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Abstract

The functional interpretation of high throughput metabolomics by mass spectrometry is hindered by the identification of
metabolites, a tedious and challenging task. We present a set of computational algorithms which, by leveraging the
collective power of metabolic pathways and networks, predict functional activity directly from spectral feature tables
without a priori identification of metabolites. The algorithms were experimentally validated on the activation of innate
immune cells.
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Introduction

Knowledge of many metabolic pathways has accumulated over

the past century. For instance, glycolysis, citric acid cycle and

oxidative phosphorylation fuel cellular processes through the

generation of adenosine triphosphate; glycans and cholesterols not

only serve as structural blocks but also mediate intercellular

communication. In fact, metabolites pervade every aspect of life

[1,2]. Their roles are increasingly appreciated, as advancing tools

allow deeper scientific investigations. The most notable progresses

in recent years come from metabolomics and genome-scale

metabolic models.

Metabolomics is the emerging field of comprehensive profiling

of metabolites. As metabolites are the direct readout of functional

activity, metabolomics fills in a critical gap in the realm of systems

biology, complementing genomics and proteomics [3–6]. The

technical platforms of metabolomics are mainly based on mass

spectromety and nuclear magnetic resonance [4,7]. Among them,

untargeted LC/MS (liquid chromatography coupled mass spec-

trometry), especially on high resolution spectrometers, produces

unparalleled throughput, measuring thousands of metabolite

features simultaneously [5,8–10].

On the other hand, genome-scale metabolic models have been

largely driven by genomics, as the total list of metabolic enzymes of

a species can be derived from its genome sequence [11,12]. The

reconstruction of microbial metabolic network models is an

established process [13,14]. Intense manual curation, however,

was required in the building of two high-quality human models

[15,16], which were followed by a number of derivatives [17–20].

The coverage of these metabolic models greatly exceeds the

conventional pathways.

Even though they are a perfect match in theory, metabolomics

and genome-scale metabolic models have had little overlap so far.

The use of metabolomics in building metabolic models is rare [21],

due to the scarcity of well annotated metabolomics data. The

application of genome-scale metabolic models to metabolomics

data is not common either [22]. The limited throughput of

targeted metabolomics usually does not motivate large scale

network analysis. Untargeted metabolomics cannot move onto

pathway and network analysis without knowing the identity of

metabolites.

A typical work flow of untargeted metabolomics is illustrated in

Figure 1A. After ionized molecules are scanned in the spectrom-

eter, the spectral peaks are extracted, quantified and aligned into a

feature table. At this point, each feature is identified by a mass-to-

charge ratio (m/z) and retention time in chromatography, but its

chemical identity is not known. To assign a spectral feature to a

bona fide metabolite, it usually involves tandem mass spectrometry

to examine the fragmentation pattern of a specific feature, or

coelution of isotopically labeled known references - both are

inherently low throughput. Considerable effort is needed to build a

spectral library, which is often of limited size and interoperability.

Thus, metabolite identification forms the bottleneck of untargeted

metabolomics [23].

A number of informatics tools have been developed for LC/MS

metabolomics, ranging from feature extraction [24–26], pathway

analysis and visualization [27–29] to work flow automation [30–

32]. Yet, whereas pathway and network analysis is concerned, the

existing tools require identified metabolites to start with. Compu-

tational prediction of metabolite identity, based on m/z alone, is

deemed inadequate as a single m/z feature can match multiple

metabolites even with high instrumental accuracy [33,34], and
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multiple forms of the same metabolite often exist in the mass

spectra [35]. Although automated MS/MS (tandem mass spec-

trometry) search in databases is improving the efficiency of

metabolite identification [36,37], this requires additional targeted

experiments and relies on extensive databases, where data from

different platforms often do not match. How to bring untargeted

metabolomics data to biological interpretation remains a great

challenge.

In this paper, we report a novel approach of predicting network

activity from untargeted metabolomics without upfront identifica-

tion of metabolites, thus greatly accelerating the work flow. This is

possible because the collective power in metabolic networks helps

resolve the ambiguity in metabolite prediction. We will describe

the computational algorithms, and demonstrate their application

to the activation of innate immune cells.

Results

Full MS scan in an untargeted metabolomics experiment gives

the most power of high throughput profiling, producing several

thousand of features routinely. Our goal is to predict biological

activity in a network of metabolites directly from the feature table,

bypassing the bottleneck of metabolite identification (Figure 1A).

As illustrated in Figure 1B, each spectral feature can match to

several metabolite candidates, albeit the true identity is not known.

