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PREDICTING
NONLINEAR PSEUDORANDOM NUMBER GENERATORS

SIMON R. BLACKBURN, DOMINGO GOMEZ-PEREZ, JAIME GUTIERREZ,
AND IGOR E. SHPARLINSKI

Abstract. Let p be a prime and let a and b be elements of the finite field Fp

of p elements. The inversive congruential generator (ICG) is a sequence (un)
of pseudorandom numbers defined by the relation un+1 ≡ au−1

n +b mod p. We
show that if sufficiently many of the most significant bits of several consecutive
values un of the ICG are given, one can recover the initial value u0 (even in
the case where the coefficients a and b are not known). We also obtain similar
results for the quadratic congruential generator (QCG), vn+1 ≡ f(vn) mod p,
where f ∈ Fp[X]. This suggests that for cryptographic applications ICG and
QCG should be used with great care. Our results are somewhat similar to those
known for the linear congruential generator (LCG), xn+1 ≡ axn + b mod p,
but they apply only to much longer bit strings. We also estimate limits of
some heuristic approaches, which still remain much weaker than those known
for LCG.

1. Introduction

For a prime p, denote by Fp the field of p elements and always assume that it is
represented by the set {0, 1, . . . , p− 1}. Accordingly, sometimes, where obvious, we
treat elements of Fp as integer numbers in the above range.

For fixed a, b ∈ F
∗
p, let ψa,b be the permutation of Fp defined by

ψa,b(w) =
{
aw−1 + b, if w �= 0,
b, if w = 0.

We refer to the coefficients a and b as the multiplier and shift , respectively.
We define the inversive congruential generator (un) of elements of Fp by the

recurrence relation

(1) un+1 = ψa,b(un), n = 0, 1, . . . ,

where u0 is the initial value.
It is obvious that the sequence (1) is purely periodic with some least period

t ≤ p. It is known when such sequences achieve the largest possible period t = p;
see [9], [12].

This generator has proved to be extremely useful for quasi–Monte Carlo type
applications, and in particular it exhibits very attractive uniformity of distribution
and nonlinearity properties; see [30], [31], [32], [33] for surveys or recent results. It
is certainly natural to study its cryptographic properties as well.
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In the cryptographic setting, the initial value u0 and the constants a and b are
assumed to be the secret key, and we want to use the output of the generator as a
stream cipher. Of course, if several consecutive values un are revealed, it is easy to
find u0, a and b. So, we output only the most significant bits of each un in the hope
that this makes the resulting output sequence difficult to predict. The main result
of this paper is that not too many bits can be output at each stage: the inversive
generator is unfortunately polynomial time predictable if sufficiently many bits of
its consecutive elements are revealed.

Assume that the sequence (un) is not known, but for some n approximations wj

of k consecutive values un+j, j = 0, . . . , k − 1, are given. We show that the values
un+j, a and b can be recovered from this information if the approximations wj are
sufficiently good.

We also consider this problem for the quadratic congruential generator , (vn) of
elements of Fp given by the recurrence relation

(2) vn+1 ≡ f(vn) mod p, n = 0, 1, . . . ,

where v0 is the initial value and f(X) ∈ Fp[X ] is a quadratic polynomial. In fact
we consider only polynomials of the form f(X) = aX2 + c and as before we refer
to the coefficients a and c as the multiplier and shift , respectively. The case a = 1
corresponds to the celebrated Pollard generator . The case of general quadratic
f(X) = aX2 + bX+ c, or even higher degree, polynomials can be considered by our
method as well; see [4] for more details (where such generators are considered over
arbitrary residue rings too).

For the linear congruential generator

xn+1 ≡ axn + b mod p, n = 0, 1, . . . ,

similar problems have been introduced by Knuth [22] and then considered in [6],
[7], [13], [19], [24]; see also surveys [8], [25]. We remark that some of these papers
also consider predicting nonlinear generators, but only in the case when all terms
are output in full. Thus the situation we consider here, where only some of the bits
of each term are revealed, has not previously been studied for nonlinear generators.

