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Predicting nonlinear properties of metamaterials

from the linear response
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Xiaobo Yin"2 and Xiang Zhang"23*

The discovery of optical second harmonic generation in 1961
started modern nonlinear optics'3. Soon after, R. C. Miller
found empirically that the nonlinear susceptibility could be
predicted from the linear susceptibilities. This important
relation, known as Miller's Rule*®, allows a rapid determination
of nonlinear susceptibilities from linear properties. In recent
years, metamaterials, artificial materials that exhibit intriguing
linear optical properties not found in natural materials®, have
shown novel nonlinear properties such as phase-mismatch-free
nonlinear generation’, new quasi-phase matching capabili-
ties®® and large nonlinear susceptibilities®'°. However, the
understanding of nonlinear metamaterials is still in its infancy,
with no general conclusion on the relationship between linear
and nonlinear properties. The key question is then whether
one can determine the nonlinear behaviour of these artificial
materials from their exotic linear behaviour. Here, we show
that the nonlinear oscillator model does not apply in general
to nonlinear metamaterials. We show, instead, that it is
possible to predict the relative nonlinear susceptibility of
large classes of metamaterials using a more comprehensive
nonlinear scattering theory, which allows efficient design
of metamaterials with strong nonlinearity for important
applications such as coherent Raman sensing, entangled
photon generation and frequency conversion.

The broad applicability of Miller’s rule, which holds for a wide
variety of natural materials, stems from the fact that it is a direct
result of the Lorentz oscillator description of material nonlinearity,
in which a charge is moving in a non-quadratic potential*. An
estimate for Miller’s delta, the proportionality between the non-
linear and the linear susceptibilities, can be obtained by assuming
that the linear and nonlinear restoring forces will be of similar
magnitudes when the displacement of the charge is of the order
of the inter-atomic distance, leading to an approximate value of
Miller’s delta of Ay~ a?/e, where a is the inter-atomic distance and
e is the electron charge. Experimentally, Miller’s delta was found
to be nearly constant, with a value of 0.45+0.07m? C™! for many
semiconductor crystals, even though the linear and nonlinear sus-
ceptibilities spanned over four orders of magnitude'"'2. Miller’s rule
was originally proposed for the transparency region of nonlinear
crystals, where the losses were minimal, but was later extended to
absorptive regions'. The model was shown to apply to a wide variety
of materials, from semiconductor crystals to atomic vapours''* and
noble metals'. In a quantum mechanical treatment, the derivative
of the potential is replaced with an average of the wavefunction over
the ground state'’. The development of metamaterials in the past
decade allows the exploration of the nonlinear properties of such

materials at optical'®* and microwave* frequencies. Researchers

have found that in some cases, such as the third harmonic emission
from bow-tie and double-bar nanostructures'", Miller’s rule or its
equivalent nonlinear oscillator model® fairly accurately predicts the
nonlinear susceptibilities. However, the general validity of Miller’s
rule in optical metamaterials for arbitrary nonlinear processes, and
specifically for second-order susceptibilities, is not known. Here we
show experimentally that Miller’s rule fails to describe the second-
order susceptibility of metamaterials and predicts an incorrect opti-
mum geometry for generating the highest second-order nonlinear-
ity. We however demonstrate the optimal geometry can be correctly
predicted with a more general nonlinear scattering theory. This
general principle describes not only second-order but also higher-
order nonlinear optical responses of plasmonic nanostructures over
a broad wavelength range. The predictive capability of nonlinear
scattering theory enables rapid design of optimal nonlinear nanos-
tructures for sensing and integrated photonics.

