α associated with environment

Xi and the µ
(j)
β component associated with Xj . Each

environment j in the active set now requires a set of
three weights (represented by the vector wj) to represent
the three independent components of the vector quantity
assigned to each atom.
Since the dipole moment is a vector quantity that is

related by a linear transformation to the spherical har-
monics with L = 1, the vector kernel kV (X ,X ′) can be
obtained directly from the λ = 1-order λ-SOAP kernel of
SA-GPR, kλ=1(X ,X ′) by the transformation,

kV (X ,X ′) = M †kλ=1(X ,X ′)M , (11)

whereM transforms from the Cartesian basis to the basis
of λ = 1 spherical tensors (see e.g. Ref. 4 for an explicit
formula).
As has been shown by recent work,8,37,52 SA-GPR per-

forms very well for response properties of different orders
in a wide variety of systems. Further, one can see from
the atom-centered formulation of Eq. (10) that the atom-
centered dipoles, analogous to the atomic partial charges
of Eq. (6), can easily be extracted:

µ(Ai) =
∑

j∈M

kV (X (i),X (j))wj . (12)

Although an SA-GPR prediction of µ does not require
charge constraints, it is computationally more expensive
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than a partial-charge model, requiring the inversion of a
square matrix with three times the number of rows (3M
rows, where M is the number of basis functions in the
active set).

C. Combined Model

We now consider the partial-charge model and partial-
dipole model as two separate models for the same system,
encoding two different physical effects. It should then be
possible to get a better prediction simply by fitting the
sum of the two models to the training data. We call the
matrix of Eq. (8) the “transformed scalar kernel”:

KS
NM := LµKPM , (13)

and the analogous “transformed vector kernel” KV
NM ′

whose rows are the atom-wise summations of the kernel
from Eq. (10):

(KV
NM ′)A,j =

∑

i∈A

kV (X (i),X (j)). (14)

Because the models are of different dimensions and
model different physical effects, we assign each a differ-
ent weight vector: wS for the scalar weights and wV for
the vector weights. Note also that this means we do not
need to use the same set of basis functions for the scalar
and vector models; they can be chosen independently.
Then, in order to find the best combined sum model, we
optimize

L2 = ‖δ2SK
S
NMwS + δ2V K

V
NM ′w

V − y‖2Λ−1

+ δ2S‖w
S‖2

K
S
MM

+ δ2V ‖w
V ‖2

K
V
M′M′

(15)

with respect to both sets of weights wS and wV simul-
taneously. (The KS

MM and KV
M ′M ′ are the matrices of

non-transformed kernels of all the basis functions with
each other.) The result can be expressed using the inver-
sion of a square matrix with M +M ′ rows, where M ′ is
the number of vector weights (three times the number of
vector basis functions). Since the number of basis func-
tions is usually kept the same for both scalar and vector
models, the matrix to be inverted has 4M rows, mak-
ing the combined model the most expensive of the three
models discussed here. In practice, however, the cost is
typically manageable.
Furthermore, the charge restraint can be incorporated

as discussed in Section IIIA, where the transformed
scalar kernel is appended with the matrix from Eq. (9)
and the transformed vector kernel is appended with the
same number of rows of zeros (since the vector model
does not contribute to the total molecular charge). Note
also that we have introduced weights δS and δV to mod-
ify the overall relative amount that the scalar and vector
components contribute to the combined model. The δ-
weights effectively allow for different regularizations of

the scalar and vector components of the model, which is
equivalent to assuming different variances for the dipole
components modelled by the scalar and vector models54.

IV. RESULTS AND DISCUSSION

We optimized and trained the scalar, vector and com-
bined models on the QM7b data set,55 which con-
tains 7211 small organic molecules with up to seven
heavy/non-hydrogen atoms (specifically C, N, O, S,
and Cl) with varying degrees of H saturation. The
dipoles were computed using the methods described in
Yang et al. 56 , namely DFT with the hybrid B3LYP
functional57,58 and linear-response coupled-cluster theory
with single and double excitations (LR-CCSD59, here-
after just ‘CCSD’). In both cases, the doubly augmented
double-ζ d-aug-cc-pVDZ basis set60 (hereafter referred
to as ‘daDZ’) was employed during all calculations. We
then demonstrate the transferability of this model on the
QM961 data set, comparing with state-of-the-art results
from Ref. 48, and on a “MuML showcase” data set of
larger molecules. Finally, we push the models to their
limits by studying different polymers composed of or de-
rived from the glycine amino acid.