The linear structure of the linear congruential generator lies in the background
of the attacks designed in the aforementioned works. The inversive generator (1)
has a very high linear complexity [16]. Nevertheless, we show that it still succumbs
to a lattice basis reduction based attack, using a certain linearisation technique,
somewhat modelled from that of [5]. On the other hand, our results are substantially
weaker than those known for the linear congruential generator. We believe they
may reflect some inherent difficulties in breaking nonlinear congruential generators.

In some sense the problem we solve can be considered as a special case of the
problem of finding small solutions of multivariate polynomial congruences. For
polynomial congruences in one variable such an algorithm has been given by Cop-
persmith [10]; see also [11], [18]. However in the general case only heuristic results
are known. Here, due to the special structure of the polynomials involved, we are
able to obtain rigorous results.

Throughout the paper the term polynomial time means polynomial in log p.
Our results involve another parameter ∆ which measures how well the values wj

approximate the terms un+j . This parameter is assumed to vary independently of
p subject to satisfying the inequality ∆ < p (and is not involved in the complexity
estimates of our algorithms).
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More precisely, we say that w is a ∆-approximation to u if |w − u| ≤ ∆. In
all of our results, the case where ∆ grows like a fixed power pδ where 0 < δ < 1
corresponds to the situation where a positive proportion δ of the least significant
bits of terms of the output sequence remain hidden.

The remainder of the paper is structured as follows.
We start with a short outline of some basic facts about lattices in subsection 2.1

and rational functions in subsection 2.2.
Then we study the inversive generator. In subsection 3.1, to illustrate our tech-

niques in a simple case, we consider the problem of recovering un from the ap-
proximations wj in the case when a and b are both known. In subsection 3.2, we
consider the most important case, where neither of a and b are known. It may be
relevant to mention that the intermediate case, where only one coefficient is known,
has recently been considered in [3].

Then we turn our attention to the quadratic generator. Namely, in subsection 4.1
and subsection 4.2 we consider the cases of quadratic generator with known and
unknown multiplier and shift a and c, respectively. We also obtain a more precise
result in the special case of the Pollard generator.

In Section 5 we discus the results of numerical tests and some heuristic ap-
proaches to the problem.

We conclude with Section 6 which makes some final comments and poses open
questions.

Acknowledgments

The authors would like to thank Harald Niederreiter for his interest and helpful
discussions. This paper was written during visits of the last author to the University
of Cantabria (partially supported by MECD grant SAB2000-0260) and to Royal
Holloway, University of London (supported by an EPSRC Visiting Fellowship). The
second and third authors were partially supported by Spanish Ministry of Science
grant BFM2001-1294. The support and hospitality of all these organizations are
gratefully acknowledged.

2. Preparations

2.1. Background on lattices. Here we collect several well-known facts about
lattices which form the background to our algorithms.

We review several related results and definitions on lattices which can be found
in [15]. For more details and more recent references, we also recommend consult-
ing [1], [19], [20], [27], [28], [29].

Let {b1, . . . ,bs} be a set of linearly independent vectors in R
r. The set

L = {z : z = c1b1 + · · · + csbs, c1, . . . , cs ∈ Z}
is called an s-dimensional lattice with basis {b1, . . . ,bs}. If s = r, the lattice L is
of full rank.

To each lattice L one can naturally associate its volume

vol (L) = (det(〈bi,bj〉)s
i,j=1)

1/2,

where 〈a,b〉 denotes the standard inner product. The volume of a lattice L does
not depend on the choice of the basis {b1, . . . ,bs}.
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For a vector u, let ‖u‖ denote its Euclidean norm. The famous Minkowski
theorem (see Theorem 5.3.6 in subsection 5.3 of [15]) gives the upper bound

(3) min {‖z‖ : z ∈ L \ {0}} ≤ s1/2 vol (L)1/s

on the shortest nonzero vector in any s-dimensional lattice L via its volume. In
fact s1/2 can be replaced by the Hermite constant γ1/2

s , for which we have

1
2πe

s+ o(s) ≤ γs ≤ 1.744
2πe

s+ o(s), s→ ∞.

The Minkowski bound (3) motivates a natural question: how can the shortest
vector in a lattice be found? Unfortunately, there are several indications that
this problem is NP-complete (when the dimension grows). However, for a slightly
weaker task of finding a short vector, the celebrated LLL algorithm of Lenstra,
Lenstra and Lovász [26] provides a desirable solution.