The conventional work flow is to identify each metabolite

experimentally before mapping them onto metabolic pathways/

networks. Instead of treating metabolite identification and

metabolic pathway/network analysis as two separate steps, we

argue that there is collective power in the organization of

metabolic networks, which can be leveraged when the two steps

are unified under one theoretical framework. In other words, if a

list of significant spectral features reflects a biological activity, the

true metabolites they represent should show enrichment on a local

structure in the metabolic network [22], while the falsely matched

metabolites are distributed more randomly. This gives us a means

to predict functional activities without upfront identification of

metabolites (Figure 1C).

The software implementation of our approach is named

mummichog (mummichog is an American Indian term for by groups,

Figure 1. Mummichog redefines the work flow of untargeted metabolomics. A) In the work flow of untargeted metabolomics, the
conventional approach requires the metabolites to be identified before pathway/network analysis, while mummichog (blue arrow) predicts
functional activity bypassing metabolite identification. B) Each row of dots represent possible matches of metabolites from one m/z feature, red the
true metabolite, gray the false matches. The conventional approach first requires the identification of metabolites before mapping them to the
metabolic network. C) mummichog maps all possible metabolite matches to the network and looks for local enrichment, which reflects the true
activity because the false matches will distribute randomly.
doi:10.1371/journal.pcbi.1003123.g001

Author Summary

Mass spectrometry based untargeted metabolomics can
now profile several thousand of metabolites simultaneous-
ly. However, these metabolites have to be identified before
any biological meaning can be drawn from the data.
Metabolite identification is a challenging and low through-
put process, therefore becomes the bottleneck of the filed.
We report here a novel approach to predict biological
activity directly from mass spectrometry data without a
priori identification of metabolites. By unifying network
analysis and metabolite prediction under the same
computational framework, the organization of metabolic
networks and pathways helps resolve the ambiguity in
metabolite prediction to a large extent. We validated our
algorithms on a set of activation experiment of innate
immune cells. The predicted activities were confirmed by
both gene expression and metabolite identification. This
method shall greatly accelerate the application of high
throughput metabolomics, as the tedious task of identi-
fying hundreds of metabolites upfront can be shifted to a
handful of validation experiments after our computational
prediction.

Functional Analysis for Metabolomics
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also name of a small fish which live by groups). From user input,

mummichog requires two lists of m/z features, the significant list Lsig

(e.g. selected by univariate statistics) and the reference list Lref (all

features detected in the MS experiment). From the m/z features in

Lsig, mummichog computes all possibly matched metabolites, and

searches the reference metabolic network for all the modules that

can be formed by these tentative metabolites. Random lists of m/z

features are drawn from Lref many times to estimate the null

distribution of module activities. The statistical significance of

modules from Lsig can then be calculated on this null distribution.

In return, the predicted metabolites in these significant modules

(and similarly for pathways) are more likely to be true, and they

form the ‘‘activity network’’ for this particular experiment.

Details of module analysis, pathway analysis and activity

network are given below, after a treatment of the reference

metabolic network model.

The reference metabolic network model
The genome-scale human metabolic network in mummichog is

based on KEGG [38], UCSD Recon1 [15] and Edinburgh human

metabolic network [16]. The integration process was described

previously [39]. The organization of metabolic networks has been

described as hierarchical and modular [40]. When we perform a

hierarchical clustering on the metabolic reactions in our network,

its modular structure is clear (Figure 2A). This modular

organization, as reported previously [41], often but not always

correlates with conventional pathways (Figure 2B).

The module definition in this work is adopted from Newman

and Girvan [42,43], where a module is a subnetwork that shows

more internal connections than expected randomly in the whole

network. Modules are less biased than pathways, which are

defined by human knowledge and conventions, and outgrown by

genome-scale metabolic networks. Activity of modules may exist

within and in between pathways. Deo et al [22] convincingly

demonstrated the advantage of unbiased module analysis over

pathways. On the other hand, pathways have built-in human

knowledge, which may be more sensitive under certain scenarios.

Pathway analysis and module analysis are rather complementary,

and both are included in mummichog.

The reference metabolic network model contains both metab-

olites and enzymes. Since metabolomics only measures metabo-

lites, the model is converted to a metabolite centric network for

statistical analysis. Enzymes are only added later in the visualiza-

tion step to aid user interpretation.

Module analysis
Within the predefined reference metabolic network model M,

mummichog searches for all modules that can be built on user input

data, and compute their activity scores. This process is repeated

many times for the permutation data to estimate the background

null distribution. Finally, the statistical significance of modules

based on user data is calculated on the null distribution. The

specific steps are as follows:

1. A list of ‘‘input metabolites’’ is tentatively computed from the

significant list of m/z features, Lsig. The m/z - metabolite

matching considers all common isotopic derivatives and

adducts.