A. Model Optimization

We first optimize the models for space and computa-
tional requirements by subsampling the SOAP feature
matrices (which are multiplied and raised to an integer
entry-wise power to obtain the SOAP kernel) using the
FPS selection algorithm described in Imbalzano et al. 51 .
Descriptors are first subsampled in the feature space di-
mension, allowing for fewer SOAP components (NF ) to
be used in calculating the kernel, then in the environment
space dimension, allowing for fewer representative envi-
ronments (M) to be used when performing the fit. The
convergence of the final fitting error with respect to these
parameters, as well as other kernel convergence parame-
ters such as the number of radial channels (nmax) and the
maximum angular momentum (lmax) of the expansion, is
shown in the Supplementary Information.
We chose the model’s overall distance-based cutoff as

5�A, to encompass all atom pairs in the QM7b dataset.
The actual radial dependence of the kernels, however, is
optimized using the radial-scaling function from Willatt,
Musil, and Ceriotti 53 . Together with the SOAP atom
width and the regularization parameters, this leaves us
with several continuous hyperparameters whose optimal
values need to be determined. In a Bayesian approach,
these would be considered priors; they would ideally be
integrated over using a previously-known prior distribu-
tion. Here, however, we do not have much prior knowl-
edge about the distribution of these parameters—in con-
trast to the study of potential energy surfaces, where
good values can be guessed quite accurately based on
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Model θa/�A r0/�A m σµ/10
−3 σQ/10

−3 �A
−1

Scalar (CCSD) 0.375 2.32 4.41 4.38 35.5

Scalar (B3LYP) – – – 4.41 78.8

Vector (CCSD) 0.256 2.75 3.34 1.47 –

Vector (B3LYP) – – – 1.15 –

Table I. Optimal hyperparameters for the pure scalar and pure vector models, obtained using a Nelder-Mead optimization. θa:
Gaussian width for SOAP atom smearing, r0 and m: radial scaling parameters (see Ref. 53), σµ: dipole regularization (unitless
since δ = 1 for the pure fits), σQ: total charge regularization. Parameters for the combined model are derived as indicated in
the text. All numbers truncated to three significant figures.

Model nmax lmax NF M

Scalar 8 6 200 2000

Vector 4 2 200 2000

Table II. Convergence parameters for the scalar and vector
kernels: nmax is the number of radial basis functions and lmax

is the angular momentum band limit for the SOAP kernel,
NF is the number of selected sparse features, and M is the
number of selected sparse environments for each model. Note
that the scalar and tensor power spectrum components of the
vector SOAP kernel use the same parameters.

prior experience and physical knowledge.62 Instead, we
use optimization to find the best values of these param-
eters for our problem, along with cross-validation (CV)
to guard against the problem of overfitting (which is oth-
erwise introduced by hyperparameter optimization tech-
niques).

First, the hyperparameters for the scalar and vec-
tor models are each independently optimized on a ran-
domized four-fold CV split of 5400 randomly-selected
molecules of the QM7b test set55. The results of this op-
timization can be found in Table I. The combined model
is then obtained as follows: since there are only three
free parameters between the overall scalar weight δS , the
overall vector weight δV , the dipole regularization σµ,
and the total charge regularization σQ, we set the dipole
regularization to 1 and scale the rest of the parameters
accordingly: If σS

µ is the optimal dipole regularizer and

σS
Q the optimal charge regularizer for the scalar model,

and if σV
µ is the optimal dipole regularizer for the vec-

tor model, then we take δS 7→ 1/σS
µ , σQ 7→ σS

Q/σS
µ , and

δV 7→ 1/σV
µ . Further details of the optimization proce-

dure are discussed in the Supplementary Information.

Finally, once the model’s hyperparameters are con-
verged and optimized, model training and testing are
quite fast. For example, computing scalar and vector
training and testing kernels for the set of N = 20 000
molecules of QM9 used in Section IVE (with a test set
of T = 1000 molecules; M = M ′ = 2000) required just
over 1 hour and 95GiB of memory on a modern 24-
core machine, with almost all of the time and memory
used to compute the training kernels; the test kernels re-
quired less than 2 minutes and 3GiB. Once the kernels
were computed, fitting the combined (most expensive)

model required only 2 minutes and 20GiB of memory,
and computing test-set predictions was almost negligible
in comparison, taking 2 seconds and 1GiB of memory.
This means that the regularizers can be optimized quite
cheaply once optimal kernels have been computed.

B. Error measures

Throughout this work, we use two different error mea-
sures. The “per-atom” RMSE (root-mean-squared error)

RMSE =

√

√

√

√

√

1

Ntest

∑

j∈test

∥

∥

∥

∥

∥

µ
(j)
predicted − µ

(j)
actual

Nj

∥

∥

∥

∥

∥

2

2

, (16)

reports on both the magnitude and the orientation of the
predicted dipoles. The residuals are normalized by the
number of atoms Nj in the respective molecule before
taking the RMSE. This scaling posits a generally linear
trend of the dipole moment norm as a function of the
number of atoms. Such a trend would be expected from
an additive model where each atom contributes a cer-
tain, locally-dependent amount. This is the case with the
vector model, but not with the scalar model, where the
contribution additionally depends on its distance from
the molecular origin, making the scaling depend on the
molecular geometry. Therefore, to provide an alternate
assessment of the error of the total dipole, and to facili-
tate comparison with other studies, we additionally plot
the MAE (mean absolute error) of the norm of the total

dipole moment:

MAE =
1

Ntest

∑

j∈test

∣

∣

∣
‖µ

(j)
predicted‖2 − ‖µ

(j)
actual‖2

∣

∣

∣
. (17)

For the QM7b dataset, these two measures provide sim-
ilar information, but for transferability testing on other
datasets these measures provide complementary informa-
tion.

