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Abstract

Background: Mood disorders are common and associated with significant morbidity and mortality. Better tools are needed for
their diagnosis and treatment. Deeper phenotypic understanding of these disorders is integral to the development of such tools.
This study is the first effort to use passively collected mobile phone keyboard activity to build deep digital phenotypes of depression
and mania.

Objective: The objective of our study was to investigate the relationship between mobile phone keyboard activity and mood
disturbance in subjects with bipolar disorders and to demonstrate the feasibility of using passively collected mobile phone keyboard
metadata features to predict manic and depressive signs and symptoms as measured via clinician-administered rating scales.

Methods: Using a within-subject design of 8 weeks, subjects were provided a mobile phone loaded with a customized keyboard
that passively collected keystroke metadata. Subjects were administered the Hamilton Depression Rating Scale (HDRS) and
Young Mania Rating Scale (YMRS) weekly. Linear mixed-effects models were created to predict HDRS and YMRS scores. The
total number of keystrokes was 626,641, with a weekly average of 9791 (7861), and that of accelerometer readings was 6,660,890,
with a weekly average 104,076 (68,912).

Results: A statistically significant mixed-effects regression model for the prediction of HDRS-17 item scores was created:

conditional R2=.63, P=.01. A mixed-effects regression model for YMRS scores showed the variance accounted for by random

effect was zero, and so an ordinary least squares linear regression model was created: R2=.34, P=.001. Multiple significant
variables were demonstrated for each measure.

Conclusions: Mood states in bipolar disorder appear to correlate with specific changes in mobile phone usage. The creation of
these models provides evidence for the feasibility of using passively collected keyboard metadata to detect and monitor mood
disturbances.

(J Med Internet Res 2018;20(7):e241) doi: 10.2196/jmir.9775
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Introduction

The burden of mental illness is high. It has been estimated that
mental illness accounts for 32% of years lived with disability
around the world [1]. Bipolar disorder is a serious mental illness
characterized by recurrent episodes of depression and mood
elevation [2] and is associated with high rates of functional
impairment, decreased quality of life, and increased rates of
mortality from comorbid medical conditions [3]. Given these
costs, it is imperative that we deepen our understanding of this
disorder to promote accurate diagnosis and effective treatment.

The ubiquity of mobile phones, smartphones in particular,
presents a new opportunity in the study of mental illness. An
estimated 64% of adults in the United States own a mobile
phone and use it for a variety of tasks, including phone calls,
Web browsing, and social media; however, the most widely
and frequently used feature on mobile phones is short message
service text messaging [4]. These devices can be employed as
platforms for the unobtrusive collection of myriad data that can
be used in the study of psychopathology. Ecological momentary
assessment is a methodology that aims to collect data using
repeated measures in real time (or near real time), in people’s
natural environment [5]. When applied to the use of digital
technologies such as mobile phones, this methodology can be
used to create digital phenotypes defined as the set of observable
behaviors resulting from the interaction between human disease
and people’s use of digital technologies [6].

Because recurring mood episodes are a defining characteristic
of bipolar disorder, we posited that it is an ideal illness for a
pilot study investigating the relationship between mobile phone
keyboard activity and the correlates of these episodes, such as
changes in cognitive function, psychomotor activity, social
behavior, and diurnal activity patterns. We elected to focus on
keystroke dynamics because features using text input (eg, texting
and Web browsing) are among the most commonly used features
in mobile phones and because we hypothesized that keystroke
dynamics provide a sufficiently dense space from which to
extract relevant features that could be used to predict the severity
of depression and mania.

Methods

Participants
Study subjects were members of the Prechter Longitudinal Study
of Bipolar Disorder, a naturalistic, longitudinal study based in
the University of Michigan [7]. This cohort includes subjects
with bipolar disorder, other psychiatric illnesses, and healthy
controls; however, only those with bipolar disorder were
recruited into this study. Subjects were recruited into this study
by email or phone invitation. The inclusion criteria included
being a current Android mobile phone user, asserting familiarity
with the Android operating system, having no gross impairments
in fine motor abilities, sufficient vision to use a mobile phone
keyboard, and self-reporting of frequent mood fluctuations or
having longitudinal data from the longitudinal study suggesting
that they experience frequent mood symptoms (ie, endorsed
frequent mood symptoms on bimonthly self-report measures of
mood or categorized as rapid cycling).