2. From M, all subnetworks that can connect the input

metabolites from Step 1 within one reaction are extracted.

This is repeated for subnetworks within two, three and four

reactions (by four steps M should be exhausted, see Figure 2C).

These subnetworks contain both ‘‘input metabolites’’ and other

metabolites from M.

3. Structural modules are identified within these subnetworks

according to Newman’s spectral split algorithm [43]. This

creates many modules of different sizes.

4. Both subnetworks from Step 2 and modules from Step 3 are

compiled into a set of candidate modules (graphs),

G1,G2,:::,Gn. Each graph is cleaned of protruding edges if

such edges do not connect input metabolites therefore not

contributing to the activity score.

5. The activity score should reflect both the enrichment of ‘‘input

metabolites’’ and the modularity. Activity score of a candidate

module is computed as follows: For a subgraph G, activity

score

ÂA~Q:

NI ,G

NG

, ð1Þ

where NG is the number of metabolites in G, NI ,G the number

of ‘‘input metabolites’’ in G, Q the adjusted Newman-Girvan

modularity:

Q~

ffiffiffiffiffiffiffi

NI

NG

r

:(
EG

m
{

X

i,j

ki

2m

kj

2m
) , i,j[G ð2Þ

where ki is the network degree of metabolite i, m the total

number of edges in the metabolic network M, EG the total

number of edges in G, NI the number of ‘‘input metabolites’’.

The original Newman-Girvan modularity has a bias towards

larger modules. The

ffiffiffiffiffiffiffi

NI

NG

r

is added to reduce this bias.

6. A list of permutation features (equal length to Lsig) is generated

by randomly sampling Lref . The activity scores of modules

from this permutation list are computed as in Steps 1–5.

7. Repeat Step 6 many times to populate a list of scores from

random modules. Using maximum likelihood estimation, these

scores are modeled as a Gamma distribution (this is the null

distribution), and a cumulative distribution function (CDF) is

calculated.

8. The p-value for each module from input metabolites is

calculated on the CDF of null distribution.

Pathway analysis
The basic test for pathway enrichment here is Fisher’s exact test

(FET), which is widely used in transcriptomic analysis. The

concept of FET is, when we select k features (Lsig) from a total of

N features (Lref ), and find m of the k features present on a

pathway of size P, the chance of getting m in theory can be

estimated by enumerating the combinations of k, N and P.

To apply FET to an enrichment test of metabolic features on

pathways, we need to understand the additional layer of

complexity. Our metabolic features can be enumerated either in

the m/z feature space or in the metabolite (true compound) space.

Since metabolic pathways are defined in the metabolite space,

either way needs to factor in the many-to-many mapping between

m/z features and metabolites (Figure S1). This mapping is

effectively covered in our permutation procedure, which starts

from the m/z features and reruns the mapping every time. The

overall significance of a pathway enrichment is estimated based on

a method by Berriz et al [44], which ranks the p-value from real

data among the p-values from permutation data to adjust for type

I error. Finally, a more conservative version of FET, EASE, is

adopted to increase the robustness [45]. The key idea of EASE is

Functional Analysis for Metabolomics
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to take out one hit from each pathway, thus preferentially penalize

pathways with fewer hits. The specific steps are as follows:

1. A list of permutation features (equal length to Lsig) is generated

by randomly sampling Lref . This list is mapped to a list of

tentative metabolites. These metabolites are looked up in each

metabolic pathway. For each pathway, a FET right-tail p-value

is calculated.

2. Repeat Step 1 many times to populate a list of p-values of all

pathways under all permutations (null distribution). Slightly

different from Berriz et al [44], all p-values not just the minimal

p-values in each permutation are used. This is because the size

and organization of metabolic pathways vary greatly, a

different situation from the large gene categories in Berriz et

al. Using maximum likelihood estimation, these p-values are

modeled as a Gamma distribution (this is the null distribution),

and a cumulative distribution function (CDF) is calculated.

3. Perform Step 1 on the significant feature list Lsig, and calculate

FET p-value and EASE score for each pathway. An adjusted p-

value per pathway is calculated based on the EASE score and

CDF from Step 2. Both FET p-value and adjusted p-value are

reported for each pathway.