C. Uncertainty quantification

We can estimate the uncertainty in the model predic-
tions using a calibrated committee model, as described
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in Musil et al. 63 . We train ncomm models µ̃(k)(A), using
the same active set but choosing a different random sub-
set of the full training set in each model. The predictions
of these models are then rescaled around their mean

µ̄(A) =
1

ncomm

∑

k

µ̃(k)(A),

µ(k)(A) =µ̄(A) + α
(

µ̃(k)(A)− µ̄(A)
)

(18)

by a calibration factor α, that is determined using the
“internal validation procedure” described in Ref. 63. The
best estimate of the committee model is given by its
mean, µ̄(A), and uncertainty is then computed as the
standard deviation of the rescaled predictions. Individ-
ual members of the calibrated committee can be used to
separately compute derived quantities (e.g., the norm of
the dipole moment), which greatly simplifies the propa-
gation of uncertainty (see e.g. Ref. 52). While the use of
a committee model for a sparse Gaussian process model
entails virtually no computational overhead when making
a new prediction, the training process is somewhat more
cumbersome. For this reason, we only use a committee
model when making predictions for the showcase dataset
in Section IVG. More systematic tests performed on
benchmark datasets use a single regression model, with-
out error estimation, which usually also achieves a higher
accuracy than the ensemble average (see the Supplemen-
tary Information) because it is trained on all training
points together.

D. Training on QM7b

Figure 1 shows the learning curves of the MuML mod-
els, with the kernel parameters fixed to the values op-
timized on 5400 points. Errors are computed on a test
set of 1811 randomly-selected molecules from the QM7b
dataset55. Note that the pure scalar and pure vector
models both achieve similar performance in the limit of
a large amount of data, while the combined model clearly
outperforms both (by a factor of about 20%) in the same
regime.

This figure reports results for models trained on
CCSD/daDZ dipoles. Results for B3LYP/daDZ-trained
models are very similar (see SI). For reference, the
discrepancy between B3LYP/daDZ and CCSD/daDZ
molecular dipole moments in the QM7b database
amounts to an RMSE = 0.011D per atom, or MAE =
0.087D. It should be stressed that, contrary to the case of
the polarizability37,56, the performance of DFT is usually
quite satisfactory when predicting molecular dipole mo-
ments. When trained on 5400 QM7b structures, the com-
bined model delivers better accuracy (RMSE = 0.0086D
per atom, MAE = 0.054D), at a dramatically reduced
computational cost.
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Figure 1. Learning curves of the scalar (green squares), vector
(purple triangles), and combined (orange diamonds) models
for CCSD/daDZ dipoles computed on 1811 randomly-selected
molecules of the QM7b dataset. The models were trained on
subsets of the remaining 5400 molecules. The top plot has
per-atom RMSEs and the bottom plot has per-molecule dipole
moment norm MAEs. The open circle denotes the intrinsic
variation of the dataset, i.e., the error of a zero model.

E. Testing on QM9

In order to test the extrapolation capabilities of
the MuML models, we selected 1000 random samples
from the QM9 dataset61 and computed the dipole mo-
ments following the same protocol used for the QM7b
dataset37,56. Due to the high computational cost of
CCSD, we used B3LYP/daDZ as the reference in this
case, and the corresponding models trained on QM7b at
the B3LYP/daDZ level. The learning curves of these
models are shown in Figure 2. The combined model
outperforms the scalar and vector models in terms of
the per-atom RMSE measure, but performs worse than
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Figure 2. Learning curves on a random sample of 1000
molecules from the QM9 dataset61. Reference dipoles were
computed with B3LYP/daDZ; MuML models were re-trained
on QM7b dipoles (solid symbols) and QM9 dipoles (semi-
transparent symbols) computed at the same level of theory.
Top: per-atom RMSEs. The QM7b combined fit narrowly
outperforms the pure charge and pure dipole models, with
significant saturation apparent in all QM7b models. No such
saturation is apparent in the QM9 models. Bottom: MAE
of the error of the dipole moment norms for each molecule.
The FCHL (norm-only) and FCHL* (vector response) curves
are reproduced from Christensen, Faber, and von Lilienfeld 48 ;
both models were trained on QM9 dipoles. Using this error
measure, the QM7b pure vector fit has a clear advantage,
even outperforming the FCHL* response learning. The QM9
fits again perform significantly better than the QM7b fits; the
QM9 combined fit retains the best performance, reaching an
MAE of 0.084D at 20 000 training points.

the vector model using the norm MAE. The errors are
much larger than those seen when testing on QM7b,
and the asymptotic behavior of the learning curves in-
dicates saturation and even overfitting. In order to de-
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Figure 3. Errors when interpolating between the pure scalar
and pure vector B3LYP/daDZ MuML models. The pure vec-
tor model is located at the left (as the scalar fraction t → 0),
the pure scalar model is located at the right (as the vector
fraction 1 − t → 0), and the combined model is located in
the middle at 0.5. The models are trained on either 5400
points of QM7b or 5400 points of QM9, and tested on either
the remaining 1811 molecules of QM7b or the 1000 randomly
selected molecules of QM9.