We initially included 19 subjects with a bipolar spectrum
disorder as per the Diagnostic and Statistical Manual of Mental
Disorders-Fourth Edition (Text Revision) criteria [8] (11 with
bipolar I, 7 with bipolar II, and 1 with bipolar not otherwise
specified); of these subjects, 1 never activated the app and 2
deleted the app early in the study. Of the remaining 16 subjects,
participation varied in terms of the number of weeks that had
any keyboard activity, with an average of 4.69 (3.05) weeks.
Because of concerns about adherence, data analysis was
restricted to subjects who provided data for at least 4 weeks.
This resulted in 9 subjects: 5 with bipolar I and 4 with bipolar
II. Of these, 8 subjects met the criteria for rapid cycling (ie, 4
or more mood episodes per year), and all subjects with bipolar
II had recurrent depressive episodes. Of these 9 subjects, 7
showed keyboard activity for at least 6 weeks. The total usable
data from these subjects included 626,641 keystrokes and
6,660,890 accelerometer readings.

Mobile Keyboard
A custom keyboard called “BiAffect” was developed for the
Android operating system that replaced the default keyboard
and collected metadata consisting of keystroke entry date and
time and accelerometer displacement. It uploaded these data
using secure encrypted protocols to the study server hosted at
the University of Illinois at Chicago. Accelerometer data
collection was initiated by keystroke entry and continued for 5
seconds afterward. Individual character data outside of the
backspace key and space bar were not collected, anonymizing
the entry. The keyboard was designed to appear similar to the
standard Android keyboard (Figure 1).

Data Collection
For 8 weeks, subjects were provided a Samsung Galaxy Note
4 smartphone that they were instructed to use as their primary
phone during the study period. Subjects were encouraged to use
their current phone number and subscriber identification module
card; with the exception of 1 subject, all subjects did so. During
the study period, trained staff at the University of Michigan
administered the Structure Interview Guide for the Hamilton
Depression Rating Scale (HDRS) [9] and Young Mania Rating
Scale (YMRS) [10] once a week via phone interviews.

Statistical Analyses
Subject demographics are described in Table 1. The YMRS
results showed a right-tailed skew (γ1=1.14) [11], so a log
transformation was performed on the YMRS scores by taking
the natural log of the sum of the YMRS scores and 1 (γ1=−0.44).

In order to identify the possible relationships between subject
demographics and phone usage, Spearman correlations were
calculated between subjects’ total key counts and their age and
education.

Mixed-effects linear models were created correlating keyboard
metadata collected from the week prior to the administration of
the HDRS (17-item) and YMRS mood rating scores. Missing
data were handled with pairwise deletion. Features extracted
from the metadata were modeled as fixed effects. Observations
were grouped by subject, with each subject having his or her
own random intercept for his or her mood ratings.
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Figure 1. Screenshot of the BiAffect keyboard (keyboard design derived from AnySoftKeyboard by Menny Evan-Danan and licensed under Apache
License 2.0.).

Table 1. Subject characteristics.

ValueCharacteristics

48.67 (9.63)Age in years, mean (SD)

8 (89)Female gender, n (%)

14.00 (2.12)Years of education, mean (SD)

Diagnosis, n (%)

1 (11)Bipolar I

4 (44)Bipolar I with rapid cycling

4 (44)Bipolar II, recurrent depressive episodes, with rapid cycling

69,627 (57,477)Number of keystrokes, mean (SD)

740,099 (47,165)Number of accelerometer readings, mean (SD)

7.70 (0.70)Weeks of activity, mean (SD)

11.90 (6.17)Initial HDRSa-17 item, mean (SD)

11.11 (5.49)Final HDRS-17 item, mean (SD)

7.56 (5.00)Initial YMRSb, mean (SD)

6.67 (4.03)Final YMRS, mean (SD)

aHDRS: Hamilton Depression Rating Scale.
bYMRS: Young Mania Rating Scale.
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Table 2. Predictor variable definitions.