Data driven activity network
Both the module analysis and pathway analysis above serve

as a framework to estimate the significance of functional

activities. In return, the predicted metabolites in significant

Figure 2. Modular organization of human metabolic network. A) Hierarchical clustering of the network by the steps between 4204 metabolic
reactions, where the warmer color codes for fewer steps. Each red island represents a cluster of closely connected reactions. B) An insert by the while
arrow in A. This demonstrates that network modules and pathways correlate with but not equate to each other. C) When measured by reaction steps
between metabolites, most metabolites are connected in no more than four steps. This serves as a practical guide in searching subnetworks in the
total metabolic network.
doi:10.1371/journal.pcbi.1003123.g002

Functional Analysis for Metabolomics
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activities are more likely to be real. Mummichog collects these

metabolites, and look up all their isotopic derivatives and

adducts in Lref . A confidence rating system is applied to filter

for qualified metabolites. For instance, if both the single-

charged 12C form M+H[1+] and the 13C form M(C13)+H[1+]

are present, this metabolite prediction carries a high confi-

dence. All the qualified metabolites carry over their connec-

tions in the reference metabolic network, and form the

‘‘activity network’’ for this specific experiment (e.g. Figure 3).

The activity network gears towards a quality and clear view of

user data, as modules and pathways can be redundant and

fragmented. It also accentuates the activity in a specific

experimental context, in contrast to the generic nature of the

reference metabolic network.

We next illustrate the application of these algorithms to a novel

set of immune cell activation data, and two published data sets on

human urinary samples and yeast mutants.

Application to the activation of innate immune cells
The innate immunity plays a critical role in regulating the

adaptive immunity, and the field was recognized by the 2011

Nobel Prize in Physiology or Medicine [46]. According to the

nature of stimuli, innate immune cells direct different

downstream molecular programs, which are still under

intense scientific investigation [47,48]. In this study, we

examine the metabolome of human monocyte-derived den-

dritic cells (moDC) under the stimulation of yellow fever virus

(YF17D, a vaccine strain). We have shown previously that

yellow fever virus activates multiple toll-like receptors, and

induces cellular stress responses [49–51]. This data set is, to

our knowledge, the first high throughput metabolomics on

any immune cells (macrophages were previously studied by

limited throughput).

The cell extracts from our activation experiment were

analyzed by LC/MS metabolomics, and yielded 7,995 spectral

features (denoted as Lref ) after quality control. Among them,

601 features were significantly different between the infected

samples and both the baseline and time-matched mock controls

(pv0:05, student t-test; denoted as Lsig ). Using Lsig and Lref ,

mummichog computes significant pathways and modules and the

activity network.

Viral infection induced a massive shift of metabolic

programs in moDCs (pathways in Table S1, modules in Figure

S2). The predicted activity network is shown in Figure 3A, and

we will focus our investigation on a small subnetwork

(Figure 3B), which includes the metabolisms of nucleotides,

glutathione/glutathione disulfide and arginine/citrulline. Nu-

cleotides are required for viral replication, and the hijacking of

host nucleotide metabolism by virus has been well described

[52–54]. Glutathione is best known as intracellular antioxi-

dant, where it is oxidized to glutathione disulfide (GSSG).

However, our data show that both glutathione and GSSG are

depleted in activated moDCs, departing from this conventional

wisdom. The across-the-board depletion is consistent with the

down-regulation of genes for glutathione synthesis (Figure 4B).

Our data support the notion that glutathione is released by

dendritic cells and conditions the extracellular microenviron-

ment during their interaction with T cells [55–57]. Arginine is

known to be an important regulator in innate immune

response [58,59]. Arginine metabolism can lead to two

pathways: to ornithine (catalyzed by arginase) or to citrulline

(catalyzed by nitric oxide synthase). The decrease of arginine

and increase of citrulline suggests the latter pathway, which is

the main reaction of producing intracellular nitric oxide. We

indeed detected the inhibition of eNOS and iNOS expression

later (Figure 4C), a well documented feedback effect by nitric

oxide [60]. We also performed tandem mass spectrometry on

Figure 3. Metabolic activity network in dendritic cells stimulated by yellow fever virus. A) Prediction by mummichog directly from m/z
feature tables (cell extracts after 6 hours of infection). Metabolites are colored according to log2 fold change. A high resolution copy is given in Figure
S9. B) Further investigation was focused on the subnetwork on the right. Glutamate was not significantly altered, but included for network
connectivity.
doi:10.1371/journal.pcbi.1003123.g003

Functional Analysis for Metabolomics
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the metabolites in Figure 3B, using authentic chemicals as

references. All the metabolites, except glutamylcysteine and

thyroxine, were confirmed (Figure 5, Figure S3).