termine whether the saturation in model performance
is due to limitations in the models, or just insufficient
training data, we also computed learning curves for mod-
els trained on QM9 dipoles, using a set of 20 000 addi-
tional molecules drawn from the QM9 set and dipoles
computed at the B3LYP/daDZ level. The scalar and
vector regularizers were re-optimized using 15 000 train-
ing points. The QM9-trained models, in contrast to the
QM7b-trained models, do not saturate early. The QM9-
trained combined model reaches an MAE of 0.084D;
this is more accurate than the QM9-trained scalar model
(MAE 0.099D), which is in turn more accurate than the
QM9-trained vector model (MAE 0.12D). In fact, this
is comparable to the performance of the SchNet neural
network model35, which reaches an accuracy of 0.033D
using 110 000 training molecules. It is likely that the
QM9-trained combined model would reach the same ac-
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curacy if the slight saturation in the MAE curve were cor-
rected, e.g., by increasing the SOAP convergence param-
eters (which were set for 5400 QM7b molecules) and re-
optimizing the hyperparameters. The comparison of the
QM7b-trained models to those trained on QM9 clearly
shows that the QM7b scalar model especially suffers in
the extrapolative regime. Together with the degrading
performance of both RMSE and MAE as the number of
training points approaches the full training set size, this
indicates that the scalar model has a strong tendency to
overfit. As for the combined model, it seems that its poor
performance is a result of its inclusion of too much of the
overfitted scalar component.

We therefore investigate the dependence of the model
error on the scalar-vector mixing, to see if the combined
model can be improved by including less of the scalar
component. The scalar-vector mixing is parametrized
here by varying the scalar model’s variance δ2S from zero
to its pure-scalar equivalent value: δ2S(t) = t(σS

µ )
−2

whilst simultaneously varying the vector model’s variance
from its pure-vector equivalent value to zero: δ2V (t) =
(1−t)(σV

µ )−2. The dipole regularization is kept at one, as
the regularization is encoded in the model variances; the
total-charge regularization σQ is likewise kept constant,
at its optimal scalar-model value, as it only applies to
the scalar model. This parametrization reproduces the
pure scalar and pure vector predictions at each endpoint
whilst smoothly transferring the total model’s variance
from the vector to the scalar model. The value of t = 0.5
corresponds to the combined model (modulo a factor of
2 in the regularizer, which is negligible in practice). Note
that varying the scalar and vector weights δS and δV is
more than a simple post-processing adjustment; it re-
quires recomputing the model weights w via Eq. (15) as
well. We plot such a scalar-vector scan in Figure 3 for the
models trained on either QM7b or QM9, and tested on
either QM7b (QM7b-trained model only) or QM9 (both
models). Both models were trained on 5400 molecules
using dipoles computed at the B3LYP/daDZ level. We
see that the optimum for models tested in the interpola-
tive regime—that is, QM7b tested on QM7b and QM9
tested on QM9—does not in fact lie at t = 0.5, but closer
to the pure-scalar model (vector fraction of 0.1 or 0.01,
depending on the model and whether one wants to opti-
mize MAE or RMSE). The näıve QM7b combined model
at t = 0.5 is still better than either the pure scalar or
pure vector models (this is also the case with the QM9
model once we add more training points). On the other
hand, for the QM7b model in its extrapolative regime
(i.e. tested on QM9), the situation is the opposite: the
optimal model has a scalar fraction of around 0.1, and
the näıve combined model at t = 0.5 is even worse in
MAE than the pure vector model, as we have seen in
Figure 2.

These observations confirm our suspicions that the
scalar model is prone to overfitting, as it achieves very
good performance in the interpolative regime, but rel-
atively poor performance in the extrapolative regime.

Models with a higher fraction of the vector contribution,
on the other hand, may not achieve the same accuracy in
the interpolative regime, but they are better at extrapo-
lating (i.e., they are more transferable). Following these
observations, it may be possible to derive a strategy for
adjusting the combined weights to achieve the best ac-
curacy on a variety of testing sets. Although we do not
explore such a strategy in this work, we do comment fur-
ther on the interplay between these two contributions in
Section IVG.

F. Comparison with OQML

It is interesting to compare the performance of our
models to that of the operator quantum machine learning
(OQML) scheme in Ref. 48. In OQML, a formal depen-
dence on an applied electric field is included in the defini-
tion of the (scalar) kernel by assigning fictitious charges
to each atom. This makes it possible to define deriva-
tives of the kernels relative to an applied field that are
naturally covariant and serve as a basis to fit molecu-
lar dipoles. It should be stressed that, even though the
scheme relies on formal atomic charges, it amounts ef-
fectively to learning local dipoles, and is therefore sim-
ilar to our vector model. Whereas in OQML, the en-
ergy and dipole regression models are coupled through a
scalar constant, our approach allows every property can
be trained independently.
As can be seen in Figure 2, the QM7b vector model

(the most transferable of the QM7b models) outperforms
the FCHL* OQML model by approximately 20%. This
is particularly remarkable, because the OQML model of
Ref. 48 was trained on 5000 structures from QM9; the
QM7b models, on the other hand, are trained on smaller
structures, and are therefore functioning in the much
more challenging extrapolative regime. This is in con-
trast to the QM9 scalar, vector, and combined models,
which are functioning in the interpolative regime in this
test. Here, we observe that the slopes of the QM9-QM9
learning curves are approximately the same as that of the
FCHL* (response) curve, but that they have a large off-
set. In other words, the MuML models achieve an MAE
of about 1⁄3 that of FCHL* with the same amount of data.

