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Improved understanding of neuroimaging signal changes and their relation to patient

outcomes after ischemic stroke is needed to improve ability to predict motor

improvement and make therapy recommendations. The posterior limb of the internal

capsule (PLIC) is a hub of afferent and efferent motor signaling and this work proposes

new, image-based methods for prognosis based on interhemispheric differences

in the PLIC. In this work, nine acute supratentorial ischemic stroke patients with

motor impairment received a baseline, 203-direction diffusion brain MRI and a clinical

assessment 3–12 days post-stroke and were compared to nine age-matched healthy

controls. Asymmetries based on the mean and Kullback-Leibler divergence in the

ipsilesional and contralesional PLIC were calculated for diffusion tensor imaging (DTI)

and diffusion spectrum imaging (DSI) measures from the baseline MRI. Predictions of

upper extremity Fugl-Meyer (FM) scores at 5-weeks follow-up from baseline measures

of PLIC asymmetry in diffusion tensor imaging (DTI) and diffusion spectrum imaging (DSI)

models were evaluated. For the stroke participants, the baseline asymmetry measures

in the PLIC for the orientation dispersion index of the neurite orientation dispersion and

density imaging (NODDI) model were highly correlated with upper extremity FM outcomes

(r2 = 0.83). Use of DSI and the NODDI orientation dispersion index parameter shows

promise of being more predictive of stroke recovery and to help better understand

white matter changes in stroke, beyond DTI measures. The new finding that baseline

interhemispheric differences in the PLIC calculated from the orientation dispersion index

of the NODDI model are highly correlated with upper extremity functional outcomes may

lead to improved image-based motor-outcome prediction after middle cerebral artery

ischemic stroke.
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INTRODUCTION

After the acute phase of an ischemic stroke, the best course of
treatment is often not clear. While measures such as baseline
disability levels, age at stroke onset, infarct volume, and lesion
location are used in predicting general stroke recovery outcomes,
they are not used in predicting specific motor function outcomes
such as upper extremity (UE) scores (1). Prognosis of post-
stroke recovery is needed but remains imprecise. For example,
clinicians do not know which patients can expect benefit from
motor rehabilitation, nor whether to focus therapy efforts on
restoring motor function or teaching compensatory strategies.
Recommendations for therapy to improve UE function would
benefit from more accurate methods during the first weeks post-
stroke to predict potential for motor recovery. Many researchers
have argued for the development of biomarkers to predict
such recovery (2), with neuroimaging biomarkers being the
most studied. The most common neuroimaging biomarkers
studied for their ability to predict post-stroke UE recovery have
been those measuring the integrity of corticospinal tract white
matter (3–10).

Analysis of white matter integrity has most commonly been
done withDTImeasures such as fractional anisotropy (FA), mean
diffusivity (MD), radial diffusivity, and axial diffusivity (AD).
These measures have shown modest correlation with stroke
outcomes (3, 4, 7–9). Furthermore, when paired with transcranial
magnetic stimulation, DTI based measures have demonstrated
clinical utility in stroke outcome prediction (6, 9). However, there
remain many problems with clinical implementation of these
approaches, from insufficient accuracy in prediction to the time-
intensive nature of these assessments. Some of the inaccuracy of
these methods stems from the limitations of DTI in discerning
white matter integrity in regions of crossing fibers, trauma, and
axonal remodeling (11, 12). Higher order diffusion methods with
MRI may be able to provide greater prediction accuracy.

Diffusion Spectrum Imaging (DSI) Models
for Stroke Prognosis
MRI measures derived from diffusion spectrum imaging (DSI)
using generalized fractional anisotropy (GFA) show promise to
assess the integrity of the corticospinal tract (CST) and to predict
motor function recovery. DSI may overcome the limitations of
DTI and add useful detail regarding the extent of white matter
degeneration in regions affected by stroke. If measures derived
from DSI models provide better estimation of white matter
integrity indicative of improved potential for motor function
recovery, an image-only based prognosis system may be realized.
At the very least, combination approaches of TMS and MRI

Abbreviations: AD, axial diffusivity; CST, corticospinal tract; DSI, diffusion

spectrum imaging; FA, fractional Anisotropy; FM, Fugl-Meyer; FM UE tp2,

upper extremity Fugl-Meyer score at time point 2; GFA, generalized fractional

anisotropy; MD, mean diffusivity; NODDI, neurite orientation density and

dispersion imaging; PLIC, posterior limb of the internal capsule; RD, radial

diffusivity; RDI, restricted diffusion index; UE, upper extremity; DoF, degrees of

freedom.

for prognosis should be improved by DSI models with a fast
acquisition scheme.