DefinitionPredictor variable

The average time between keystrokes measured in secondsAverage interkey delay

Number of backspace keypresses divided by total keypressesBackspace ratio

Number of autocorrect events divided by total keypressesAutocorrect rate

The cosine-based similarity between the hourly distribution of keypresses/week and the hourly distribution
for the study period

Circadian baseline similarity

Square root of sum of squares of accelerometer displacement along each coordinate (x, y, z) averaged

over the week (average of √x2+y2+z2)

Average accelerometer displacement

Length of sessions in seconds averaged over the weekAverage session length

Number of sessions: A session begins when a keypress is initiated and ≥5 s has elapsed since the last
key was pressed. A session ends when ≥5 s has elapsed since the last key was pressed.

Session count

Overall significance was assessed by using likelihood ratio tests
comparing the null models that consisted of just the subject-level
effect with full models consisting of the subject-level effect and
metadata features. Because the mixed-effects model for the
YMRS scores showed that the random effect was accounting
for none of the variance of the YMRS scores, a fixed-effects
ordinary least squares model was created instead (mixed-effects
model log likelihood −64.621, Akaike Information Criterion
149.24, Bayesian Information Criterion 170.83; fixed-effects
ordinary least squares model: log likelihood −64.621, Akaike
Information Criterion 147.24, Bayesian Information Criterion

166.67). For the HDRS model, conditional and marginal R2

values were calculated using the method specified by Nakagawa
and Schielzeth [12], as implemented in the R package

piecewiseSEM [13]. Using this method, the conditional R2 is
equal to the proportion of variance explained by both the fixed

and random effects, and the marginal R2 is equal to the
proportion of the variance explained by the fixed effects alone.
The P values of the model coefficients were calculated using
Wald chi-square tests, as implemented in the R package car [14]
for the HDRS model. For the YMRS model, overall significance
was tested using an F-test and individual coefficient significance
was determined with t-tests.

The fixed-effect variables included the average interkey typing
delay, the average accelerometer displacement, the backspace
and autocorrect rates (ie, the total number of each divided by
the total number of keystrokes), the average length of each
typing session in seconds, the total number of typing sessions,
and the cosine similarity between each week’s keypress activity
and the total keypress activity of the study period (described
further below). All aggregate variables were calculated for the
week preceding each mood assessment. A session was defined
as beginning with a keypress that occurs after 5 or more seconds
have elapsed since the last keypress and ending when 5 or more
seconds have elapsed between keypresses.

Models were created using the software package lme4 [15] for
the R software environment version 3.3.3 [16].

Predictor Variables
The predictor variables were chosen based on the hypothesis
that they map to key cognitive and behavioral domains affected
by mania and depression. Table 2 provides definitions of each

variable, and each domain and their corresponding variables
are discussed in turn below.

Psychomotor Activity
As per the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5), changes in psychomotor
functioning are criteria for both major depressive and manic
episodes [2]. Psychomotor activity is also a component of the
clinician’s ratings within HDRS and YMRS. We hypothesized
that psychomotor activity (agitation and retardation) manifests
in the accelerometer displacement and the average interkey
delay. We predicted that increasing levels of psychomotor
agitation lead to subjects holding their phones less stably, thus
resulting in higher accelerometer displacement values. In the
case of average interkey delay, it can be argued that increased
levels of psychomotor agitation could lead to either a lower or
higher delay. In the case of the former, higher levels of agitation
would lead to a general speeding up of behaviors, including
typing; however, it is also possible that while more agitation
may lead to an increase in the amount of activity, the ability to
effectively type will be impaired, leading to a higher interkey
delay and possibly more use of backspace and autocorrect. In
contrast, psychomotor retardation was hypothesized to manifest
as a higher average delay.