On the other hand, if the dimension s of the lattice L is fixed, then the shortest
vector problem can be solved in deterministic polynomial time (polynomial in the
bit-size of the basis of L). For example, such an algorithm can be found in Section 3
of [21]. This above fact underlies all our theoretical results.

For our heuristic approach we need to consider lattices of growing dimension.
Thus we need to use an approximate algorithm which is related to the celebrated
algorithm of Lenstra, Lenstra and Lovász [26]. Many other results on both the
exact and approximate finding of a shortest vector in a lattice are discussed in [15],
[19], [20], [27], [28], [29]; see also [1] for the most recent developments. In particular,
for any constant α > 0, the algorithm of [1] finds, in probabilistic polynomial time,
a nonzero vector r ∈ L with

(4) ‖r‖ ≤ exp(α
s(log log s)2

log s
) min
z∈L\{0}

‖z‖.

This is slightly stronger than the best known deterministic algorithm for the short-
est vector problem. We stress however that we use such approximate algorithms
only for heuristic arguments, and it is also known that in practical calculations the
above algorithms behave much better than their theoretic prediction. These, more
recent achievements, do not however affect our results.

In fact, in this paper we consider only very special lattices. Namely we consider
lattices which consist of integer solutions x = (x0, . . . , xs−1) ∈ Z

s to the system of
congruences

s−1∑
i=0

aijxi ≡ 0 mod qi, j = 1, . . . ,m,

modulo some integers q1, . . . , qm. Typically (although not always) the volume of
such a lattice is the product Q = q1 · · · qm. Moreover all the aforementioned algo-
rithms, when applied to such a lattice, become polynomial in logQ.

2.2. Zeros of rational functions. Our second basic tool is essentially the La-
grange theorem which asserts that a nonzero polynomial of degree N over any field
has no more than N zeros in this field. In fact we apply it to rational functions
which require only obvious adjustments.

The rational functions we consider typically belong to a certain family of func-
tions parametrised by small vectors in a certain lattice; thus the size of the family
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can be kept under control. Zeros of these rational functions correspond to poten-
tially “bad” initial values of the inversive (1) and quadratic (2) generators. Thus,
if we can show that all rational functions in this family are not identical to zero
modulo p, then we have an upper bound on the number of such “bad” initial values.
Hence, the most crucial part of our approach is to study the possible vanishing of
functions in the above family and to show that this may happen only for very few
values of the coefficients of the generators (1) and (2). To establish this property,
we repeatedly use the fact that nontrivial linear combinations of rational functions
with pairwise distinct poles do not vanish.

Having a field structure is important for our arguments as it allows us to use
the Lagrange theorem. We however remark that with some modifications and ad-
justments one should be able to obtain similar, albeit weaker, results for nonlinear
generators in residue rings. For example, there are several upper bounds on the
number of zeros of modular polynomials which can be used instead of the Lagrange
theorem; see [23].

3. Predicting the inversive generator

3.1. The inversive generator with known multiplier and shift. As we have
remarked, the most important case for cryptography is when the coefficients a and
b of the recurrence relation (1) are unknown. However, this subsection considers
the case when a and b are given, partly because this case is probably of independent
interest and also because it gives an opportunity to demonstrate our approach in
an easier setting. Certainly in this case the result is stronger.

In fact, in this case our method works with only two consecutive values u0 and
u1. Set v0 = u0 and v1 = u1 − b. Then when un �= 0, the congruence (1) implies
that v0v1 ≡ a mod p, and the approximations we know for u0 and u1 give rise to
approximations for v0 and v1. So the following theorem proves the result we require.

Theorem 1. Let p be a prime number and let ∆ be an integer such that p > ∆ ≥ 1.
Let a ∈ F

∗
p. There exists a set V(∆; a) ⊆ Fp of cardinality #V(∆; a) = O(∆4) with

the following property. There exists an algorithm which, when given a and ∆-
approximations w0, w1 to v0, v1 ∈ Fp such that v0 �∈ V(∆; a) and v1 ≡ a/v0 mod p,
returns v0 and v1 in deterministic polynomial time.

Proof. The theorem is trivial when ∆4 ≥ p, and so we assume that ∆4 < p. We
may also assume that ∆ ≥ 2.