The depletion of arginine and accumulation of citrulline in

moDC was also triggered by dengue virus but not by

lipopolysaccharide (LPS, Figure S4). It is known that iNOS is

induced in dendritic cells by LPS but not by virus [47,61]. Our

data suggest a different nitric oxide pathway in viral infection,

driven by constitutive nitric oxide synthases. The intracellular

nitric oxide has a fast turnover and we did not detect its

accumulation by fluoremetric assays (data not shown). We

previously demonstrated that the phosphorylation of EIF2A was

induced by YF17D [50]. An upstream mechanism is now

suggested by this metabolomic experiment, as both the produc-

tion of nitric oxide and depletion of arginine induce the activity of

EIF2A kinases [62].

Evaluation on human urine data and yeast data
The nature of metabolomics data often varies by platforms and

sample types. We thus extend our mummichog approach to two

published data sets on human urinary samples [63] and on yeast

cell extracts [64]. Both data sets carry metabolite annotation by

the original authors, which can be used to evaluate the prediction

by mummichog.

The human urinary data contained both formal identifica-

tion by matching to local library of chemical references and

putative identification by combining multiple public resources

[63]. We used mummichog to investigate the gender difference in

this data set, and predicted an activity network of 45

metabolites. Among them, 13 were not found in the original

annotation. For the remaining metabolites, 97% (31/32) were

agreed between mummichog and the original annotation

(Figure 6). There is an option in mummichog to enforce the

presence of M+H[+] form (for positive mode, M2H[2] for

negative mode) in metabolite prediction. With this option, 3

out of 44 metabolites were not in the original annotation, and

the remaining 41 metabolites were in 100% agreement.

The mummichog algorithms are not tied to a specific metabolic

model. We adopted the yeast metabolic model from BioCyc

database [11] for the yeast data [64], to predict an activity network

contrasting mutant and wild type strains. This data set was only

annotated for 101 metabolites through the authors’ local library.

As a result, the majority of metabolites in the predicted network by

mummichog were not found in the original annotation. Out of the

remaining 28 metabolites, 24 (86%) were agreed between

mummichog and the original annotation (Figure 6). Enforcing

the presence of primary ion M2H[2] (data collected in negative

ion mode) had little effect to the result, since the original

annotation was already biased to metabolites that are ionized

easily.

These results show that the prediction by mummichog is robust

cross platforms and sample types.

Discussion

We have described the computational method of mummichog and

its application to three case studies. While the description was

intended to be concise, computational metabolomics is compli-

cated and facing challenges from many fronts. Quantification and

feature selection, the steps upstream of mummichog, can still be

problematic. Data from in vivo studies often involve multivariate

analysis, where validation is particularly challenging. In this

Figure 4. Gene expression confirms the activity network. A) Cytokines secreted after infection (ELISA) indicate the activation of innate
immune programs. B) Down-regulation of transcripts of GCLC, GCLM (subunits of gamma-glutamylcysteine synthetase) and GSS (glutathione
synthetase), the key enzymes for glutathione synthesis. C) Nitric oxide has feedback inhibition on the expression of eNOS and iNOS (nNOS was not
detected). Gene expression was assayed by quantitative RT-PCR. Infected samples were compared to mocks by student’s t-test (n = 3).
doi:10.1371/journal.pcbi.1003123.g004

Functional Analysis for Metabolomics
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section, we discuss several confounding factors that are relevant to

our approach.

Impact of metabolic models
Critical to the success of mummichog is the integration of genome-

scale metabolic models. We have used in this study a recent

human metabolic model. An alternative human model from

BioCyc [11] produced comparable results (Figure S6). The

coverage of the models in all three case studies is shown in

Table 1. These genome-scale metabolic models are more extensive

than conventional pathways, and were shown to capture activities

in between pathways [22]. The pathway organizations differ

between the two human models, as the BioCyc model tends to use

smaller pathways. This creates some model dependency in the

pathway analysis, but little effect to the ‘‘activity network’’, as

mummichog is more network centric. The two test cases in Figure 6

also indicate that these models tend to capture more information

than conventional annotations.

However, as mentioned earlier, the new data from metabolomic

studies are yet to be integrated into these genome-scale metabolic

models. For example, a number of metabolites in metabolomics

databases [36,65,66] are not in any of these metabolic models. In

general, the features from a high resolution profiling experiment

by far exceed the current annotations in metabolite databases.

This leads to a de facto filtering when data are run on mummichog

(similiar situation in database searches). Meanwhile, the features

Figure 5. Identification of metabolites by tandem mass spectrometry. Arginine is shown as an example while the full data are given in
Figure S3. From top to bottom: the fragmentation pattern (MS2 followed by MS3 on peak 157) from biological sample, from biological sample
spiked with authentic chemical and from authentic chemical reference.
doi:10.1371/journal.pcbi.1003123.g005

Functional Analysis for Metabolomics
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that can be mapped to the current metabolic model are more

likely to be biologically relevant. This ‘‘filtering’’ is pertinent to the

metabolic model, not to mummichog algorithms - mummichog still has

to choose the true metabolites from multiple possible candidates

(Figure S1B).