DSI generalizes DTI by acquiring more directions in q-
space either through high angular resolution diffusion imaging
(HARDI) shells, q-ball imaging or a cube on a Cartesian grid
(13, 14). DSI is thought to better estimate areas of crossing or
kissing fibers, demyelination (15), and axonal remodeling (16)
missed in DTI. A popular measure estimated from DSI data and
previously used to predict stroke outcome based on changes in
white matter (5, 16, 17) is GFA. GFA is described as the standard
deviation of diffusion directions in a voxel and is the DSI analog
of the DTI derived parameter FA.

Rationale Behind NODDI for Stroke
NODDI is a multi-compartment model that differs from prior
models in that it estimates the intracellular and extracellular
contributions to the signal in terms of neurite morphology.
This means that the extracellular components of the signal are
estimated in terms of the intracellular components, instead of
separately estimating the compartments, or treating them as a
single compartment. Such a multi-compartmental approach is
thought to be useful in discerning areas of crossing fibers (15).
NODDI parameters may also better estimate the integrity of
white matter in the subacute phase of stroke when Wallerian
degeneration and processes involving reactive astrocytes and
microglia that lead to glial scarring are occurring (18).

Aims
In this work, the efficacy of measures from multi-compartment
and high-angular resolution models in predicting upper
extremity motor function recovery in stroke patients was
examined using data from a fast DSI acquisition scheme. (a)
We first aimed to understand how ipsilesional and contralesional
regions of the CST in participants with stroke deviate from
controls (b) Next, we evaluated the ability to predict motor
function outcomes at 5-week follow-up from measures of
asymmetry in regions of the CST in a baseline scan. (c) Last, we
investigated the association of baseline lesion size and CST lesion
load with motor function outcomes.

MATERIALS AND METHODS

Participant Selection and Clinical
Assessments
This study was carried out in accordance with the
recommendations of Department of Health and Human
Services (DHHS) and Food and Drug Administration (FDA).
The protocol was approved by the Institutional Review Board at
the University of Utah (assurance number FWA00003745 - U of
Utah). All subjects gave written informed consent in accordance
with the Declaration of Helsinki.

Stroke patients were recruited through the University of
Utah Stroke Center at the University of Utah hospital. Patient
inclusion criteria were: (1) supratentorial, imaging confirmed,
ischemic stroke; (2) sufficient upper extremity weakness with
some voluntary movement ability; (3) baseline Fugl-Meyer (FM)
Upper Extremity (UE) score≤50 and FM Lower Extremity score
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≤28; and (4) MRI scan taken >2 days and <2 weeks from
stroke onset. FM assessments were performed by an occupational
therapist within 2 weeks of the stroke date and 1 ± 3 days
from the date of the baseline MRI scan. Follow-up Fugl-Meyer
assessment was performed a mean ± standard deviation of 38
± 9 days post-stroke for all subjects. This follow-up assessment
we refer to as tp2, and, when referring to the Upper-Extremity
FM scores, as FM UE tp2. Change in FM UE was defined as
the difference between FM UE tp2 and FM UE baseline. See
Appendix for summary of stroke patient data.

Non-stroke participants of similar age to stroke participants
were recruited by the Department of Radiology and Imaging
Sciences Research Staff. Control participants had no known
history of neurological disorders.

All patients received usual neurologic and rehabilitation care
and either sildenafil, memantine, or a placebo after undergoing
a baseline MRI scan. Data were blinded to interventional
information for this analysis since the intent was to determine
whether a baseline scan has predictive value of eventual motor
recovery, regardless of treatment.

Data Acquisition
Fully sampled DSI data were acquired with equal spacing in q-
space on a cartesian grid in 203 directions with a maximum
b-value of 4,000 s·mm−2 for the 9 stroke participants and 9 non-
stroke participants on a Siemens 3T Verio scanner using a 32
channel head coil 3–12 days post-stroke (19). A second scan was
acquired 38± 9 days post-stroke for 8 participants. For all scans,
a simultaneous multi-slice blipped controlled aliasing sequence
(20) with a slice acceleration factor of three was employed. The
scan parameters were TR = 3.7 s, TE = 114.2ms, number of
slices = 51, slice thickness of 2.1mm, FOV 250 mm2, voxel
dimensions 1.9 × 1.9 × 2.1 mm3, and a total data acquisition
time of 12–13min.

