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Predicting non-small cell lung cancer prognosis by
fully automated microscopic pathology image
features
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Lung cancer is the most prevalent cancer worldwide, and histopathological assessment is

indispensable for its diagnosis. However, human evaluation of pathology slides cannot

accurately predict patients’ prognoses. In this study, we obtain 2,186 haematoxylin and eosin

stained histopathology whole-slide images of lung adenocarcinoma and squamous cell

carcinoma patients from The Cancer Genome Atlas (TCGA), and 294 additional images from

Stanford Tissue Microarray (TMA) Database. We extract 9,879 quantitative image features

and use regularized machine-learning methods to select the top features and to distinguish

shorter-term survivors from longer-term survivors with stage I adenocarcinoma (Po0.003)

or squamous cell carcinoma (P¼0.023) in the TCGA data set. We validate the survival

prediction framework with the TMA cohort (Po0.036 for both tumour types). Our results

suggest that automatically derived image features can predict the prognosis of lung

cancer patients and thereby contribute to precision oncology. Our methods are extensible to

histopathology images of other organs.
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L
ung cancer is the most prevalent cancer and the leading
cause of cancer-related deaths worldwide, resulting
in more than 1.4 million deaths annually1,2. Evaluation of

the microscopic histopathology slides by experienced pathologists
is indispensable to establishing the diagnosis3–5 and defines the
types and subtypes of lung cancers, including the two major types
of non-small cell lung cancer: adenocarcinoma and squamous cell
carcinoma6–8. The distinction of squamous cell carcinoma from
adenocarcinoma is important for chemotherapeutic selection,
because certain antineoplastic agents are contraindicated for
squamous cell carcinoma patients because of decreased efficacy9

or increased toxicity10. In addition, more adenocarcinoma patients
possess genetic aberrations with available targeted therapy, such as
EGFR mutations and ALK rearrangements11–13. Certain
histological features, such as pathology grade, have been
associated with survival outcomes in some studies14,15. Prompt
and meticulous inspection of tumour histomorphology is critical to
patient care, and determination of relevant prognostic markers is
the key to personalized cancer management. For example, patients
with poorer prognoses may benefit from closer follow-up, more
aggressive form of treatment, and advance care planning16,17.

Currently, lung cancer samples are manually evaluated for their
histological features by light microscopy. However, qualitative
evaluation of well-established histopathology patterns alone
(such as the classification of tumour grades) is insufficient for
predicting the survival outcomes of patients with lung adeno-
carcinoma or lung squamous cell carcinoma18,19, and even the
best-characterized histopathology features only achieve modest
agreements among experienced pathologists. As an illustration,
the inter-observer agreement for features that define the types of
non-small cell lung cancer is moderate (k¼ 0.48–0.64)20, and the
diagnostic agreement for classifying adenocarcinomas and
squamous carcinomas is also relatively low (k¼ 0.41–0.46
among community pathologists, k¼ 0.64–0.69 among
pulmonary pathology experts and k¼ 0.55–0.59 among all
pathologists under study)21. Poorer tumour differentiation and
poorer slide quality were associated with lower diagnostic
agreement21. Several recent studies have attempted to define
additional visual features for prognostic prediction for patients
with lung adenocarcinoma4,22,23 or lung squamous cell
carcinoma24,25. However, there is still considerable room for
improvement for the inter-rater agreements of these features26–28.
Subjective or erroneous evaluation of histopathology images may
lead to poor therapeutic choice, which results in decreased
survival and loss of quality of life in numerous patients29.

Computerized image processing technology has been shown to
improve efficiency, accuracy and consistency in histopathology
evaluations, and can provide decision support to ensure diagnostic
consistency30. Automated histopathological analysis systems also
have been proven to be valuable in prognostic determinations of
various malignancies, including breast cancer31, neuroblastoma32,
lymphoma33 and pre-cancerous lesions in the esophagus34.
Automated systems can identify candidate regions that require
further diagnostic assessment and propose novel image features
useful for prognosis. Current clinical practice could thus benefit
greatly from the development and incorporation of such systems
into clinical care31,32. With the recent availability of digital whole-
slide images30, there is now an opportunity for systematic analysis of
the microscopic morphology of lung cancer cells, whose structural
diversity had previously posed a great challenge for automated
analysis35,36. In particular, there is the possibility of identifying
previously unrecognized image features that correlate with patients’
prognoses, and potentially guide treatment decisions31.

In this study, we aim to improve the prognostic prediction of
lung adenocarcinoma and squamous cell carcinoma patients
through objective features distilled from histopathology images.