It will be an important future direction to advance metabolic

modeling with the chemical data. We also expect the metabolic

models to improve on lipid annotation, physiological context and

tissue specificity.

Robust design of the algorithms
As lessons learned from transcriptomics, pathway and network

analysis not only provides functional context, but also the

robustness to counteract noises at individual feature level, which

are commonly seen in omics experiments. Similarly, the prediction

on activity by mummichog is tolerant to errors at individual feature

level. In the moDC data, we chose Lsig by a cutoff value p~0:05.

When we vary this cutoff from 0:001 to 0:2, the program returned

networks of a stable set of metabolites (Figure S7).

The module finding procedure in the program was designed to

extensively sample subnetwork structures. Among the modules will

be many variations, but the subsequenct ‘‘activity network’’ will

collapse on stable results. In deed, we tested an alternative

algorithm of modularization [67], and it returned almost identical

predicted networks, in spite of moderately different intermediate

modules (Figure S8).

In theory, there are merits to incorporate a statistical matrix

from the feature selection step prior to mummichog’s analysis and

mass flow balance of metabolic reactions [22,68]. While these are

appealing directions for future research, the current version of

mummichog confers some practical robustness, such as tolerance to

technological noise and biological sampling limitation. For

example, mass balance is almost impossible within serum or urine

samples, because the reactions producing these metabolites are

likely to occur in other tissues.

The number of overlap metabolites is used in the enrichment

calculation in both module analysis and pathway analysis.

Sometimes, a single m/z feature may match to several metabolites

in the same module/pathway, inflating the overlap number. Thus,

mummichog always compares the number of overlap metabolites

and the number of corresponding m/z features, and uses the

smaller number for enrichment calculation, since the smaller

number is more likely to be true.

The size of each metabolic pathway is defined by the number of

metabolites in the pathway. mummichog uses only the metabolites

that can be matched in Lref to define a pathway size, because this

reflects the analytical coverage of the experiment and Lsig is

confined by the same coverage. Overall, mummichog uses the whole

feature list from an experiment for resampling, therefore the

computation of statistical significances effectively circumvents

analytical biases.

Figure 6. Application of mummichog to additional data sets.
Metabolite prediction by mummichog is in good agreement with
annotation in the original studies, 97% for the human urine data [63]
and 86% for the yeast data [64]. The metabolites not in the original
annotation (yellow) can not be compared. The ‘‘-z’’ option in
mummichog enforces the presence of primary ion (M+H[+] for positive
mode, M2H[2] for negative mode). This shifts the coverage in the
huamn data set, but not much for the yeast data of limited annotation.
doi:10.1371/journal.pcbi.1003123.g006

Table 1. How metabolomics data match metabolic models.

human model human model (BioCyc) yeast model (BioCyc)

number of reactions 4204 2091 1034

metabolite edges 18504 14100 6962

number of metabolites 3565 1536 811

number of metabolites with exact mass 2016 1308 742

case moDC: reference features 7713 7713

case moDC: tentatively matched metabolites 1384 874

case urine: reference features 10248 10248

case urine: tentatively matched metabolites 1453 930

case yeast: reference features 5366

case yeast: tentatively matched metabolites 533

The top section gives statistics of each of the three metabolic models. The bottom section gives the specific number of measured features and tentative metabolite
matches in each study case. These tentative matches contain excessive ambiguity, which mummichog aims to resolve.
doi:10.1371/journal.pcbi.1003123.t001
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Acceleration of untargeted metabolomics
In spite of the fantastic progress in mass spectrometry, these are

the early days of metabolomics. Effective computational integra-

tion of resources, the combination of cheminformatics and

bioinformatics, will greatly benefit the field [69,70]. As data

accumulate, further method refinement will become possible.

Mummichog presents a practical solution of one-step functional

analysis, bypassing the bottleneck of upfront metabolite identifi-

cation. It trades off some sensitivity in the conventional approach

for the much accelerated work flow of high throughput LC/MS

metabolomics. Mummichog is not designed to replace tandem mass

spectrometry in metabolite identification. It is the biological

activity not metabolites per se that mummichog predicts. Even with

some errors on individual metabolites, as long as the biology is

pinpointed to a subnetwork structure, investigators can focus on a

handful of validations, steering away from the lengthy conven-

tional work flow.