G. MuML showcase dataset

Similar to Ref. 37, we now turn from standard, sys-
tematically generated benchmark datasets to a showcase
dataset in which chemically relevant molecules have been
specifically chosen to test the sensitivity of the ML model
to subtler variations in chemical structure and bonding.
To this end, we assembled the so-called MuML showcase
dataset, which is depicted in Fig. 4 and comprised of the
first 29 molecules of the AlphaML showcase dataset56,64

(and includes the nucleobases, amino acids, sugars, and
common drug molecules). The C8Hn isomers from the
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Figure 4. List of molecules included in the MuML showcase dataset. The numerical key is used to identify the various
compounds in other figures.
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Figure 5. Performance of the MuML models on the MuML showcase dataset: a) learning curves by per-atom RMSE (top)
and MAE (bottom), b) per-molecule breakdown of the MuML models trained on the full QM7b training set (5400 molecules):
norms of the reference dipole moments computed with CCSD/daDZ on the MuML showcase dataset (top) and errors in the
norms of the dipole moment predictions across the same set (bottom three). Prediction errors are shown along with error bars
from an ensemble of models trained on subsets of the full training set.63 The molecule ID is in reference to Figure 4.
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AlphaML showcase dataset were discarded (because they
all have very small dipole moments), and substituted
with 31 C4HnNH2COOH amino acid derivatives, with
dipole moments spanning a broad range from 0.5D to
6D. Molecular geometries and dipole moments for these
new molecules were obtained using the same protocol de-
scribed in Refs. 37,56. For reference, the dipole moment
norms computed with CCSD/daDZ on the MuML show-
case are shown in the top panel of Figure 5b.

The learning curves of the three dipole models on the
MuML showcase dataset are shown in Figure 5a. All
three models achieve an accuracy comparable, in abso-
lute terms, to that on QM9. The (unadjusted) com-
bined model narrowly outperforms both the scalar and
vector models. Even in this extrapolative regime, the
accuracy of MuML is competitive with that of B3LYP:
for the largest training set size, MuML achieves errors
(RMSE = 0.029D per atom, MAE = 0.24D) that are
only 30% larger in RMSE (56% larger in MAE) than
those of B3LYP relative to CCSD (RMSE = 0.019D
per atom, MAE = 0.19D). The dramatic increase in
accuracy observed when training on the larger QM9
molecules (see Fig. 2) suggests that it is possible to train
a MuML model that will outperform DFT on this show-
case dataset. Unfortunately, the cost of performing LR-
CCSD calculations on thousands of QM9-sized molecules
is still prohibitive at the current time.

Due to the relatively small number of molecules in the
MuML showcase set, we can examine the performance of
the MuML models for each of the molecules individually.
Furthermore, we can also benchmark the uncertainty
quantification scheme discussed in Section IVC. Each
of the eight models in the committee model was trained
on a sample of 2700 molecules (50%) of the full train-
ing set), drawn from the full QM7b training set without
replacement. The calibrated error predictions were then
validated against the QM7b test set; additional details
can be found in the Supplementary Information. The
overall errors of the ensemble averages are comparable to
(if slightly higher than) those of the model trained on all
5400 points.

Figure 5b shows the breakdown of the errors of the
ensemble average, along with the uncertainties predicted
from the ensemble. Note that the errors are shown re-
versed from the usual convention–they are shown as ref-
erence minus predicted–and the error bars are shown cen-
tered about zero. Both the predicted uncertainties and
the ensemble-average residuals show no apparent system-
atic patterns across this set of molecules, although there
are some outliers. All three MuML models perform par-
ticularly poorly on Molecule 14 (cysteine), and the uncer-
tainty estimate is also relatively high for this molecule.
The evidence suggests that the high errors and uncertain-
ties are a consequence of the highly-polarizable nature
of sulfur, given that the models also give large overpre-
dictions and high uncertainties in the case of methion-
ine, the only other S-containing molecule in the MuML
showcase dataset. Other relatively large errors (and large

uncertainties) are seen on all models for Molecule 1 (gua-
nine), Molecule 21 (caffeine), Molecule 24 (metformin),
and Molecule 25 (acyclovir); the vector and combined
models additionally give large errors and uncertainties
for Molecule 4 (cytosine) and Molecule 23 (aspirin).