We design a fully automated informatics pipeline to extract
objective quantitative image features, assess the diagnostic utility
of the feature sets, build classifiers to distinguish lung cancers
with different survival outcomes, discover novel image
features that predicted patient prognosis and validate the
results in an independent data set. Our methods may ultimately
provide prognostic information for the patients, and contribute to
precision medicine of lung cancer.

Results
Patient characteristics and fully automated image features.
We obtained 2,186 haematoxylin and eosin (H&E) stained
whole-slide histopathology images from The Cancer Genome
Atlas (TCGA)37,38, encompassing lung adenocarcinoma and lung
squamous cell carcinoma as well as adjacent benign tissue.
All images captured at � 40 magnification were tiled with open
microscopy environment tools39. To target regions with
pathological changes, our automated pipeline skipped regions
with relatively sparse cellularity such as alveolar spaces and
selected the 10 densest tiles per image for further analysis. We
also acquired 294 tissue microarray images from the Stanford
Tissue Microarray (TMA) Database40, with one representative
histopathology image selected by pathologists for each of the
227 lung adenocarcinoma and 67 lung squamous cell carcinoma
patients. Patient characteristics of both the TCGA and TMA
cohorts are summarized in Tables 1 and 2, respectively.

To extract objective morphological information from
thousands of images, we built a fully automated image-
segmentation pipeline to identify the tumour nuclei and tumour
cytoplasm from the histopathology images using the Otsu
method41 (see Methods for details), and extracted quantitative
features from the identified tumour nuclei and cytoplasm
(Supplementary Fig. 1). Our fully automated pipeline reliably
identified most tumour cells and tumour nuclei, and the results
were consistent across different slides and images from different
batches (Supplementary Fig. 2). A total of 9,879 quantitative
features were extracted from each image tile with CellProfiler42,43.
Types of image features included cell size, shape, distribution of
pixel intensity in the cells and nuclei, as well as texture of the cells
and nuclei. Supplementary Table 1 provides a list of feature
categories included in this study.

Image features accurately identify tumour parts. To determine
if the quantitative image features were biologically relevant, we
first examined if they could distinguish malignancy from normal
adjacent tissue (inflammation, atelectasis or lymphocytic
infiltration in the absence of tumour cells) for the TCGA cohort.
We used seven classifiers: naive Bayes, support vector machines
(SVM) with Gaussian kernel, SVM with linear kernel, SVM with
polynomial kernel, bagging for classification trees, random
forest utilizing conditional inference trees44 and Breiman’s
random forest45. The TCGA data set was randomly partitioned
into distinct training and test set, with models built and
optimized through the training data and classification
performance evaluated through the test set. This process was
repeated 20 times to ensure the robustness of our classifiers.
Our classifiers achieved an average area under the receiver
operating characteristic curve (AUC) of 0.81 (best classifiers:
SVM with Gaussian kernel, random forest utilizing conditional
inference trees, and Breiman’s random forest (AUC¼ 0.85). The
performance of these three classifiers did not differ significantly
(analysis of variance (ANOVA) test P value¼ 0.8514)) in
distinguishing between adenocarcinoma and adjacent dense
benign tissue when using the top 80 quantitative features
(Fig. 1a and Supplementary Table 2). When classifying
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squamous cell carcinoma with adjacent benign tissue, the AUCs
of our classifiers with 80 features were 40.85 (Fig. 1b and
Supplementary Table 2). The performance of the top three
classifiers did not differ much (ANOVA test P value¼ 0.31).
In general, the top quantitative features were Haralick features
of the nuclei (sum variance, difference variance, correlation
coefficient of adjacent pixels), radial distribution of pixel intensity
and intensity mass displacement of the cytoplasm.

Image features distinguish tumour types in both cohorts. To
further validate the biological relevance of the quantitative
features, we applied our classifiers to distinguish between

adenocarcinoma and squamous cell carcinoma using the same set
of fully automated features in both TCGA and TMA data sets.
Our results showed that using 240 features selected by their utility
in this task (assessed through the information gain ratio
measurement), our best classifiers, including SVMs with Gaussian
kernel and random forest classifiers, attained an AUC of above
0.75 in the TCGA data set (average of all classifiers: 0.72; Fig. 2a
and Supplementary Table 3). The performance of the top
classifiers did not differ significantly (ANOVA test
P value¼ 0.08). The top quantitative features selected by
information gain ratio included Haralick texture features of the
nuclei (sum entropy, InfoMeas1, difference variance, angular
second moment), edge intensity of the nuclei, texture features of
the cytoplasm and intensity distribution of the cytoplasm. Some
of the feature groups overlapped with those that were used to

Table 1 | Patient characteristics of TCGA cohort.