Predicting the optimal metamaterial for nonlinear generation is a
critical test of Miller’s rule and microscopic theories of metamaterial
nonlinearity. We have studied the second harmonic generation
from metamaterial arrays in which the geometry varies gradually
from a symmetric bar to an asymmetric shape (Fig. 1). A marked
increase in the second-order susceptibility is expected owing to the
extreme sensitivity of second harmonic generation to symmetry.
Surprisingly, the nanostructure with the most obvious asymmetry,
the highly curved U-shaped structure, does not yield the maximum
second-order nonlinear susceptibility. Instead, the largest second
harmonic emission is observed for an intermediate morphology.
The transition between bar to U-shaped nanostructures—and thus
the degree of asymmetry—is quantified by an asymmetry ratio,
defined as the ratio of the vertical protrusion to the total length of
the nanostructure. The asymmetry ratio varies from 0 to 0.3 along
the horizontal axis of the array (Fig. 1), with a constant volume to
avoid volume-dependent changes in the nonlinearity”®. We study
resonant and non-resonant interactions of the metamaterial with
the pump pulse by varying the length of the nanostructure from 150
to 300 nm. This method allows us to separate the intrinsic variations
in the metamaterial nonlinearities from the frequency-dependent
linear and nonlinear susceptibility of the metal constituents'®. The
two-dimensional arrays of nanostructures are then illuminated
at normal incidence with 200fs laser pulses at 1,305nm using
confocal stage scanning microscopy. We find the maximum of the
second harmonic emission for a specific geometry that corresponds
to (length, ratio) = (292 nm, 0.18), as shown in Fig. 2a. In stark
contrast, we find that the nonlinear oscillator model fails to predict
the optimal nonlinear metamaterial, found to be at a much higher
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Figure 1| Schematic of the metamaterial array. Nonlinear light generation from metamaterial arrays in which the geometry of the nanostructures varies
gradually from a symmetric bar to an asymmetric U-shape. The second-order susceptibility is expected to be extremely sensitive to the symmetry of the
metamaterial. a, Definition of the parameter space: the total length and asymmetry ratio of the nanostructures is changed throughout the array. Further
details on the sample design are given in Supplementary Fig. 4. b, Schematic of the second and third harmonic generation as a function of the
nanostructure length and morphology. A confocal microscope is used to excite the nanostructures with infrared laser pulses (1,305 nm). The nonlinear
emission is measured in transmission and the linear transmission is characterized using a supercontinuum laser. ¢, Scanning electron microscope image of
the nanostructures. To avoid particle-particle coupling, a period of 500 nm was used. This spectroscopy method allows us to separate the intrinsic
variations in the nanostructure nonlinearities from the frequency-dependent linear and nonlinear susceptibility of the metal constituents.

ratio in the experiment (0.18 & 0.02) than predicted by Miller’s
rule (0.1240.02), as seen in Fig. 2b. In addition, as seen in both
models, the most asymmetric structures do not yield the highest
second-order nonlinearity, as might be thought intuitively from
simple spatial symmetry considerations. The optimum nonlinear
metamaterial can be fully predicted by applying nonlinear scattering
theory, which as we will show allows an accurate prediction of
the correct far-field nonlinear susceptibility using the microscopic
rather than the far-field linear response of the metamaterial.

Whereas the far-field linear response fails to predict the
nonlinear properties of the metamaterial as Miller’s rule prescribes,
we find that the microscopic description can effectively predict
the nonlinear susceptibility. In nonlinear scattering theory, the
nonlinear emission is described by assuming a local nonlinear
susceptibility tensor on the surface of the noble metal. This
relationship can be quantified using the Lorentz reciprocity
theorem® as

Enl(za)) X // XnnnErzl ((1)) : En (2(1))ds

where E,;(2w) is the nonlinear emission, x,,, is the local nonlinear
susceptibility, and E,(w) and E,(2w) are the linear fields of
the fundamental mode and the mode at the second harmonic
frequency normal to the surface of the nanostructure. This process
is illustrated schematically in Fig. 3a. The value of the overlap
integral depends on the local field and the relative sign of the
contributions: destructive interference between contributions can
easily occur, resulting in low nonlinear emission. In contrast,
good mode overlap, meaning constructive interference between
the nonlinear polarization mode and its harmonics, will lead to
very high far-field nonlinear emission, resulting in an intimate
connection between the microscopic linear polarization and the far-
field emission. By examining the microscopic origin of the far-field
nonlinear emission, we can quantify this relationship and get an
intuitive physical understanding of the violation of Miller’s rule. In
contrast, the numerical simulation using nonlinear scattering theory
predicts an asymmetry ratio (~0.19) that is consistent with the
experimental results, as shown in Fig. 2c.

The microscopic contributions, which are complex valued, add
up from each region of the nanostructure, creating constructive or
destructive interference in the far-field emission. A physically
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intuitive understanding of the net nonlinear emission in
metamaterials can be obtained by plotting the value of P-E on a
path around the nanostructure in a complex plane representation.
The net nonlinear emission is proportional to the magnitude of
the vector sum of the microscopic nonlinear sources. A large final
magnitude corresponds to high nonlinear emission, which is a
consequence of large polarizability and good overlap between the
modes, whereas poor nonlinear emission can result from weak local
fields as well as poor overlap or destructive interference between
nonlinear generations in different regions. Four nanostructures
with varying asymmetry ratios are plotted in Fig. 3b. For ‘bar-like’
nanostructures with a low asymmetry ratio (purple), the trajectory
in the complex plane is not straight, illustrating the destructive
interference of the microscopic nonlinear sources. In the opposite
limit, for the greatest asymmetry ratio of 0.33 (dark green), the line
integral follows a straight path in the complex plane, but the overall
length of the vectors is smaller than the optimal nanostructure.
The reason for this effect is the smaller absorption cross-section of
the highly curved U-shaped structure than that of the bar. For the
optimal nanostructure with an asymmetry ratio of 0.19 (brown),
the path integral exhibits some curvature, but has the largest
final radius. The optimal nanostructure for second harmonic
emission represents a compromise between the absorption at
the fundamental, the second harmonic, and the ability for the
microscopic sources to combine constructively.