Data Processing
First, skull stripping was performed on the reconstructed images
using the brain extraction tool in (21). Noise was removed
by identifying the noise-only principal components for local
neighborhoods of voxels, the bulk of which are described by
the universal Marchenko-Pastur distribution (22). Correction for
noise-induced bias resulting from high diffusion weighting was
done by transforming the magnitude of the signals to Gaussian
signals according to (23, 24). Gibb’s ringing was corrected by
implementing software (25) that re-interpolated the image based
on local, subvoxel-shifts to sample the ringing pattern at the
zero-crossings of an oscillating sinc-function (26). Last, magnetic
field inhomogeneities and eddy current induced distortion were
corrected using the eddy_openmp command (27). These signal
processing steps help remove many of the distortions and biases,
enabling accurate estimation of the microstructural features.
MATLAB 2017a was used to wrap all the processing steps to be
executable from a single script.

Following the processing steps, the diffusion tensor elements
were estimated using non-linear optimization with positive
definiteness constraints on the tensors using CAMINO (28) from
which FA, MD, AD, and RD maps were calculated (Figure 1).
The orientation distribution functions were estimated using
DIPY (17, 29) for calculating GFA. The NODDI model was fit
to the data using the NODDI MATLAB toolbox with default
parameters (15, 30).

Corticospinal Tract Label Estimation
Labels for white matter structures in the brain were estimated
for all non-stroke and stroke scans, by warping the FA maps
to fit the Johns Hopkins University FA 2.0mm atlas (31, 32)
using Advanced Normalization Tools (32, 33). Individual labels
for the corona radiata, posterior limb of the internal capsule
(PLIC), and cerebral peduncle, were identified and used in
subsequent analysis.

FIGURE 1 | Example of a stroke subject image for each parameter investigated.
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ANALYSIS

Deviation of Stroke Corticospinal Tract
From Control
The mean values in the cerebral peduncle, PLIC, and corona
radiata for each DTI and DSI parameter were calculated for all
participants. A paired two-tailed t-test was performed in the
cerebral peduncle, PLIC and corona radiata to determine whether
significant hemispheric differences exist in controls in any region
of the CST. In participants with stroke, a paired two-tailed t-
test was performed for ipsilesional vs. contralesional segments
of the CST. Last, significant differences between ipsilesional
regions of the CST in participants with stroke and the CST
in controls were investigated through two-sample two-tailed
heteroscedastic t-test for each imaging parameter. P-values were
adjusted for multiple comparisons using Holm’s multiplicity
adjustment, which controls the type I error without the need to
first test the global hypothesis with ANOVA.

Calculation of Microstructural
Asymmetries in Baseline Stroke
Corticospinal Tract
Because most prior studies report the PLIC to be the most
important region of the CST in image-based motor function
prognosis, the next steps of the analysis assessing the potential
for DSI and DTI image-based motor function prognosis were
focused on the PLIC.

Two different approaches were used to calculate the
asymmetries for the PLIC for each DTI and DSI parameter map
in each participant: (1) the interhemispheric mean difference,
referred to as 1PLICMean and defined as,

1PLICMean (C, I) = C − I, (1)

where I is the mean value in the ipsilesional PLIC, and C
is the mean value in the contralesional PLIC; and (2) the
Kullback-Leibler Divergence (KLD), referred to as 1PLICKLD

and defined as,

1PLICKLD (C, I) =
1

2

[

n
∑

i=1

(

C(i) ln

(

C (i)

I (i)

))

]

, (2)

where I is the distribution of values in the ipsilesional PLIC, and
C is the distribution in the contralesional PLIC. 1PLICKLD was
calculated in R version 3.3.2 using 10 bins with the command
KL.shrink from the entropy library (34). The KLD calculates
an unbounded (0-Inf) logarithmic difference that provides a
more complete estimate of the divergence of distribution C from
distribution I than only a comparison of means.