Social Activity
The BiAffect app did not capture the context of keyboard
activity; however, we hypothesized that increases in keyboard
activity are likely associated with increased social activity
consisting of both texting and social media usage and that more
activity would be associated with higher YMRS scores and
lower HDRS scores. There are mixed data on the role of social
media use and depression, with some studies showing decreases
[17] and others reporting increases in social media usage in both
high school [18] and college [19] students.

Cognition
Impairments in attention and concentration are seen in both
depressive and manic episodes, as described in the DSM-5 and
previous studies [2]. Impulsivity and deficits in error correction
have also been identified as features seen in manic episodes
[20]. Variables that characterize concentration and cognition
were hypothesized to include the average interkey delay, the
backspace rate, and the autocorrect rate. It was hypothesized
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that increased backspace rates indicated increased error
correction and increased autocorrect rates indicated decreased
error detection. Impaired concentration was hypothesized to
manifest as increased interkey delay.

Diurnal Activity Patterns
Changes in sleep patterns are characteristic of both depressive
and manic episodes. In the case of depression, this may take
the form of insomnia or hypersomnia, whereas in the case of
mania, there is typically a decreased need for sleep [2]. We
expected that such changes in sleeping patterns would manifest
as changes in phone typing activity. To characterize such
changes, we created a cosine-based similarity feature of keypress
activity. Cosine-based similarity is a frequently used technique
in the field of machine learning and predictive algorithms to
characterize the similarity between entities [21,22]. In our
implementation, the distribution of keypress activity for a given
week was defined as vector of 24 dimensions, with each
dimension corresponding to an hour of the day. The value of
the vector in each dimension was set equal to the number of
keypresses in that hour. We then calculated the cosine of the
angle between each week’s vector and the vector representing
activity for the entire study period. In this way, the more
dissimilar a given week’s pattern of activity was compared to
the total activity, the lower the value of the cosine would be. It
was hypothesized that more dissimilar weeks would correspond
to higher HDRS and YMRS scores.

Results

Predictor Variable Summary Statistics
Summary statistics for each predictor variable are presented in
Table 3.

Total Key Press Activity and Subject Demographics
No statistically significant correlations were found between
total key counts and subjects’ age (S=139.16, P=.68) and
education levels (S=144.41, P=.60).

Prediction of Depression Symptoms
Likelihood ratio testing comparing the null model that consisted
of just the subject-level random effect to the full model showed
that the full model had superior fit (χ ²7=17.6, P=.01; see Tables

4 and 5). The marginal R2 (ie, the proportion of the variance
explained by the metadata features) was 0.41, and the

conditional R2 (ie, the proportion of the variance explained by
both the subject-level effect and the metadata features) was .63.
Accelerometer displacement (P=.002), average interkey delay
(P=.02), session count (P=.003), and the autocorrect rate
(P=.004) were found to be positively correlated with the HDRS
scores.

Prediction of Hypomania or Mania Symptoms
A multiple linear regression model was created that accounted
for 34% of the variance of the natural logarithm of YMRS scores

(multiple R2=.34, F7,56=4.08, root mean square error=.66,
P=.001; Table 5). Accelerometer displacement (P=.003) was
found to be positively correlated with YMRS scores, and the
backspace rate (P=.01) was found to be negatively correlated.

Table 3. Variable summary statistics.

Average number of observations per
subject per week

MaxMinMean (SD)Statistics

104,0769.999.079.56 (0.22)Average accelerometer displacement (m/s2)

97801.950.300.69 (0.36)Average interkey delay (s)

982a0.270.00700.093 (0.050)Backspace rate

1021a0.140.0110.10 (0.033)Autocorrect rate

—31.516.9019.63 (6.12)Average session length (s)

—8049241.13 (159.33)Session count

—0.960.140.77 (0.17)Circadian baseline similarity

—25011.83 (6.29)HDRSb 17-item

—2005.64 (4.87)YMRSc

—3.04501.60 (0.82)Natural log of YMRS

aAverage number of backspace or autocorrect events.
bHDRS: Hamilton Depression Rating Scale.
cYMRS: Young Mania Rating Scale.
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Table 4. Fixed effects estimates of regression models.