Overall, the prediction errors are consistent with the
error bars, with 88% of the scalar predictions, 55% of the
vector predictions, and 72% of the combined predictions
falling within one error bar of the reference (compare this
with the 68% expected if the prediction errors were to
follow a Gaussian distribution with a standard deviation
equal to the error bar). Thus, the uncertainty quantifica-
tion scheme applied herein provides a reliable estimate of
the model accuracy, improving our interpretation of the
model results in the extrapolative regime where the er-
rors can be several times larger than those in the original
testing set.

The only cases in which the predictions are farther
than two error bars from the reference is that of Molecules
30, 31, and 32: these show large errors but small uncer-
tainties in the vector model. Together with the similar
structure of these molecules–they are all polyenoic amino
acids, effectively an amine group and a carboxylic acid
joined by a fully conjugated polyacetylene chain/linker–
these deviations suggest a systematic error in the vector
model predictions. The delocalized nature of the con-
jugated chains in these molecules suggests that the error
could derive from a non-local effect that the vector model,
with its finite cutoff and strictly local environmental de-
pendence of the atomic dipoles, fails to capture.

In order to provide a more systematic, and far more
stringent, test of our models’ extrapolative capabilities,
as well as to investigate the effect of non-local effects on
each of the models, we designed four new “challenge”
test sets, each of which consists of a series of approx-
imately linear (pseudo-1D) molecules with polar groups
and (in three of the four sets) large separations of charge,
thereby giving rise to large dipole moments. More specif-
ically, we considered polymers of the glycine amino acid,
in both the α-helix and β-strand configurations, as well
as a series of polyenoic amino acids, with an amine group
and a carboxylic acid group separated by a polyacetylene
spacer. Finally, a set of n-amino carboxylic acids (the
saturated analogs of the polyenoic amino acids) was in-
cluded to investigate the effect of saturation in the spacer
on the molecular dipole moments and the model predic-
tions. Because of the large size of these molecules (up to
122 atoms, of which 69 were heavy/non-H atoms for the
longest α helical configuration), we used B3LYP/daDZ
references and models. Figure 6 contrasts the growth
of the dipole with chain length with the predictions of
the scalar, vector, and combined models. In the case
of polyglycine, the three models capture at least quali-
tatively the trend, with the vector model usually under-
predicting the slope, and the combined model performing
substantially better than either the scalar or the vector
model. In the case of the polyenoic amino acids, how-
ever, the vector model breaks down completely, predict-
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Figure 6. Dipole moment predictions for the four “challenge” cases: polyglycine in the α-helix conformation, polyglycine
in the β-strand conformation, polyenoic amino acids (trans-polyacetylene-bridged glycine), and n-amino carboxylic acids
(polyethylene-bridged glycine). All three models perform fairly well on the polypeptides, where the charge polarization is
a mostly local phenomenon. On the unsaturated bridged glycine, however, the vector model completely fails, with only the
scalar model maintaining accuracy (and the combined model suffering from the inclusion of the unphysical asymptotic behavior
of the vector model). The saturated bridged glycine has completely different behaviour, with the dipole saturating to a small
constant value; all three models predict this trend accurately. All predictions are from the MuML models trained on 5400
QM7b molecules (not the ensemble models).

ing a constant dipole as a function of chain length. The
scalar model most closely approaches the correct slope,
and the combined model shows the correct trend, but
with a smaller slope to the pure scalar model. The satu-
rated n-amino carboxylic acids showed a completely dif-
ferent trend, with the total dipole levelling off to a con-
stant small value and the model predictions essentially
following this trend. This contrast points to the con-
jugated, non-local nature of the polyenoic acids as an
essential ingredient to their large dipole moments: in-
deed, their saturated counterparts have stronger charge
locality and cannot transfer/delocalize charge across the
whole molecule, like the unsaturated chains can.

To gain deeper insight into the performance of the dif-
ferent MuML models as well as the physical effects that
determine the breakdown of the vector model, we com-
puted atomic contributions to the dipole moment–both
the vector predictions and the partial charges (for the
models that use them) for each atom–and represented
them together with the molecular structure in Figure 7.
Here, we discuss only the β-strands and the polyenoic
amino acids, as the observations for the α-helical struc-
tures are very similar to those for the β-strands. The