The set V(∆; a) of values v0 that we are going to exclude consists of v0 = 0
together with those values v0 satisfying a congruence of the form d1v0 + ad2v

−1
0 ≡

E mod p where |d1|, |d2| ≤ 4∆, where |E| ≤ 12∆2 and where at least one of d1 and
d2 is nonzero modulo p. Note that there are at most O(∆4) choices for d1, d2 and
E. Once these parameters are chosen, there can be at most two choices for v0 such
that d1v0 + ad2v

−1
0 ≡ E mod p (since multiplying both sides of this congruence

by v0 gives a nontrivial quadratic or linear congruence satisfied by v0). Hence
#V(∆; a) = O(∆4).

Suppose that v0 �∈ V(∆; a).
For j ∈ {0, 1}, define εj = vj −wj . So |εj | ≤ ∆. An outline of our proof goes as

follows. We aim to show that the integers εj occur as certain components of a short
vector in a lattice; this lattice can be constructed from the information w0, w1 and
a that we are given. We find ε0 and ε1 by using well-known techniques for finding
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short vectors in lattices, and then we use the equality vj = wj + εj to recover v0
and v1.

We have that
(w0 + ε0)(w1 + ε1) ≡ a mod p.

Writing

A ≡ (w0w1 − a)∆−2 mod p, B0 ≡ w0∆−1 mod p,
B1 ≡ w1∆−1 mod p, C ≡ 1 mod p,

we obtain
A∆2 + B0∆ε1 +B1∆ε0 + Cε0ε1 ≡ 0 mod p.

Therefore the lattice L consisting of integer solutions x = (x0, x1, x2, x3) ∈ Z
4 of

the system of congruences
Ax0 +B0x1 +B1x2 + Cx3 ≡ 0 mod p,

x0 ≡ 0 mod ∆2,

x1 ≡ x2 ≡ 0 mod ∆
(5)

contains a vector

e = (∆2e0,∆e1,∆e2, e3) = (∆2,∆ε1,∆ε0, ε0ε1).

We aim to show that e is a small vector in the lattice L. We have

e0 = 1, |e1|, |e2| ≤ ∆, |e3| ≤ ∆2;

thus the Euclidean norm of e satisfies the inequality

‖e‖ ≤ (∆4 + ∆4 + ∆4 + ∆4)1/2 = 2∆2.

Assume that there is another vector f = (∆2f0,∆f1,∆f2, f3) ∈ L with ‖f‖ ≤ ‖e‖ ≤
2∆2 which is not parallel to e. In particular,

|f0| ≤ ‖f‖∆−2 ≤ 2, |f1|, |f2| ≤ ‖f‖∆−1 ≤ 2∆, |f3| ≤ ‖f‖ ≤ 2∆2.

Define the vector d by d = f0e− e0f . The first component of the vector d is zero,
and since d lies in L the first congruence in (5) implies that

B0∆d1 + B1∆d2 + Cd3 ≡ 0 mod p

or

(6) w0d1 + w1d2 ≡ −d3 mod p,

where di = eif0 − fie0 = eif0 − fi. Note that |di| ≤ 2|ei| + |fi| for i = 1, 2, 3 and
so our bounds on |ei| and |fi| imply that

(7) |d1|, |d2| ≤ 4∆ and |d3| ≤ 4∆2.

Now, d1 and d2 cannot both be 0 modulo p. To see this, suppose for a contradiction
that d1 ≡ d2 ≡ 0 mod p. The congruence (6) shows that d3 ≡ 0 mod p. But
d1 ≡ d2 ≡ d3 ≡ 0 mod p implies d1 = d2 = d3 = 0, by our upper bounds (7)
absolute values of d1, d2 and d3 (because by our assumptions 4∆ ≤ 4∆2 ≤ ∆4 < p).
But this implies that d = 0 and so f0e = e0f . This contradicts the fact that f and
e are not parallel.

Making the substitutions wj = vj − εj in (6), and using the fact that v1 ≡
av−1

0 mod p, we find that

(8) d1v0 + ad2v
−1
0 ≡ E mod p,
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where
E = −d3 + ε0d1 + ε1d2.