Natural log of Young Mania Rating Scale17-item Hamilton Depression Rating ScaleScaled predictors

P valueOrdinary least squares (95% CI)P valueLinear mixed-effects (95% CI)

.0030.39 (0.15 to 0.64).00173.20 (1.20 to 5.21)Average accelerometer displacement

.440.13 (−0.19 to 0.44).0222.88 (0.42 to 5.35)Average interkey delay

.014−0.30 (−0.53 to −0.070).99−0.01 (−1.53 to 1.52)Backspace ratio

.630.06 (−0.17 to 0.29).00362.67 (0.87 to 4.47)Autocorrect rate

.68−0.04 (−0.24 to 0.16).14−1.16 (−2.71 to 0.39)Average session length

.73−0.04 (−0.28 to 0.19).00252.18 (0.77 to 3.56)Session count

.830.03 (−0.22 to 0.27).640.34 (−1.07 to 1.75)Circadian baseline similarity

<.0011.60 (1.43 to 1.78)<.00111.77 (9.80 to 13.74)Constant

Table 5. Summary of regression results.

Natural log of Young Mania Rating Scale17-item Hamilton Depression Rating ScaleScaled predictors

Ordinary least squaresLinear mixed-effects

6464Observations

.34—Multiple R2

.26—Adjusted R2

—.63Conditional R2

—.41Marginal R2

—−179.65Log likelihood

.71a—Residual standard error

4.1c17.6bChi-square statistic or F statistic

adf=56
bχ2

7, P=.014.
cF7,56, P=.0011.

Discussion

Principal Findings
Using only passively collected metadata, keystroke activity
predicted both depressive and manic symptoms. The model to
predict depression scores demonstrated greater explanatory
capacity as shown by the larger proportion of variance explained
by the model and the larger number of significant predictors.

Psychomotor Activity
Increased accelerometer activity was found to be positively
correlated with both depression and mania scores. One possible
explanation for the positive correlation with both scores is that
the subjects in our study had more mildly agitated or irritable
forms of depression or depression with mixed features rather
than forms exhibiting psychomotor retardation.

Social Activity
In contrast to our hypothesis that decreased sessions would be
predictive of higher depression, the overall number of sessions
was actually positively correlated with depression. This may
be a reflection of the dynamic between loneliness and

withdrawal. Sessions from a phone can be seen as lower risk
and can also include passive use of social media, such as
viewing but not posting, enabling a feeling of connection and
withdrawal. At least one study has demonstrated an association
between increased usage of the internet more generally and
depressive symptoms [23]. It is also worth noting that while the
session count was positively correlated, the average session
length was negatively correlated (although this predictor did
not reach statistical significance, P=.15), suggesting that patterns
of activity may be more relevant than the overall volume of
activity.

Cognition
Impairments in executive function have been demonstrated
more in individuals with bipolar disorder in depressed, manic,
and euthymic states than in healthy controls [20], although it
has also been shown that executive functioning may be
especially impacted during manic states [24,25]. Interestingly,
our depression and mania symptom models diverge in their
relationships with respect to what we theorized would be the
key features related to cognition: backspace and autocorrect
rates. The increase in autocorrect rate with depression symptoms
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seems relatively straightforward. Here, the ability to concentrate
becomes impaired in more depressed states, and therefore, the
rate of typing errors increases. What is less clear is why the
backspace rate would be negatively correlated with mania
symptoms without a concomitant positive correlation with the
autocorrect rate. One possibility is that the lower backspace
usage seen with higher mania scores reflects a phenomenon of
less self-monitoring or impaired response inhibition with errors.
Those with elevated mania do not trigger the autocorrect
mechanism because their inputs are generally correctly spelled
but often grammatically or semantically inappropriate words,
fitting the profile of someone who keeps deleting what they
type because it was impulsively entered.