TCGA data set

Characteristics Summary

Lung adenocarcinoma patients N¼ 515

Age 66.0±9.9 years

Gender 46.3% Male; 53.7%

female

Number of tumour histopathology image series N¼ 831

Number of histopathology image series of

adjacent benign tissue

N¼ 243

Number of histopathology image tiles N¼ 5,739,972

Grade

Grade 1 62 (12.0%)

Grade 1–2 11 (2.14%)

Grade 2 180 (35.0%)

Grade 2–3 39 (7.57%)

Grade 3 170 (33.0%)

Grade 4 5 (0.97%)

Grade unavailable 48 (9.3%)

Stage

Stage I 254 (49.3%)

Stage II 119 (23.1%)

Stage III 81 (15.7%)

Stage IV 25 (4.9%)

Stage unavailable 36 (7.0%)

Lung squamous cell carcinoma patients N¼ 502

Age 66.7±12.4 years

Gender 74.1% Male; 25.9%

female

Number of tumour histopathology image series N¼ 761

Number of histopathology image series of

adjacent benign tissue

N¼ 351

Number of histopathology image tiles N¼ 5,033,634

Grade

Grade 1 9 (1.79%)

Grades 1–2 4 (0.80%)

Grade 2 198 (39.4%)

Grades 2–3 34 (6.77%)

Grade 3 225 (44.8%)

Grades 3–4 2 (0.40%)

Grade 4 9 (1.79%)

Grade unavailable 21 (4.2%)

Stage

Stage I 242 (48.2%)

Stage II 156 (31.1%)

Stage III 87 (17.3%)

Stage IV 7 (1.4%)

Stage unavailable 10 (2.0%)

Abbreviation: TCGA, The Cancer Genome Atlas.

Table 2 | Patient characteristics of the TMA cohort.

TMA data set

Characteristics Summary

Lung adenocarcinoma patients N¼ 227

Age 67.4±11.0 years

Gender 41.4% Male; 58.6%

female

Number of tumour histopathology image

series

N¼ 227

Number of histopathology image tiles N¼ 227

Grade

Grades 1 35 (15.4%)

Grades 1–2 0 (0%)

Grade 2 134 (59.0%)

Grades 2–3 0 (0%)

Grade 3 54 (23.8%)

Grade 4 0 (0%)

Grade unavailable 4 (1.8%)

Stage

Stage I 121 (53.3%)

Stage II 64 (28.2%)

Stage III 41 (18.1%)

Stage IV 1 (0.4%)

Stage unavailable 0 (0%)

Lung squamous cell carcinoma patients N¼ 67

Age 68.7±8.4 years

Gender 62.7% Male; 37.3%

female

Number of tumour histopathology image

series

N¼ 67

Number of histopathology image tiles N¼ 67

Grade

Grade 1 4 (5.97%)

Grade 1–2 0 (0%)

Grade 2 33 (49.3%)

Grade 2–3 0 (0%)

Grade 3 28 (41.8%)

Grade 3–4 0 (0%)

Grade 4 1 (1.49%)

Grade unavailable 1 (1.49%)

Stage

Stage I 36 (53.7%)

Stage II 25 (37.3%)

Stage III 6 (9.0%)

Stage IV 0 (0%)

Stage unavailable 0 (0%)

Abbreviation: TMA, Stanford Tissue Microarray.
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distinguish between benign and malignant lesions. For instance,
Haralick texture features such as sum entropy and difference
variance were among the top features in both classification tasks.

The relevance of our quantitative image features for diagnostic
classification was also validated in the TMA data set. Utilizing the
same informatics pipeline on these samples, most of the classifiers
achieved AUC around 0.78 (SVM with Gaussian kernel has the
highest AUC of 0.85; the performance of the top three classifiers
did not differ significantly (ANOVA test P value¼ 0.13)),
indicating the robustness of our informatics method (Fig. 2b
and Supplementary Table 3). The slightly higher AUC in the
TMA samples relative to the TCGA samples may be due to the
manual selection of representative views by the pathologist,
whereas the entire slide was used for the TCGA samples. The top
quantitative features included texture features in the tumour
nucleus and cytoplasm, and radial distribution of pixel intensity.