The bounds (7) imply that |E| ≤ 12∆2. But then (8) implies that v0 ∈ V(∆; a),
and so we have a contradiction. This contradiction shows that there exists no small
vector f in L other than vectors parallel to e.

To finish the proof, we note that L is defined using information we are given, and
we recall that the shortest vector problem can be solved in deterministic polynomial
(in the bit size of a given basis of the lattice) time in any fixed dimension; see [21].
This certainly applies to the lattice L. Once we have found a short vector f in L,
we know that e = f/f0 since f is parallel to e and since e0 = 1. Obviously, given
the third component ∆ε0 of e we can find v0. This completes the proof. �

3.2. The inversive generator with unknown multiplier and shift. Here we
consider probably the most interesting case when both the multiplier a and the
shift b are unknown. Our results involve a reasonably small set of exceptional pairs
(a, b) for which the algorithm may fail. However it has a complicated structure
(thus its definition is given only in the proof of Theorem 2 below).

Theorem 2. Let p be a prime number and let ∆ be an integer such that p >
∆ ≥ 1. There is a set C(∆) ⊂ F

2
p of cardinality #C(∆) = O(∆3p) such that for

any a, b ∈ F
∗
p with (a, b) �∈ C(∆) there exists a set U(∆; a, b) ⊆ Fp of cardinality

#U(∆; a, b) = O(∆15) having the following property. There exists an algorithm
which, when given ∆-approximations wj, j = 0, 1, 2, 3, to four consecutive elements
u0, u1, u2, u3 produced by the inversive generator (1) where u0 �∈ U(∆; a, b), returns
u0, a and b in deterministic polynomial time.

Proof. We may assume that ∆15 < p (for otherwise the theorem is trivial). Fix
a, b ∈ F

∗
p. We assume that (a, b) �∈ C(∆), where C(∆) is a set of cardinality O(∆3p)

that we specify below.
We assume that u0 �∈ U(∆; a, b), where U(∆; a, b) is a certain set of cardinality

O(∆15); again, we specify this set below.
We may assume that

u0u1u2(u0 − u1) �≡ 0 mod p

for we may place the five (or fewer) values of u0 for which this does not hold into
our set U(∆; a, b). From

u1 ≡ au−1
0 + b mod p and u2 ≡ au−1

1 + b mod p

we derive

u1u0 ≡ a+ bu0 mod p and u1u2 ≡ a+ bu1 mod p.

Therefore,

(9) u1(u2 − u0) ≡ b(u1 − u0) mod p.

Similarly
u2(u3 − u1) ≡ b(u2 − u1) mod p.

Multiplying the first congruence by (u2−u1) and the second congruence by (u1−u0)
and subtracting, we derive

(10) u1(u2 − u0)(u2 − u1) − u2(u3 − u1)(u1 − u0) ≡ 0 mod p.
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We write H(u0, u1, u2, u3) for the left-hand side of (10), so

H(u0, u1, u2, u3) = u0u
2
1 − 2u0u1u2 + u1u

2
2 + u0u2u3 − u1u2u3.

For i ∈ {0, 1, 2, 3}, we define

Hi(u0, u1, u2, u3) =
∂

∂ui
H(u0, u1, u2, u3).

Thus,

H0(u0, u1, u2, u3) = u2
1 − 2u1u2 + u2u3,

H1(u0, u1, u2, u3) = 2u0u1 − 2u0u2 + u2
2 − u2u3,

H2(u0, u1, u2, u3) = −2u0u1 + 2u1u2 + u0u3 − u1u3,

H3(u0, u1, u2, u3) = u0u2 − u1u2.

(11)

Defining εj = uj − wj for j ∈ {0, 1, 2, 3}, we obtain

H(u0, u1, u2, u3) = H(w0, w1, w2, w3) +
3∑

i=0

Hi(w0, w1, w2, w3)εi

+
3∑

i=0

wiGi(ε0, ε1, ε2, ε3) + F (ε0, ε1, ε2, ε3),

where G0, G1, G2, G3 are homogeneous polynomials of degree 2 and F is a homo-
geneous polynomial of degree 3; these polynomials all have constant coefficients
(which could be easily evaluated explicitly). We now define