It was hypothesized that a greater divergence in the
baseline ipsilesional and contralesional PLIC distributions would
correlate with worse functional outcomes at tp2. To test this
hypothesis, the correlations of 1PLICMean and the log transform
of 1PLICKLD with FM UE tp2 and change in FM UE were
evaluated using a combination approach. To push the limits of
the small sample size, six points were selected as a training set,
and three points left out for every possible combination of the
data resulting in 84 repetitions. A linear regression line was then

fit to each training set. The line of best fit was calculated by
finding the normalized root mean square error for the test cases
that produced the mean normalized root mean square error.
The final normalized root mean square error reported in the
results was computed for the line of best fit with all 9 data
points. The optimism adjusted coefficient of determination (r2)
was calculated by subtracting the difference of the r2 for each
training set from the r2 of the full data set. The mean value of
these differences was then subtracted from the r2 of the full data
set and is the r2 reported.

Stroke ROI and Lesion Load of
Corticospinal Tract
For each data set, the stroke region(s) of interest (ROIs) were
confirmed from the radiologist report and the stroke ROIs
manually drawn on DWI trace-weighted images in Seg3D (SCI)
(Figure 2). The correlation of the lesion volume with baseline
FM UE, FM UE tp2, and change in FM UE outcomes was
then calculated. To calculate the baseline lesion load of the CST,
the percent overlap of the stroke ROI with the Johns Hopkins
University FA 2.0mm atlas white matter labels for the corona
radiata, PLIC, and cerebral peduncle was found. To evaluate the
extent to which measures of asymmetry in the PLIC were affected
by stroke location and the potential of baseline CST lesion load
in motor outcome prediction, the correlation of the lesion load of
each segment of the ipsilesional CST with baseline FM UE, FM
UE tp2, and change in FM UE outcomes was calculated.

RESULTS

Subjects
The 9 participants with stroke were 69± 8.5 years in age and 44%
were female. The 9 non-stroke participants were 67 ± 3.2 years
in age and 11% were female. Strokes were of small-to-moderate
size: volume of 12.04 ± 21.26 cc3 (range 0.51–66.65). Clinically,
participants with stroke had an initial mean FMUE score of 22±
14.9 (range 5–50) and improved by tp2 to a mean FM UE score
of 35.8 ± 18.8 (range 5–60). Seven of the nine patients improved
with one showing no change and one worsening (Figure 3).

Deviation of Stroke PLIC From Control
Using Holm’s adjusted p-values, the left and right regions
of the CST were not significantly different in any control
participant. The ipsilesional PLIC was significantly different from
the contralesional PLIC in stroke participants in ODI[tstat(DoF),
p-value: t(8) = 3.24, p= 0.0118], GFA [t(8) =−3.52, p= 0.0077),
FA [t(8) =−3.59, p= 0.0071], and AD[t(8) =−3.40, p= 0.0094].
Only FA showed a significant difference between hemispheres in
the corona radiata t(8) = −3.25, p = 0.0361. The contralesional
segments of the stroke CST were not significantly from controls
in the cerebral peduncle, PLIC, or corona radiata.

Relation of Asymmetries in Baseline Stroke
Corticospinal Tract to Functional Outcome
The optimism adjusted coefficient of determination after
validation through combination testing showed encouraging
results. The highest correlation for the mean difference with FM
UE tp2 was ODI1PLICMean (r

2 = 0.83, rmse= 0.054, Figure 4).
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FIGURE 2 | Depiction of white matter label transformation and segmentation

of ipsilesional and contralesional stroke region of interest (ROI). Top: The

Fractional Anisotropy (FA) map for each subject was warped to the Johns

Hopkins University FA 2.0 mm Atlas. Middle left: The white matter labels were

then transformed from the JHU atlas to the warped FA map. Middle right:

Corticospinal tract (CST) regions were identified from the white matter labels.

The PLIC is in yellow and blue. Bottom left: Stroke lesion ROI manually

segmented. Bottom right: lesion load of the PLIC portion of the CST for stroke

participant 3 (S3) shown by the overlap of the lesion ROI on the white matter

labels. Lesion is shown in orange, right PLIC in yellow, and left PLIC in blue.

GFA 1PLICMean (r2 = 0.57, rmse = 0.099) also showed notable
correlation with FM UE tp2. For the KLD measures, GFA
1PLICKLD (r2 = 0.57, rmse= 0.097), RDI1PLICKLD (r2 = 0.70,
rmse = 0.077), and ODI 1PLICKLD (r2 = 0.81, rmse = 0.057)
all had high correlation. The highest correlation with change in
FM UE was for ODI 1PLICMean (r

2 = 0.49, rmse = 0.175). The
coefficient of determination of all other imaging measures with
functional outcomes was below 0.5.