per-atom breakdown for the α-helices and the n-amino
carboxylic acids can be found in the SI. In the case of
the polyglycine β-strand, each monomeric unit is polar.
Since the total dipole is almost entirely made up of these
local monomeric contributions, the vector model based
on local atomic dipoles captures the correct scaling be-
havior with system size. The scalar model also captures
the correct behavior, as each molecular unit is (approxi-
mately) neutral and contributes a roughly constant term
(even though individual atomic dipoles grow larger for
atoms that are farther away from the molecular center).
The n-amino carboxylic acid also exhibits strongly lo-
calized physics, with the molecular dipole moment being
mostly generated by local polarization of the end groups,
and all three MuML models are able to give accurate pre-
dictions. Clearer differences between the MuML models
arise in the case of the polyenoic amino acids. The non-
polar spacer is (correctly) predicted to contribute very
little to the total dipole, while the amine and carboxylic
acid functional groups each bear a (roughly) constant
dipole, which results in a prediction that is indepen-
dent on the length of the spacer. The scalar model, on
the other hand, predicts net positive and negative scalar
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Figure 7. A representation of the per-atom contributions to the total dipole for two of the challenge systems: polyglycine in
the β-strand conformation (top), and polyenoic amino acids in the all-trans conformation (bottom). Vector per-atom dipoles
are defined in Eq. (12), and plotted exaggerated by a factor of 5 for visibility; atoms are colored according to the atom type.
Scalar per-atom dipoles are defined as the partial charges multiplied with the displacement vectors (referenced to the molecule’s
center of geometry), as in Eq. (7); atomic charges are also represented as atom colors according to the displayed color scale.
Per-atom dipoles for the combined model are the (appropriately weighted) sums of the respective scalar and vector per-atom
dipole predictions. The total dipoles, in each case equal to the sum of the per-atom predictions, are shown below each molecule
along with (in black) the reference dipole moment computed from B3LYP/daDZ. The per-atom arrows for the vector model
are exaggerated by a factor of 5 for visibility. The scale bar shows the maximum range of sensitivity (5�A) of the partial charges
and atomic dipoles to their environments. Visualizations created with Ovito.65
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charges on the amine and carboxylic acid groups, and as
a consequence predicts a total dipole that scales linearly
with the length of the spacer. Even if it underpredicts
the total dipole, the combined model most closely re-
flects conventional chemical wisdom: it predicts negligi-
ble charges along the polyacetylene spacer with only the
polar end groups contributing to the total dipole. Since
the end groups carry a net positive and negative charge,
the total dipole increases with their separation.
These observations reflect the shortcomings of a lo-

cal ML model, similar to what was observed in Ref. 37
for the molecular polarizability of conjugated hydrocar-
bons (e.g., alkenes and acenes). SOAP features are com-
puted with a cutoff of 5 Å, and cannot therefore de-
scribe structure-property correlations beyond this limit.
The scalar model circumvents this limitation by assuming
that atomic charges are local, and that the non-locality
of the dipole moment is entirely captured by the spatial
separation of the atomic charges. As shown in the SI,
the radial scaling functions of the two models, which re-
flect how quickly the influence of far-away atoms decay,
is consistent with the greater non-locality of the vector
model. The radial scaling of the scalar models decays
rapidly, well before the neighbor list cutoff, while that of
the vector model indicates that correlations beyond 5�A
would be needed to describe molecular dipoles as a sum
of local contributions.
Finally, while the local partial charges and dipoles

provided by this analysis bear some similarities to the
electron density decomposition schemes discussed in Sec-
tion II, they should not be confused. The partitioning
scheme shown here does not use the electron density;
rather, it provides an interpretable description of how
the ML model arrives at its prediction of the total dipole,
allowing us to verify whether or not it includes the ap-
propriate physics.

V. CONCLUSIONS

In this work, we have introduced a set of models for
predicting molecular dipole moments that we collectively
refer to as “MuML”. These models rely on a local, atom-
centered description of molecular structure that fulfills
the symmetries of the target property. We compare a
vector model that predicts atom-centered dipolar contri-
butions with a scalar model that predicts atomic charges
entering into a physics-based expression for the contribu-
tion to the total dipole moment. Training on reference
CCSD calculations performed on a set of small organic
molecules, both models can achieve a similar accuracy
of around 0.1D, which is comparable to the accuracy of
DFT, with a slight improvement made possible by com-
bining the two models. The differences between the mod-
els are more noticeable—up to 40% RMSE–when consid-
ering the transferability to larger molecules, namely the
QM9 dataset. Here, the vector model seems to be more
robust while the scalar model appears to overfit, with

a model trained on 5000 small molecules giving worse
performance than one trained on only 500. Even with
these limitations, the vector model outperforms a state-
of-the-art model based on the FCHL* framework48, even
though FCHL* model is trained on another subset of
QM9 molecules, and is therefore operating in the inter-
polative regime. When we use training structures from
QM9, the performance of MuML dramatically improves,
and we observe a three-fold reduction in the error. The
accuracy of the combined model can be improved by ad-
justing the relative weight of the scalar and vector mod-
els, with better interpolative performance observed in the
limit of large scalar weights, and better extrapolative per-
formance when using large vector weights. State-of-the-
art performance for MuML is also observed for a show-
case dataset of even larger and more complex molecules,
where the scalar model shows improved performance rel-
ative to the vector model, and the combined model ap-
proaches the accuracy of DFT. For these molecules, we
also show that a calibrated committee model can accu-
rately estimate the uncertainty in the model predictions,
thereby further improving the reliability of predictions in
this challenging extrapolative regime.

In this work, we finally pushed MuML to its breaking
point by performing predictions on a set of polymers of
increasing length, that extend far beyond the cutoff ra-
dius of the atom-centered features used to describe the
molecules. In this regime, the vector model can predict
reasonably well the molecular dipole moment of polyg-
lycine, for which each monomeric unit contributes a dipo-
lar term. It fails dramatically, however, for the polyenoic
amino acid series, where the increase in the molecular
dipole moment arises because of charge separation by
fully conjugated (but non-polar) spacer units. The scalar
model, on the other hand, recovers this effect correctly
because the geometric separation between atoms is built
into the form of the kernel, introducing an element of
non-locality.