A ≡ H(w0, w1, w2, w3)∆−3 mod p, Bi ≡ Hi(w0, w1, w2, w3)∆−2 mod p,

Ci ≡ wi∆−1 mod p, D ≡ 1 mod p,

for i = 0, 1, 2, 3. Therefore the lattice L consisting of integer solutions x =
(x0, . . . , x9) ∈ Z

10 of the system of congruences

Ax0 +
3∑

i=0

Bixi+1 +
3∑

i=0

Cixi+5 +Dx9 ≡ 0 mod p,

x0 ≡ 0 mod ∆3,

x1 ≡ x2 ≡ x3 ≡ x4 ≡ 0 mod ∆2,

x5 ≡ x6 ≡ x7 ≡ x8 ≡ 0 mod ∆

(12)

contains a vector

e = (∆3e0,∆2e1,∆2e2,∆2e3,∆2e4,∆e5,∆e6,∆e7,∆e8, e9)
= (∆3,∆2ε0,∆2ε1,∆2ε2,∆2ε3,∆G0(ε0, ε1, ε2, ε3),∆G1(ε0, ε1, ε2, ε3),

∆G2(ε0, ε1, ε2, ε3),∆G3(ε0, ε1, ε2, ε3), F (ε0, ε1, ε2, ε3)).

Obviously ‖e‖ = O(∆3). Suppose, for a contradiction, that there is another vector

f = (∆3f0,∆2f1,∆2f2,∆2f3,∆2f4,∆f5,∆f6,∆f7,∆f8, f9) ∈ L
with ‖f‖ ≤ ‖e‖ which is not parallel to e. We have,

|f0| ≤ ‖f‖∆−3 = O(1), |f1|, |f2|, |f3|, |f4| ≤ ‖f‖∆−2 = O(∆),

|f5|, |f6|, |f7|, |f8| ≤ ‖f‖∆−1 = O(∆2), |f9| ≤ ‖f‖ = O(∆3).
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The first component of the vector d = f0e − e0f ∈ L is zero. Therefore, using
the first congruence in (12), we obtain

(13)
3∑

i=0

Bidi+1 +
3∑

i=0

Cidi+5 +Dd9 ≡ 0 mod p,

where di = eif0 − fie0 = eif0 − fi, for i = 1, . . . , 9. Hence

|d1|, |d2|, |d3|, |d4| = O(∆), |d5|, |d6|, |d7|, |d8| = O(∆2), |d9| = O(∆3).

Using the definition of Bi, Ci and D, and substituting wi = ui − εi, we derive
from (13) the relation

(14)
3∑

i=0

Hi(u0, u1, u2, u3)d̃i+1 +
3∑

i=0

uid̃i+5 + d̃9 ≡ 0 mod p,

where d̃1, d̃2, . . . , d̃9 depend only on d1, d2, . . . , d9 and ε0, ε1, ε2, ε3. It is easy to find
explicit expressions for the components of d̃ = (d̃1, . . . , d̃9). However we only need
to observe that

d̃i = di + δi, i = 1, . . . , 9,

where

• δ1 = δ2 = δ3 = δ4 = 0;
• δ5, δ6, δ7, δ8 are linear combinations with constant coefficients of products

of one of d1, d2, d3, d4 with one of ε0, ε1, ε2, ε3;
• δ9 is a linear combination with constant coefficients of the products d5ε0,
d6ε1, d7ε2, d8ε3 together with the products of one of d1, d2, d3, d4 with two
of ε0, ε1, ε2, ε3.

Therefore, there is an absolute constant κ (which can be easily evaluated explic-
itly) such that

(15) |d̃1|, |d̃2|, |d̃3|, |d̃4| ≤ κ∆, |d̃5|, |d̃6|, |d̃7|, |d̃8| ≤ κ∆2, |d̃9| ≤ κ∆3.

Moreover, it is clear from the above form that if d̃1 = d̃2 = · · · = d̃9 = 0, then
d1 = d2 = · · · = d9 = 0. Indeed, d̃1 = d̃2 = d̃3 = d̃4 = 0 is equivalent to
d1 = d2 = d3 = d4 = 0. Then δ5 = δ6 = δ7 = δ8 = δ9 = 0, and thus d̃5 = d̃6 = d̃7 =
d̃8 = d̃9 = 0 implies that d5 = d6 = d7 = d8 = d9 = 0.