In conclusion, we have demonstrated that mummichog can

successfully predict functional activity directly from a spectral

feature table. This benefits from the convergence of genome-scale

metabolic models and metabolomics. Mummichog will continue to

improve as the metabolic network models evolve. We expect this

method to greatly accelerate the application of high throughput

metabolomics. The mummichog software is available at http://atcg.

googlecode.com.

Methods

Cell culture and infection
Human peripheral blood mononuclear cells (PBMCs) were

isolated from Buffy coats by separation over a Lymphoprep

gradient. CD14+ monocytes were isolated from the PBMCs with

MACS beads (Miltenyi Biotec, Auburn, CA) and cultured for 7

days with 20 ng/ml GM-CSF and 40 ng/ml IL-4 (Peprotech,

Rocky Hill, NJ). MoDCs were then harvested, washed twice and

resuspended in serum-free medium.

MoDCs (2:106) were stimulated in triplicate in 48-well plates in

a 200 mL volume with Yellow Fever virus (M.O.I. of 1), or mock

infected. After 2 hrs, 800 mL of 10% FBS-RPMI was added to all

wells. MoDCs were harvested at 6 hr or 24 hr after infection and

centrifuged. Supernatants were aspirated, and dry cell pellets were

frozen at 280uC. Supernatants of moDC cultures were assayed for

the concentration of IL-6 and TNF using ELISA kits (BD, San

Diego, CA). Three biological replicates were used for LC/MS and

QPCR.

Mass spectrometry
Full scan LC/MS (m/z range 85–2000) was performed

essentially as previously described [8]. Cell extracts or superna-

tants were treated with acetonitrile (2:1, v/v) and centrifuged at

14,0006 g for 5 min at 4uC to remove proteins. Samples were

maintained at 4uC in an autosampler until injection. A Thermo

Orbitrap-Velos mass spectrometer (Thermo Fisher, San Diego,

CA) coupled with anion exchange chromatography was used for

data collection, via positive-ion electrospray ionization (ESI).

Metabolites of interest were identified by tandem mass spectrom-

etry on a LTQ-FTMS, where the biological sample, biological

sample spiked in with authentic chemical and authentic chemical

reference were run sequentially. The MS2 and MS3 were done in

the ion trap of the LTQ-FTMS, with an isolation width of 1 amu

and a normalized collision energy of 35 eV.

The LC/MS data were processed with apLCMS program [25]

for feature extraction and quantification. Significant features were

also verified by inspecting the raw data (Figure S5). Features were

removed if their intensity is below 10,000 in every sample class.

Missing intensity values were imputed to 1000. The intensities

were log2 transformed. Low quality features were further filtered

out if their averaged in-class coefficient of variation was greater

than 0.2. Averaged ion intensity over three machine replicates was

used for subsequent analysis. These 7,995 features constituted the

reference list Lref . No normalization was used because total ion

counts in all samples were very similar. Student’s t-test was used to

compare infected samples (at 6 hr) versus mock infections (at 6 hr),

and infected samples (at 6 hr) versus baseline controls (at 0 hr).

Features with pv0:05 in both tests were included in the significant

list Lsig. The feature table, Lref , Lsig and predictions are given in

Dataset S1.

Gene expression by QPCR
For gene expression quantification, mRNA was extracted by

RNeasy Mini Kit (Qiagen) according to manufacturer’s protocol,

where the cell lysate was homogenized by QIAshredder spin

columns. Reverse transcription was performed with SuperScript

III reverse transcriptase and oligo-dT (Invitrogen) according to

manufacturer’s recommendation. Real-time PCR was performed

on a MyiQ Icycler (BioRad), using SYBR Green SuperMix

(Quanta Biosciences). The PCR protocol used 95uC 3 mins; 40

cycles of 95uC 30 seconds and 60uC for 60 seconds. The amplicons

were verified by melting curves. Quantafication was performed by

the DCt method, normalized by b2 microglobulin levels. The

primer sequences are given in Table S2.

Analysis of human urine and yeast data
Data on human urinary samples [63] were retrieved from

MetaboLights server [71]. The positive ion feature table for study

‘‘439020’’ contained 14,720 features. A feature is only included if

its ion intensity is above 100,000 in 5 or more samples. This leaves

11,086 features, which consist Lref for this study. Data were

normalized by total ion counts. We next compared the metabolite

difference between females (8 samples of low testosterone

glucuronide level) and males (11 samples of high testosterone

glucuronide level). Lsig is consisted of 524 features (pv0:01 by

student t-test). The original authors annotated 3,689 metabolite

features, and their annotation was used to compare with the

prediction by mummichog.