Image features predict stage I adenocarcinoma survival. We
next investigated the prognostic values of our quantitative feature
sets. Stage I adenocarcinoma patients are known to have diverse
survival outcomes (Fig. 3a). In the TCGA cohort, more than 50%
of the stage I adenocarcinoma patients died within 5 years after

the initial diagnosis, whereas B15% of the patients survived for
more than 10 years. A number of studies aimed to distinguish
patients with different survival outcomes with additional
visual patterns22,23. However, non-systematic errors may take
place using these subjective assessments, and these visual
evaluations are hard to standardize26–28. It is thus difficult for
human evaluators to predict survival outcomes based purely on
the H&E stained microscopic slides4,18. Although higher tumour
grade is thought to be associated with poorer survival outcomes14,
this association is weak in patients with stage I lung
adenocarcinoma in both TCGA and TMA data sets (log-rank
test P value40.05; Fig. 3b).

With an aim to provide better prognostic prediction with the
H&E slides, we investigated whether our quantitative features
could predict survival in stage I patients. We built elastic net-Cox
proportional hazards models46 to select the most informative
quantitative image features and calculated survival indices
derived from H&E stained microscopic pathology images
(see Methods). Patients were categorized into longer-term or
shorter-term survivors based on their survival indices. Our
model successfully distinguished shorter-term survivors from
longer-term survivors in the test set (log-rank test
P value¼ 0.0023; Fig. 3c). Among the 60 image features
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Figure 1 | Quantitative image features accurately distinguished malignancies from adjacent dense normal tissues. (a) ROC curves for classifying lung

adenocarcinoma versus adjacent dense normal tissues in the TCGA test set. Classifiers with 80 features attained average AUC of 0.81. (b) ROC curves for

classifying lung squamous cell carcinoma from adjacent dense normal tissues in the TCGA test set. Classifiers with 80 features attained average AUC of

0.85. The performance of different classifiers is shown. CIT, conditional inference trees; ROC, receiver operator characteristics.
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selected by our methods, the top features that facilitated
classification of survival outcomes included texture of the
nuclei, Zernike shape decomposition of the nuclei, and Zernike
shape decomposition of the cytoplasm (Supplementary Data 1).

Our approach for survival prediction was validated with images
from an independent data set (the Stanford TMA database).
The same image processing workflow with elastic net-Cox
proportional hazards model selected a similar set of features,
which also successfully distinguished longer-term survivors from
shorter-term survivors in the stage I adenocarcinoma cohort
(log-rank test P value¼ 0.028; Fig. 3d). The patients in different
survival groups did not have significantly different treatments
(w2-test P value40.9 for neoadjuvant chemotherapy, radiation
therapy and targeted molecular therapy).

Figure 3e,f show some examples of histopathology images from
stage I lung adenocarcinoma patients with the same pathology
grade, but with different survival outcomes. The differences in
tumour cell morphology between the two histopathology images
were not easily identified by visual inspection, but could be
distinguished based on our quantitative image features. These
quantitative features proved to be useful in predicting survival
outcomes of stage I adenocarcinoma patients.

Image features predict squamous cell carcinoma survival.
Stage and grade alone only have limited predictive values in
stratifying survival outcomes in patients with squamous
cell carcinoma (log-rank test P value40.2; Fig. 4a,b)19.
To validate the generalizability of our survival prediction
method to other lung cancers, we utilized similar informatics
workflow incorporating image features and tumour stage
to build prediction models in squamous cell carcinoma based
on our quantitative image features. Our elastic net
models selected 15 features and classified patients into different
survival groups (log-rank test P value¼ 0.023; Fig. 4c).
Features most indicative of survival outcomes included
Zernike shape in the tumour nuclei and cytoplasm
(Supplementary Data 2).

Our prognostic methodology for squamous cell carcinoma was
also confirmed in the independent Stanford TMA cohort. Elastic
net-Cox proportional hazards model successfully distinguished
longer-term survivors from shorter-term survivors with lung
squamous cell carcinoma (log-rank test P value¼ 0.035; Fig. 4d).
The patients in different survival groups did not have significantly
different treatments (w2-test P value40.71 for neoadjuvant
chemotherapy, radiation therapy and targeted molecular
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Figure 2 | Quantitative image features successfully distinguished histopathology images of lung adenocarcinoma from those of lung squamous

cell carcinoma. (a) ROC curves for classifying the two malignancies in the TCGA test set. Most classifiers achieved AUC40.7. (b) ROC curves for

classifying the two malignancies in the TMA test set. Most classifiers achieved AUC 40.75, indicating that our informatics pipeline was successfully

validated in the independent TMA data set. The performance of different classifiers is shown. CIT, conditional inference trees; ROC, receiver operator

characteristics.
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therapy). Similarly, Zernike shape, texture and radial distribution
of intensity were among the top prediction features. Figure 4e,f
shows examples of histopathology images from squamous cell
carcinoma patients with the same pathology stage and grade, but
with different survival outcomes. As with lung adenocarcinoma,
the visual features associated with survival outcomes of lung
squamous carcinoma were not well established24,25, but our

methodology could quantify some of the pathology patterns
predictive of patient survival.