In the experiment, the second harmonic has a single peak along
the vertical axis, indicating that the wavelength dependence is dom-
inated by the resonance of one specific eigenmode at the fundamen-
tal frequency. To test the wavelength scaling, the nonlinear response
was measured for different pump wavelengths. The second har-
monic versus position on the array is shown in Fig. 4a—c for pump
wavelengths of 1,160 nm, 1,220 nm and 1,305 nm, respectively. The
relation between the position of the second harmonic emission peak
and the excitation wavelength is linear (Fig. 4d), which corresponds
to the linear relation between effective length and resonant wave-
length. We find that, although the optimum length shifts with the
pump wavelength, the optimum asymmetry ratio remains fixed.
This optimum ratio depends on a delicate balance between the
ability of the nanostructure to absorb light, which decreases roughly
linearly with the length of the horizontal arm, and its ability to
generate an asymmetric near-field current pattern, which depends
on the length in the vertical direction (Ly in Fig. 1). The constant
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Figure 2 | Nonlinear scattering theory versus nonlinear oscillator model
(Miller's rule). Experimental second harmonic emission for different
geometries of nanostructure for Apump =1,305nm at normal incidence.
Scanning electron microscope images of nanostructures with varying
asymmetry ratios are shown above a. a, Experimental result for the second
harmonic emission intensity (maximum in red and minimum in purple) as a
function of the nanostructure length (y axis) and asymmetry ratio (x axis).
b, Predicted second harmonic emission intensity following Miller's rule as a
function of the nanostructure length and asymmetry ratio. From the
transmission spectrum, we calculate the log of the transmission at the
fundamental and second harmonic wavelengths, yielding a quantity
proportional to the extinction cross-section. We then predict the relative
nonlinear susceptibilities using Miller's rule, er”)ler X Oext () Toxt 2w). The
white dashed lines in a,b indicate the nanostructure length with the highest
second harmonic emission at a given asymmetry ratio. ¢, Second harmonic
emission intensity as a function of the asymmetry ratio for three different
cases, explained in the legend, with error bars indicating the standard
deviation of the measured intensity. Miller's rule predicts a different
optimum geometry from that seen in the experiment, whereas nonlinear
scattering theory correctly predicts the optimum geometry.

relation that was observed in Fig. 4e suggests that such scalability
will be valid also at different wavelengths as long as the linear
relation between the resonance frequency and the length of the
nanostructure holds. This conclusion adds considerable intuition to
the design of nonlinear metamaterials.

NATURE MATERIALS | VOL 14 | APRIL 2015 | www.nature.com/naturematerials

LETTERS

There are some special cases where Miller’s rule can serve as
an approximation to guide the design of nonlinear nanostructures.
One example is third-order nonlinearities, such as third harmonic
generation, which do not have a symmetry-breaking requirement,
so for dipole modes, the electric field and nonlinear polarization
will add up constructively when integrated over the nanostructure.
This eliminates one mechanism for the failure of Miller’s rule. To
demonstrate this, we have measured the third harmonic emission
(Supplementary Fig. 7a) from the same array of nanostructures.
The third harmonic generation was analysed in the same manner
as done for the second harmonic case, that is, according to Miller’s
rule based on far-field polarizabilities. In the THG case, we find that
Miller’s rule (Supplementary Fig. 7c) predicts a similar dependence
on geometry to that seen in the experiment. The implication of such
a result is that the emission as a function of particle geometry can
be reasonably described by the far-field radiation properties, largely
because the third harmonic is a dipole-allowed process and the
nonlinear polarization for such modes will add up constructively.
This explains the good agreement that was achieved in earlier
research on the nonlinear oscillator descriptions of experimental
results for a wide range of geometries'®'**. One small difference is
that the far-field theory (Supplementary Fig. 7b) predicts a steeper
drop in third harmonic intensity with the ratio than is observed
in the experiment. The third harmonic emission from the U-shape
is larger than expected from the nonlinear oscillator model owing
to the enhanced local fields associated with the internal corners of
the nanostructure as well as the changing ratio of absorption to
scattering for the different structures®.

In our present study, we have systematically studied the
geometry dependence of metamaterial nonlinearity, demonstrating
the validity of nonlinear scattering theory and thus the importance
of the mode overlap between the nonlinear polarization and its
harmonic modes for efficient nonlinear light emission. These
experimental and theoretical methods can be used to calculate,
predict and demonstrate other perturbative parametric processes,
including multiple-wave mixing and parametric down-conversion
in arbitrary nanostructures.