The yeast data [64] were downloaded from MAVEN website

[32] in mzXML format. Feature extraction was performed in

MAVEN through two approaches: targeted approach and

untargeted approach. The targeted approach used chemical

library from the same lab and produced 177 annotated features,

which corresponded to 101 metabolites. The untargeted approach

extracted 6318 features without annotation. After the same

processing procedure as in our moDC data, Lref contained 5707

features. We thus used mummichog to predict on the untargeted

data, and compared the result to MAVEN annotation. The Lsig

consisted of 426 features that were significantly different between

the prototrophic wild type and the auxotrophic mutant (pv10{4

by student t-test). The yeast metabolic model was compiled from

BioCyc data [11].

Supporting Information

Dataset S1 Metabolomics feature table and mummichog

predictions. This file contains LC/MSMetabolomics feature table

from the moDC experiment, Lsig, Lref and predicted metabolites in

the activity networks of moDC activation. Metabolite predictions on

the human urine data and yeast data are also included.

(ZIP)
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Figure S1 Many-to-many relationship in m/z feature to
metabolite matching. A) Among m/z features in Lref, about

1400 can be matched to various metabolites. B) For the 77

metabolites in the activity network (Figure 3A), on average, about

five metabolites share the same m/z features. Mummichog chooses

the most likely metabolites based on their network activities and

spectral patterns.

(TIF)

Figure S2 Example of module analysis. Five significant

modules were identified (pv0:05, default parameters) in moDC

infected by yellow fever virus for 6 hours. This shows module 1,

with 34 metabolites, p = 5.19E-7. This is one of the figures

automatically generated by mummichog, metabolites colored by

log2 fold change, with connecting enzymes shown as EC numbers.

(TIF)

Figure S3 Tandem mass spectrometry data for the

metabolites in Figure 3B. MS2 on the left and MS3 on the

right. Each run contained sequentially: top) the candidate

metabolite in cell extract, middle) cell extract spiked in with pure

chemical reference, bottom) pure chemical reference alone. MS3

data were also obtained for major MS2 peaks except for Inosine.

Elution peaks of these samples in liquid chromatography were also

matched.

(PDF)

Figure S4 The depletion of arginine and accumulation
of citrulline was also observed in moDCs stimulated by
dengue virus, but not by LPS. Cells and supernatant were

collect after 6 hours of infection and measured by LC/MS.

Representative of two experiments.

(TIF)

Figure S5 Verification of metabolite quantification.
Glutathione is used as an example (m/z 308.0896, M+H[1+]).

Left panel shows intensities of three biological replicates. The

arrows point to the corresponding signals in plots of LC retention

time (x-axis) vs m/z (y-axis), where a large peak is seen in YF17D

sample but missing in Mock sample. In the LC-m/z plots, each dot

represents a raw data point in a single scan; warmer color codes

for higher ion intensity.

(TIF)

Figure S6 Validation of mummichog on the human
urine data set (Roux et al 2012), using metabolic model
from BioCyc database. Mummichog predicts a network of 60

metabolites, in which 19 are not found in the original annotation.

Thirty nine of the remaining 41 are agreed to the original

annotation. By enforcing the presence of M+H[+] ion (-z option),

the predicted network contains 43 metabolite. The numbers of

agreed to and not in the original annotation are 39 and 4,

respectively.

(TIF)

Figure S7 The prediction of mummichog is robust from
the cutoff of input significant features, Lsig. The x-axis

shows the different number of input features by varying p-values.

The 601 features by pv0:05 were presented in the main text, and

are used as reference here. The y-axis shows the number of

metabolites in predicted networks. All blue bars show the number

of overlap metabolites in predicted networks, compared to those

from pv0:05.

(TIF)

Figure S8 Details of module analysis. Using the moDC

data with default parameters, mummichog produces 22 modules

from user data and 2406 random modules by permutation. A)

shows the distribution of all module sizes. B) Black horizontal bars

show the distribution of activity scores from random modules, and

the black line is the fitted Gamma distribution. The red vertical

bars show the activity scores of modules from user data, where

those on the right are more statistically significant. C) and D)

follow the same format as A) and B), but use an alternative

algorithm for module finding [67], which produces 84 modules

from user data and 5097 random modules by permutation.

(TIF)

Figure S9 High resolution copy of Figure 3A.

(TIF)

Table S1 Pathway analysis by mummichog revealed a

number of pathways activated in the infection of moDCs
by yellow fever virus. Activities in many of these pathways are

also identified in the significant network modules.

(PDF)

Table S2 Primer sequences and references for quanti-

tative PCR.

(PDF)
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