Discussion
To our knowledge, this is the first study to predict the prognoses
of lung cancer patients by quantitative histopathology features
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Figure 3 | Quantitative image features predicted the survival outcomes of stage I lung adenocarcinoma patients. (a) Kaplan–Meier curves of lung

adenocarcinoma patients stratified by tumour stage. Patients with higher stages tended to have worse prognosis (log-rank test P value o0.001 in TCGA

data set, log-rank test P¼0.0068 in TMA data set). However, the survival outcomes varied widely. (left: TCGA data set, right: TMA data set). (b) Kaplan–

Meier curves of stage I lung adenocarcinoma patients stratified by tumour grade. Tumour grade did not significantly correlate with survival (left: TCGA data

set, log-rank test P value¼0.06; right: TMA data set, log-rank test P value¼0.0502). (c) Kaplan–Meier curves of stage I lung adenocarcinoma patients

stratified using quantitative image features. Image features predicted the survival outcomes. Elastic net-Cox proportional hazards model categorized

patients into two prognostic groups, with a statistically significant difference in their survival outcomes in the TCGA test set (log-rank test P

value¼0.0023). (d) The same classification workflow was validated in the TMA data set, with comparable prediction performance. (log-rank test P

value¼0.028). (e) Sample image of stage I adenocarcinoma with long survival. This patient suffered from stage IB, grade 3 lung adenocarcinoma, and

survived more than 99 months after diagnosis. Our classifier correctly predicted the patient as a long survivor. (f) Sample image of stage I adenocarcinoma

with short survival. This patient suffered from stage IB, grade 3 lung adenocarcinoma, and survived less than 12 months after diagnosis. Our classifier

correctly predicted the patient as a short survivor.
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extracted from whole-slide pathology images. In this study, we
designed an automated workflow that identified thousands of
objective features from the images, built and evaluated machine-
learning classifiers to predict the survival outcomes of lung cancer
patients. We also validated our methodology using histopathol-
ogy images from an independent tissue microarray database.

Previously, the vast amount of information contained in
whole-slide pathology images has posed a great computational
challenge to researchers. The huge dimension of the original
images made it extremely difficult to manipulate, and informatics
workflows requiring manual tumour tissue segmentation were
not feasible for millions of image tiles. As such previous
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Figure 4 | Quantitative image features predicted the survival outcomes of lung squamous cell carcinoma patients. (a) Kaplan–Meier curves of lung

squamous cell carcinoma patients stratified by tumour stage. Although patients with higher stages generally have worse outcomes, the trend was not

statistically significant (left: TCGA data set, log-rank test P value¼0.216; right: TMA data set, log-rank test P value¼0.388). (b) Kaplan–Meier curves of

stage I lung squamous cell carcinoma patients stratified by tumour grade. Tumour grade did not significantly correlate with survival. (left: TCGA data set,

log-rank test P value¼0.847; right: TMA data set, log-rank test P value¼0.964). (c) Kaplan–Meier curves of lung squamous cell carcinoma patients

stratified using quantitative image features. The image features predicted the survival outcomes. Elastic net-Cox proportional hazards model categorized

patients into two prognostic groups, with a statistically significant difference in their survival in the TCGA test set (log-rank test P value¼0.023). (d) The

same classification workflow was validated in the TMA data set, with comparable prediction performance. (log-rank test P value¼0.035). (e) Sample

image of lung squamous cell carcinoma in a patient with long survival. This patient suffered from stage I, grade 1 lung squamous cell carcinoma, and

survived more than 70 months after diagnosis. Our classifier correctly predicted the patient as a long survivor. (f) Sample image of squamous cell

carcinoma in a patient with short survival. This patient suffered from stage I, grade 1 lung squamous cell carcinoma, and only survived 12.4 months after

diagnosis. Our classifier correctly predicted the patient as a short survivor.
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investigators have only focused on selected represented views in
tissue microarrays rather than whole slides31,47. An advantage of
our approach is that no additional human effort is needed in
our informatics workflow other than the diagnostic labels and
survival information for the training data. This makes it scalable
to large amount of information contained in whole-slide
pathology images. To our knowledge, this is the first study to
show the utility of fully automated quantitative image features
extracted from whole-slide histopathology images to predict
patient survival. As such, it could provide rapid and objective
survival prediction for numerous patients.