Stroke Lesion Size and Lesion Load of CST
Baseline stroke lesion volume was not significantly correlated
with baseline FM UE (r2 = 0.17 p = 0.28), FM UE tp2
(r2 =−0.01, p= 0.98), or change in FMUE (r2 = 0.24, p= 0.18).
Lesion load was defined as the percent of the region of interest
overlapped by the stroke lesion. The lesion load of the whole
CST was not significantly correlated with baseline UE (r2 = 0.03,

p = 0.63), UE tp2 (r2 = 0.28, p = 0.14), or change in FM UE
(r2 = 0.37, p = 0.08). The lesion loads of the corona radiata,
PLIC, and cerebral peduncle were also not significantly correlated
with baseline FM UE, FM UE tp2, or change in FM UE. The
best correlation of lesion load with FM UE tp2 was for the PLIC
(r2 = 0.35, p= 0.09).

DISCUSSION

Our work shows potential additional utility of DSI based
models in human motor stroke analysis compared to previously
reported methods of image-based stroke prognosis. DSI-based
analysis showed that baseline measures of PLIC hemispheric
asymmetry calculated from the orientation dispersion index
(ODI) parameter of the NODDI model are highly correlated
with UE functional outcome. This is the first study to extensively
study NODDI parameters in stroke UE outcome prediction
and the results are encouraging. One reason we observed an
improved outcome prediction based on ODI may be that the
ODI parameter detects changes in the ipsilesional PLIC indicative
of Wallerian degeneration missed by traditional DTI measures
and single compartment DSI models that are not capable of fully
capturing these changes in the first weeks post-stroke.

Imaging Wallerian Degeneration
Although demyelination begins in the acute phase of stroke,
many studies show that significant decreases in FA, thought
to reflect Wallerian degeneration, are only detectable more
than 25 days after stroke (3, 35, 36) Some studies report FA
can detect degeneration <16 days post-stroke (37, 38) but the
extent to which FA is reduced does not appear to be highly
correlated with functional outcomes. The inability to reliably
detect Wallerian degeneration at early time points with FA and
other DTI parameters may be due to the response of glial cells
involved in glial scarring. We did notice increased FA and ODI
in some regions of the ipsilesional PLIC. These parameters are
not normally both elevated simultaneously and may reflect ODI
sensitivity to glial scarring (Figure 5).

ODI may better capture regions of glial scarring because
the NODDI model is based on a multi-compartmental model
that estimates intracellular and extracellular contributions to
the observed signal in terms of neurite morphology (15, 39),
instead of independently as in previous models (40, 41).
Due to the dependency in the model, if the orientation
dispersion of the intracellular compartment is increased, that
is, myelinated axons have begun to degenerate, then the
estimate of extra-cellular orientation dispersion will increase
as well.

Prediction of Stroke Outcomes From
Baseline Asymmetries in the Posterior
Limb of the Internal Capsule
DTI Estimated Asymmetries

Prior work based on DTI also found the differences in the PLIC
region of the CST to be most predictive of outcomes (6, 7, 42, 43).
A notable example is the PREP algorithm from Stinear et al.,
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FIGURE 3 | Demographic information age/gender (top center), Fugl-Meyer Upper Extremity scores at baseline and follow-up (bottom left), lesion volume (bottom

right), and location (image shown) for each stroke subject (S1-S9).

which utilizes a combination of FA and TMS to predict the
potential upper extremity motor recovery after stroke (6). FA
is used to calculate a normalized difference of mean values in
the ipsilesional and contralesional PLIC called the asymmetry
index, similar to 1PLICMean defined in this study (6). They
reported that the asymmetry index correlated with recovery 12
weeks after stroke (r = −0.61, p < 0.001). In comparison,
measures of asymmetry in the PLIC based on ODI, such as
1PLICKLD and1PLICmean from this study, showedmuch higher
correlation. The PREP algorithm was developed from a cohort
of 40 participants, and a greater number of stroke participants
would be needed to demonstrate that the image-only method
describedhere is a suitable alternative to the PREP algorithm.
In the meantime, ODI 1PLICKLD and ODI 1PLICmean could
complement the FA based asymmetry index and improve the
PREP algorithm. Last, DSI based measures of asymmetry in the
PLIC could potentially improve uponDTImeasures in predicting
functional outcomes in response to motor rehabilitation or drug
therapy from scans taken in the chronic phase of stroke (42–45).