The combination of these two models makes it possible
to improve the performance of MuML, even though the
optimal combination of weights depends rather strongly
on the nature of the test molecules. This suggests that,
even when taken together, local vector and scalar models
of the dipole only partially capture the physics of polar-
ization, affecting the overall model’s transferability. An
explicit treatment of long-range effects using a charge
equilibration scheme66, or incorporating long-range cor-
relations by long-distance equivariant features67, might
further improve the accuracy of MuML, which is already
competitive with that of hybrid DFT calculations while
being dramatically less computationally expensive.

Another direction for further research involves the
modelling of condensed phases. The presence of peri-
odic boundary conditions makes the position operator ill-
defined. As a consequence, an expression like Eq.(2) can-
not be used to define polarization in the condensed phase,
which makes the scalar and, by extension, the combined
models inapplicable. One way around this limitation is to
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instead model the position of Wannier function centers,
so that each point in the unit cell is an integer multi-
ple of the electron charge, thereby preserving the lattice
condition for polarization in a periodic medium (see e.g.
Spaldin 68 or Resta 69). Current implementations of the
idea, however, predict the position of centers attached to
an atom70, so that the framework is effectively equivalent
to learning atom-centred dipoles. Indeed, a vector model
can be readily applied to bulk systems, and has already
been used successfully to predict the infrared spectrum
of liquid water71. It is not obvious, however, that this
methodology will work well in systems where there is
significant delocalization of charge. Incorporating ideas
from the modern theory of polarization69, learning the
Born effective charge tensors, or taking a more decid-
edly data-driven approach by using long-range features
without explicitly incorporating a physical description of
electrostatics all provide possible strategies to apply to
condensed phases a model that can capture, like MuML,
the different phenomena that give rise to permanent or
transient polarization.

SUPPLEMENTARY INFORMATION

The supplementary material contains further details
about the derivation, implementation and benchmarks
of the method, including: • Convergence of the scalar
and vector models on QM7b • Kernel optimization pro-
cedure • Radial scaling function for scalar and vector
models • Uncertainty quantification calibration proce-
dure • QM7b Learning curves for B3LYP dipoles • Com-
parison of B3LYP, CCSD, and SCAN0 dipole moment
predictions on the MuML showcase • Per-atom break-
down of the alpha-helix and n-amino carboxylic acid pre-
dictions
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J. Chem. Phys. 126, 144111 (2007).

15R. F. W. Bader, Atoms in Molecules : A Quantum Theory

(Clarendon, Oxford, 1990).
16T. C. Lillestolen and R. J. Wheatley, Chem. Commun. 0, 5909
(2008).

17F. A. Momany, J. Phys. Chem. 82, 592 (1978).
18S. R. Cox and D. E. Williams, J. Comput. Chem. 2, 304 (1981).
19U. C. Singh and P. A. Kollman, J. Comput. Chem. 5, 129 (1984).
20C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 11, 361
(1990).

21T. A. Manz and D. S. Sholl, J. Chem. Theory Comput. 8, 2844
(2012).

22T. Verstraelen, P. W. Ayers, V. Van Speybroeck, and M. Waro-
quier, J. Chem. Theory Comput. 9, 2221 (2013).

23K. B. Wiberg and P. R. Rablen, J. Comput. Chem. 14, 1504
(1993).

24A. J. Stone, J. Chem. Theory Comput. 1, 1128 (2005).
25E. K. Conway, I. E. Gordon, O. L. Polyansky, and J. Tennyson,
J. Chem. Phys. 152, 024105 (2020).

26A. Stone, Chem. Phys. Lett. 83, 233 (1981).
27D. Geldof, A. Krishtal, F. Blockhuys, and C. Van Alsenoy, J.
Chem. Phys. 140, 144104 (2014).

28A. Mayer, Phys. Rev. B 75, 045407 (2007).
29T. Giovannini, A. Puglisi, M. Ambrosetti, and C. Cappelli, J.
Chem. Theory Comput. 15, 2233 (2019).

30M. G. Darley, C. M. Handley, and P. L. A. Popelier, J. Chem.
Theory Comput. 4, 1435 (2008).

31C. M. Handley and P. L. A. Popelier, J. Chem. Theory Comput.
5, 1474 (2009).

32G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia,
K. Hansen, A. Tkatchenko, K.-R. Müller, and O. Anatole von



16

Lilienfeld, New J. Phys. 15, 095003 (2013).
33F. A. Faber, A. S. Christensen, B. Huang, and O. A. von Lilien-
feld, J. Chem. Phys. 148, 241717 (2018).

34T. Bereau, R. A. DiStasio, A. Tkatchenko, and O. A. Von Lilien-
feld, J. Chem. Phys. 148, 241706 (2018), arXiv:1710.05871.
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42A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode,
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