An important component of our image processing technique is
the selection of the densest image tiles, as they generally contain the
most cells per image. Since normal lung is composed predomi-
nantly of alveolar structures that are relatively sparse in cells, the
densest image tiles typically show pathological changes, such as
tumour, lymphocytic infiltration, inflammation or atelectasis—
tissue regions where image feature extraction is expected to be
biologically informative. We further established an automated
pipeline to identify tumour-like cells and extract 9,879 features
directly from the images. These features capture both the local
anatomical structure (for example, shape of the cell nuclei) and
more global patterns (for example, texture) of the tumour cell and
tumour nuclei. As a benchmark for the utility of our objective
features, machine-learning models with selected features success-
fully identified images with tumour cells and classified tumour
types, showing that our image features could recapture the
important image labels annotated by trained pathologists.

Patients with lung adenocarcinoma or squamous cell
carcinoma are known to have very diverse survival outcomes.
Even patients with the same stage and pathology grade can
have very different survival times18,19. Indeed, patients with
stage I lung adenocarcinoma exhibit a broad survival range, and
clinical stage only weakly predicted the survival outcomes of
lung squamous cell carcinoma patients. Historically, with the
exception of pathological stage, the examination of H&E stained
microscopic slides has provided limited information on patients’
prognoses. Currently, morphological assessment of subtypes of
well-differentiated adenocarcinoma or squamous cell carcinoma
in combination with molecular testing yields some useful
prognostic information4,48–50. In this study, we demonstrated
that the extracted quantitative morphological features in the
H&E stained slides, including Zernike shape features, predicts
patient survival. These quantitative image features are generally
difficult to spot by manual inspection, but computerized
methods can efficiently and effectively identify such features.
Since H&E stained images are routinely prepared and reviewed in
current clinical practice, our classifiers could be efficiently applied
to routine practice.

We validated our informatics framework for survival
prediction by an independent TMA data set, demonstrating the
generalizability of our approach. We leveraged elastic net-Cox
proportional hazards models, which are computationally efficient,
and are capable of reducing the number of parameters in the
models effectively and handling right-censored survival data. This
method is well-suited for analysing large amounts of data and
large number of features in our analysis. Accurate prognostic
prediction generated by our models can guide clinical decision
making and enhance precision medicine.

We also investigated the top features associated with prognosis
in lung adenocarcinoma and squamous cell carcinoma. In the
adenocarcinoma group, the primary prognostic features that
distinguished longer-term survivor from shorter-term survivors
included Zernike shape features of the nuclei and cytoplasm and
nuclei texture features. For each tumour cell, Zernike shape
features of the nucleus were generated first by identifying the

circle of the smallest diameter that covers the tumour nucleus,
setting all pixels within the tumour nucleus to one and
background to zero, and then decomposing the resulting binary
image into Zernike polynomials, where the coefficients serve as
features. Texture features quantified the correlations between
nearby pixels within the regions of interest. This showed that
nuanced patterns of nuclear shape are important determinants of
patient prognosis. In the squamous cell carcinoma group, the
most important features also included Zernike shape features of
the nuclei. This showed that both local anatomical structures
(for example, shape of cell nuclei and cytoplasm) and global
patterns of the tumour cell nucleus (for example, texture of the
nuclei) are associated with survival outcomes.

Machine-learning techniques have previously been shown to be
useful in predicting patient prognosis in several cancers and
pre-cancerous lesions31,32,34,51. For instance, researchers have
developed computerized morphometry to distinguish different
grades of epithelial dysplasia in Barrett’s esophagus34, and other
groups of investigators associated features in the stromal
components with the prognosis of breast cancer31. In this
study, we demonstrated that through incorporating multiple
image databases, selecting the most informative features
and optimizing classifiers, we are able to predict the prognosis
for a cancer with diverse histopathology patterns. Our machine-
learning models were trained and tested on images contributed by
more than 20 medical centres, which reduces the systematic bias
of any single image source. Our results also showed that the
classification performance is not very sensitive to the choice of
machine-learning models.