Diurnal Activity Patterns
Because sleep disturbance is such a prominent aspect of mood
disturbance, we were surprised that measurements that aimed
to reflect diurnal variations in activity were not predictive of
depressive or mania symptoms. With the assumption that the
distribution for the entire observation period would approximate
the subject’s baseline, we expected that lower values of
similarity would be correlated with higher depression and mania
scores. The cosine similarity values did not reach statistical
significance in both models. One possible explanation for this
is that the period of observation was not long enough to establish
actual baselines in the sense of encompassing activity through
a variety of mood states, including euthymia, and that the
distribution for the entire observation period for many subjects
corresponded to a single mood state. Another important
consideration is that while diurnal patterns of phone activity
may be related to sleep, they are not identical.

Limitations and Future Directions
The limitations of this study include its sample size (relative to
the model’s complexity), sample characteristics that are probably
not representative of a general population (ie, mostly women
who have a high frequency of episodes), and the constraint of
having subjects using study-issued phones. A larger study in
which participants use their own phones is warranted in order
to determine the generalizability of these findings. More data
may also enable the creation of more sophisticated models with
higher rates of prediction accuracy and reliability.

Unfortunately, there were fewer predictors of mania scores, and
overall, this prediction was less accurate. Prediction of acute
changes in mania may have stronger clinical implications, given
the reduced tendency to seek treatment in mania generally. We
suspect that primary reasons for the decreased prediction of
mania are that our sample contained generally low mania scores
and that both mania and hypomania elevations are often short
and sporadically observed relative to longer and more stable
episodes of depression. Rather than demonstrating correlates
of mania per se, the mania model presented here might represent
correlates of mixed or agitated depression.

Comparison with Prior Work
Prior studies have investigated the potential utility of various
aspects of mobile phone activity as a means to diagnose mood

states. Early studies focused on demonstrating the practicality
of collecting self-reports of mood using mobile phones from
patients [26,27]. While this approach may increase the facility
with which such data are collected, it is still subject to the biases
associated with self-reported data, potentially leading to spurious
results [28]. More recent studies have focused on the validation
of passive data collection methods and yielded encouraging
results. Passive data features that have been demonstrated to
correlate with mood ratings include physical movement [29,30],
amount of phone usage [30], and frequency of calls and text
messages with personal contacts [31].

The use of keystroke dynamics as a means to detect the emotion
or mood of users is an active area of research in the field of
affective computing, with most studies to date investigating the
use of desktop keyboards [32]; however, there have been at
least two studies that have examined the use of mobile phone
keyboard dynamics as means to recognize user emotion. The
first study was a 2-week pilot study based on the activity of a
single user on Twitter, wherein the user was instructed to write
a Tweet whenever he or she experienced certain emotions and
to record the emotion from a preset selection of options. Using
a Bayesian Network classifier, the investigators were able to
achieve an overall classification accuracy of 67.52%, with the
most important feature being typing speed [33]. The second
study consisted of a larger sample of 22 subjects and was
conducted over 3 weeks. It also presented users with a preset
selection of options for emotions; although, in contrast to the
first study, keyboard activity was recorded over all applications
and the users were prompted to input their emotional state on
a regular basis. Using a random forest model, the investigators
were able to achieve an average classification accuracy of 84%,
with the most important typing dynamic feature being typing
speed [34].

Although the aforementioned studies measuring mobile phone
keystroke dynamics sought to predict emotion rather than mood,
we find the relative importance of typing speed as an important
feature across their studies as well as our own to be of note. To
the best of our knowledge, our study is the first effort to use
passively collected mobile phone keyboard metadata features
to predict mood disturbances in a clinical sample using clinically
relevant measures.

Conclusions
Passively collected mobile phone keystroke dynamics may be
a useful and important method to identify incipient mood
processes in persons with bipolar disorder. The facility with
which such data may be used to infer the presence and severity
of mood disturbances may enable clinical providers to intervene
earlier in their patients’ mood episodes, as well as increase the
number of patients a single provider can effectively manage.
Models such as those presented here may also lead to a deeper
understanding of these disorders by revealing novel behavioral
traits associated with them.
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