DSI Approaches to Stroke Outcome
Prediction
Granziera et al. (5, 46), and Schulz et al. (47, 48) explored

both interhemispheric and intrahemispheric differences in upper

cortical regions, such as the primary motor and supplementary
motor areas, shown in fMRI (49–51) to be active during

recovery. In the Granziera et al. study, mean GFA in the

connections between the motor cortex and subcortical structures
in the contralesional hemisphere in individuals affected by

stroke changed more than those in non-stroke controls. Using

a multivariate regression analysis for their predictive model,

baseline NIHSS scores, patient ages, and multiple mean GFA
motor tract values at baseline accounted for 96 percent of the

variance in NIHSS scores at 12 weeks. In this study, ODI

1PLIC alone accounted for 83 percent of the variance in
upper extremity outcomes at tp2. In (5), there was a relatively
small cohort (12 stroke subjects) and therefore risked overfitting
by using a multivariate approach. More study is needed to
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FIGURE 4 | Optimism adjusted r2 after 84 permutations of n choose 6. The

1PLICmean (top) and 1PLICKLD (bottom) are highly correlated with functional

outcomes and are in agreement with one another. The mean RMSE for the

test data sets is also reported. The strong correlation observed between

outcomes and the differences in ODI between hemispheres in the PLIC does

not appear to be driven by extreme values for FM UE tp2 or ODI.

FIGURE 5 | Unusual case of both elevated FA (Left) and elevated ODI (Right)

in the PLIC in subject 8.

determine the performance of ODI 1PLIC alone or included in
a multivariate model.

Lin et al. expanded the GFA based motor tract analysis
approach to include histogram derived measures: standard
deviation, peak height, and skewness of GFA (16). The present
study also benefited from the recognition that an analysis of the

underlying distributional differences could better capture subtle
variations in the microstructure. The current study differed
from Lin et al. in that KLD was selected as a measure that
captures the information gain between distributions. The KLD
was near zero for nearly all control participants, meaning that
the contralesional hemisphere nearly mirrors the ipsilesional
hemisphere. In participants with stroke, it was found that a
greater divergence of the ipsilesional PLIC and contralesional
PLIC distributions for GFA, RDI, and ODI was correlated
with poorer outcomes at a follow-up assessment. For ODI and
GFA, 1PLICKLD and 1PLICmean were in agreement. On the
other hand, KLD analysis for the RDI parameter showed better
differentiation between and higher correlation with outcomes
than the difference of mean values in the PLIC.

Association of Baseline Lesion Size and
Lesion Load of CST With Functional
Outcomes
Similar to other groups, the correlation of the baseline ipsilesional
CST lesion loadwithUE recovery was investigated (4, 7, 9, 45, 52–
54). Most recently, Cassidy et al. found that the percent injury
(lesion load) to the CST (cerebral peduncle and PLIC) after
stroke, was significantly correlated with UE improvement after
therapy (r = −0.41; p = 0.004; n = 47). Though no significant
results for the entire CST lesion load were found in this study,
the modest correlation with motor function outcomes observed
agreed with previously reported studies (4, 9, 55). Breaking down
the CST into individual segments yielded similar results, with the
lesion load of the PLIC showing higher correlationwith outcomes
than the other segments, but still not reaching significance.

The PLIC is known to be one of the most integral brain
regions to motor function. Simply knowing that a lesion is
located in the PLIC would seem to be enough to predict motor
function outcomes (4, 56). However, these results show that
DSI based measures such as the NODDI ODI parameter, and
to a lesser extent RDI and GFA, capture important information
about the state of crucial areas of white matter that are not
captured as well by simply estimating the percent of the structure
overlapped by stroke lesion. Additional work shown in the
Supplementary Material shows that correlation of the ODI
values in the PLIC is driven more by values of the nonlesion areas
of the PLIC than the lesion areas.

CONCLUSIONS

The ODI parameter of the NODDI model was found to be the
best measure of baseline asymmetry in the PLIC and predictive
of upper extremity motor outcomes approximately 5 weeks after
stroke. In ODI maps, mean differences in the PLIC and the
KLD showed agreement. Overall, DSI based measures of PLIC
asymmetry were more highly correlated with outcomes than DTI
based measures. Lesion size and lesion load of the CST were not
significantly correlated with outcomes. Future work will include
a larger patient cohort and focus on analysis of longitudinal
changes in areas critical to stroke outcomes captured through
DSI parameters.
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