One limitation of this study is that cases submitted for TCGA
and TMA databases might be biased in terms of having mostly
images in which the morphological patterns of disease are
definitive, which could be different from what pathologists
encounter at their day-to-day practice. For instance, pathologists
reviewed many slides and microscopic views, and only uploaded
the most representative views to the TMA database. Although
histopathology images with typical pathological patterns might be
helpful in generating machine-learning models, how these
diagnostic models performed in the actual clinical settings remain
to be explored. In addition, certain semi-quantitative pattern
assessments of adenocarcinoma, such as acinar or papillary, were
not available in either databases. Future research could integrate
quantitative image features along with a richer set of qualitative
and semi-quantitative annotations. In addition, as the universal
standard for digitalizing histopathology images is not yet
established, retraining of prediction models is required for data
sets with different levels of magnification. Another limitation is
that this study only focused on H&E stained images. The clinical
utility of integrating quantitative features from immunochemical
stained images or molecular data remain to be established.

In summary, we demonstrate that histopathology image
classifiers based on quantitative features can successfully predict
survival outcomes of lung adenocarcinoma and lung squamous cell
carcinoma patients. This capability is superior to the current
practice utilized by pathologists who assess the images in terms of
tumour grade and stage. Investigating the objective features
associated with survival also provides insights for histopathology
studies. Similar approaches may be applied to the pathology of other
organs. Our methods could facilitate prognostic prediction based on
the routinely collected H&E stained histopathology slides, thereby
contributing to precision oncology and enhance quality of care.

Methods
Histopathology image sources. A total of 2,186 whole-slide H&E stained
histopathology images were obtained from TCGA37,38, which included samples
from 515 lung adenocarcinoma patients and 502 lung squamous cell carcinoma
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patients. All images were included for image processing and analysis. All tumour
samples were gathered by surgical excision. Lymph nodes were assessed by
pathology evaluation. R-status and adjuvant/neoadjuvant treatment status were
determined by reviewing the clinical notes. For every image, the associated
pathology report and clinical variables, such as demographic and survival
information, were also acquired from the source database.

The whole-slide images with � 40 magnification were tiled into overlapping
1,000� 1,000 pixels using bftools in the open microscopy environment39, which
generated more than 10 million image tiles in total. To reduce computational time,
only the 10 densest images of each image series were selected, as they contained
more cells for further investigations. For each image tile, the image density was
calculated as the percentage of non-white (all of the red, green, and blue values
were below 200 in the 24-bit RGB colour space) pixels in that tile.

To ensure the extensibility of the developed methods, tissue microarray (TMA)
images from Stanford Department of Pathology40 were acquired and processed as
an external validation set. A total of 227 lung adenocarcinoma and 67 lung
squamous cell carcinoma patients were included in this cohort, and one
representative H&E stained histopathology image per patient was selected by
pathologists. All images from TMA were included for further image processing.

Informed consent of the TCGA and TMA participants were obtained by the
TCGA consortium37,38 and TMA investigators40, respectively. All images were
publicly available for research purposes, and did not require institutional review
board approval.

Curation of pathology annotations and clinical variables. The pathology reports
and clinical profiles of each lung adenocarcinoma and lung squamous cell carci-
noma patient were acquired from TCGA as well as the Stanford TMA Database.
Pathology grade (level of differentiation assessed by experienced pathologists: grade
1 is well-differentiated; grade 2 is moderate-differentiated; grade 3 is poorly-dif-
ferentiated; and grade 4 is anaplastic tumour), stage, and pathology diagnosis for
each patient were manually curated from the pathology reports. Demographic
information, such as age, gender, ethnicity, survived days and survival status for the
same set of patients were also obtained. All patients with missing stage were
excluded from the survival analyses.

Extraction of quantitative features from images. A segmentation and feature
extraction pipeline was built using CellProfiler42,43. The pipeline first unmixed H&E
stains using the ‘UnmixColors’ module, then identified the tissue foreground from
unstained background by a threshold calculated by the Otsu algorithm41. Regions of
tissue folds were identified by their disproportionally heavy staining and discarded
from further analysis. All types of cells in the images were segmented for diagnostic
classification, whereas prognostic analysis focused on tumour cells only. Tumour
nuclei and cytoplasm were segmented to facilitate extraction of features specific to
these subcellular regions, as many manually defined nuclei and cytoplasmic patterns
were known to have clinical implications4. ‘IdentifyPrimaryObjects’ module with
adaptive Otsu thresholds was utilized to identify the cell nuclei of the tumour cells.
Cell bodies were then identified by the ‘IdentifySecondaryObject’ module, and
cytoplasm was defined as the regions in the cell outlines but outside of nuclei outlines.
After the nucleus and cytoplasm of each cell were identified, 790 element features
were designed with modules including ‘Measure Correlation’, Measure Granularity’,
‘Measure Image Area Occupied’, ‘Measure Image Intensity’, ‘Measure Image Quality’,
‘Measure Object Intensity’, ‘Measure Object Neighbours’, ‘Measure Object Radial
Distribution’, ‘Measure Object Size Shape’ and ‘Measure Texture’. Features of each
cell were extracted and aggregated across the tile by mean, median, s.d. and deciles
(10-quantiles) of the values. The quantitative features covered the size, shapes, pixel
intensity distributions, textures of the objects, as well as the relation between
neighbouring objects. These features were shown to be useful in characterizing the
microscopic cell morphology43. The diagram of informatics workflow of
histopathology image processing is shown in Supplementary Fig. 1. Because of the
fact that the images from the TMA data set have different levels of magnification
(about � 1.5 compared with the TCGA set), the same image-processing pipeline with
adjusted size constraints were used for the TMA set. A comprehensive list of all 9,879
quantitative features could be found in Supplementary Data 3.