Methods

Sample preparation. The samples were prepared using a standard electron beam
lithography (EBL) and metal lift-off process. The array of metamaterials is
fabricated on top of a quartz substrate where a 2-nm-thick layer of
indium-tin-oxide (ITO) is deposited by sputtering (Auto 306, Edwards) as an
EBL conductive layer. After defining the nanometre scale metamaterial patterns
in the bilayer photoresist with 250-nm-thick methyl methacrylate (MMA-EL8)
and 40-nm-thick polymethyl methacrylate (PMMA-A2) with high-resolution EBL
(CABL-9000C, Crestec), an electron beam evaporation system (Solution, CHA) is
then used to deposit chromium and gold thin films, followed by gentle soaking in
acetone to lift off the photoresist layer. The width of the nanostructures was
approximately 40 nm, and the thicknesses of the gold and chromium were 35nm
and 2 nm, respectively. The chromium layer is used to enhance adhesion between
the quartz surface and the gold layer.

Experimental method. A confocal microscope was used to measure the linear
transmission and the nonlinear emission from each geometry. Stage scanning
confocal microscopy allows us to investigate the geometry-dependent nonlinear
properties of metamaterials, while avoiding the challenges associated with
changing the laser wavelength, such as differences in pulse shape, focal volume
size or transmission®. The light source is an optical parametric oscillator (Spectra
Physics Opal) pumped by a ~100 fs Ti:sapphire oscillator (Spectra Physics
Tsunami). The pulse width is approximately 200 fs. The light source is focused to
a spot size of 1.25um and scanned across the sample. A PMT is used for
detection and colour filters are used to isolate the second and third harmonics.
The filters used were HG450/65 for the third harmonic and HG675/55 for the
second harmonic. A KG3 filter was used to absorb the infrared. The power level
was measured to be 100 uW of incident power at the back aperture of the
objective. Spectral measurements show that at the power levels used no
observable continuum emission is present. We work in transmission mode with a
Zeiss LD-Plan-NEOFLUAR 63 x 0.75 NA objective for excitation and a 40x 0.65
NA objective for collection. The collection half-angle for the objective is 40.5°.
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Figure 3 | Nonlinear scattering theory. a, The overlap integral of the microscopic nonlinear polarization, calculated from the linear fields at the fundamental
frequency w (for normal incidence), and the mode at the second harmonic yields the far-field nonlinear emission. b, Complex value of P-E plotted on a path
around the nanostructure. The net nonlinear emission is proportional to the magnitude of the vector sum of the microscopic nonlinear sources. Four
nanostructures with pulses of varying asymmetry are plotted in b.
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Figure 4 | Wavelength dependence of the optimal nanostructure for second harmonic generation. a-c, Spatial dependence of second harmonic
generation for different excitation wavelengths. The same array of nanostructures is illuminated with pulses of varying wavelength, and the geometry that
produces the maximum nonlinearity is determined. The vertical and horizontal axes represent the effective length and asymmetry ratio, respectively.

d.e, Effective lengths (d) and asymmetry ratios (e) that produce the maximum amount of second harmonic as a function of the excitation wavelength. The
optimum nanostructure length varies linearly with the wavelength, in agreement with the wavelength scaling of Maxwell's equations. The asymmetry ratio
of the nanostructure that produces the maximum second harmonic remains fixed as the length is varied; illustrating the wavelength independence of the
optimum asymmetry ratio. To determine the optimum geometry a centroid was fitted to the spatial maps of the second harmonic from the arrays of
nanostructures. The grey dashed lines are a linear fit and the error bars indicate the standard deviation in fitting the centroid.

The detector is a Hamamatsu H7421-40 photon counting PMT. For linear
transmission measurements we use a Fianium supercontinuum source.
Experiments performed on sparse arrays (500 nm period) and for isolated
nanostructures (2,000 nm period) yield similar results, suggesting that
particle-particle and long-range interactions are not important in this system.
Furthermore, the 1.25 um focal spot illuminates of the order of only ten particles,
limiting the interactions to a short range.
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Simulation method. The linear and nonlinear response of each nanostructure
was simulated using the finite-element solver COMSOL. A 600 nm diameter
spherical domain with a perfectly matched layer (PML) was used. The geometry
was rounded to a 5nm radius of curvature. A uniform dielectric environment of
n=1.3 was used to account for the substrate and 2 nm ITO layer without
introducing numerical instabilities. The simulations were performed for normal
incidence. The reciprocity calculations were performed by first exciting the
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nanostructure with a plane wave at the pump wavelength, then calculating the
nonlinear polarization at every point on the nanostructure surface for the second
harmonic and bulk for the third harmonic. Another simulation was then
performed by sending in a second wave from the detector at the emission
wavelength. The overlap integral was then performed, thus calculating the
effective nonlinear susceptibility.
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