Machine-learning methods for diagnosis classification. Naive Bayes classi-
fiers52, SVM with Gaussian, linear, and polynomial kernels53, bagging, random
forest with conditional inference trees44 and Breiman’s random forest45 were used
to conduct supervised machine-learning. Models were built and tested using R
version 3.2, with ‘e1071’ package for SVM and naive Bayes classifiers, package
‘ipred’ for bagging, package ‘randomforest’ for Breiman’s random forest45, and
package ‘party’ for random forest with conditional inference trees44. The data sets
were randomly partitioned into 70% training set and 30% test set. For each
diagnostic classification task, information gain ratio measure (‘FSelector’ package)
was employed to select the most informative features from the training set and to
avoid overfitting. To ensure the robustness of our results, the random partitioning
process was repeated 20 times. The optimal number of features was determined by
cross-validation on the training set. We built the models and selected the features
using data only from the training set, in order to rigorously evaluate the
performance of our finalized models with the untouched test set.

Two automated classification tasks were designed to evaluate the utility of the
extracted features: (1) to classify images of malignancy from images of adjacent
benign tissues; and (2) to distinguish lung adenocarcinoma from lung squamous
cell carcinoma. The inputs to the classification algorithms were the quantitative
features extracted from the images as described in the previous section, and the
outputs were the predicted diagnoses groups. For tumour-type classification, the
prediction results for image tiles of the same patient were aggregated.

Machine-learning methods for prognosis prediction. Elastic net-Cox
proportional hazards models (R package ‘glmnet’) were built to calculate the
survival index of each patient46. The models were trained and the features were
selected on the training set. Regularization parameters were selected by 10-fold
cross-validation on the training set. Elastic net-Cox proportional hazards model
were built with the selected parameters, and survival indices for each patients were
calculated to determine the threshold for survival group classification. The
distribution of survival indices on the training examples was examined, and the
median index in the training set was selected to divide patients into good and poor
prognostic groups. The same threshold was used to classify patients in the test set
into two predicted survival groups. We further performed sensitivity analysis on
the number of discretized prognostic groups, and the results from three prognostic
groups (divided by the first and second tertile of the survival indices in the training
set) did not differ much from the two-group model (Supplementary Fig. 3).

Evaluation. For diagnostic classification and distinguishing malignancy from
adjacent dense normal tissues, a held-out test set from each database was utilized to
evaluate the performance of each of the different classifiers. Receiver operator
characteristics curves were generated and AUCs of each classifier were calculated
using ‘ROCR’54 and ‘ggplot2’55 packages in R, and we used ANOVA to determine
the performance difference among our best classifiers. To understand the weaknesses
of our classifiers, images frequently misclassified by the classifiers were also reviewed.

For survival prediction, patients in the test set were classified into good or poor
prognostic groups based on their survival indices as described above. Since there
were only about 100 patients in most prediction tasks, leave-one-out cross-
validation was utilized to assess the performance of our prediction models. Log-
rank test was employed to examine the survival difference between different
predicted groups. w2-tests were employed to determine if there were any treatment
(for example, chemotherapy, radiotherapy and targeted molecular therapy)
differences in the predicted survival groups.

Both the diagnostic and prognostic prediction methods were validated by the
TMA data set with the same evaluation methods.

Data availability. The histopathology images, pathology reports, and clinical infor-
mation of the TCGA data set are available in a public repository from the TCGA Data
Portal (https://tcga-data.nci.nih.gov/tcga/). Those from the Stanford Tissue Microarray
database are available at https://tma.im/cgi-bin/home.pl. All other data supporting the
findings of this study are available within the article and its Supplementary
Information Files or from the corresponding author upon reasonable request.
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