Let us consider the rational functions

Ψ0(u) = u, Ψ1(u) =
bu+ a

u
,

Ψ2(u) =
(a+ b2)u+ ab

a+ bu
, Ψ3(u) =

(2ab+ b3)u+ a2 + ab2

(a+ b2)u+ ab
.

We have ui = Ψi(u0), i = 0, 1, 2, 3. We remark that Ψi(u) is never a constant
function (when i �= 0, this is because a �≡ 0 mod p). We may assume that a+ b2 �≡
0 mod p, since we may add the O(p) pairs (a, b) such that a+ b2 ≡ 0 mod p to our
set C(∆). This assumption, together with the fact that b �≡ 0 mod p, implies that
none of Ψ1(u),Ψ2(u),Ψ3(u) are linear in u. So each of Ψ1(u),Ψ2(u),Ψ3(u) has a
pole, at 0, −a/b and −ab/(a+b2), respectively. Note that 0, −a/b and −ab/(a+b2)
are distinct elements of Fp.
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We may use the functions Ψi(u) to eliminate u1, u2 and u3 from (14). For
i ∈ {0, 1, 2, 3}, define

hi(u) = Hi(Ψ0(u),Ψ1(u),Ψ2(u),Ψ3(u)).

Then (14) can be written as

(16)
3∑

i=0

hi(u0)d̃i+1 +
3∑

i=0

Ψi(u0)d̃i+5 + d̃9 ≡ 0 mod p.

Let us consider the rational function

Φd̃ (u) =
3∑

i=0

hi(u)d̃i+1 +
3∑

i=0

Ψi(u)d̃i+5 + d̃9

corresponding to the left-hand side of (16).
We aim to show that Φd̃ (u) can never be a constant function of u0, but in

order for us to do this, we must exclude more pairs (a, b). Indeed, we add to
C(∆) those pairs (a, b) that satisfy the following property for x ≡ −a/b mod p or
x ≡ −ab/(a+ b2) mod p:

(17) Ψ0(x) − Ψ1(x) ≡ r/s mod p

where s is nonzero and |r| ≤ κ∆2, |s| ≤ κ∆ (where κ is as in (15)). In the case
when x ≡ −a/b mod p, the condition (17) is equivalent to the condition −a ≡
(r/s)b mod p (to see this, use the fact that Ψ1(−a/b) ≡ 0 mod p). For each of
the O(∆3) choices of r and s, there are clearly at most p pairs (a, b) satisfying
this condition and so we have added at most O(∆3p) pairs (a, b) to C(∆) in this
case. When x ≡ −ab/(a+ b2) mod p, it is easy to show that the condition (17) is
equivalent to

−ab3 + (a+ b2)2 ≡ (1 + (r/s))(a + b2)b2 mod p.

This is a nontrivial restriction on the pair (a, b), whatever the values of r and s,
since the monomial ab3 always appears. So for each of the O(∆3) choices for r and
s, at most O(p) pairs (a, b) satisfy (17). So we have added O(∆3p) pairs to C(∆)
in this case also.

Assume, for a contradiction, that Φd̃ (u) is a constant function of u. Now, we ob-
serve h0(u) has a double pole at 0, but the other functions h1(u), h2(u), h3(u),Ψ0(u),
Ψ1(u),Ψ2(u) and Ψ3(u) have at most a single pole at 0. So for Φd̃ (u) to be a con-
stant function, we must have that d̃1 ≡ 0 mod p. A similar argument involving the
double pole at −a/b of h1(u) shows that d̃2 ≡ 0 mod p.

We may now write Φd̃ (u) as the sum of a rational function with no poles at
−ab/(a+ b2) and the function

Ωd̃ (u) = (d̃3(Ψ0(u) − Ψ1(u)) + d̃8)Ψ3(u).

Our assumption that Φd̃ (u) is a constant function implies that Ωd̃ (u) cannot have a
pole at −ab/(a+b2) and so d̃3(Ψ0(u)−Ψ1(u))+d̃8 must have a root at −ab/(a+b2).
If d̃3 �≡ 0 mod p, this would imply that (17) is satisfied when x ≡ −ab/(a+ b2) mod
p, contradicting the fact that (a, b) �∈ C(∆). Hence d̃3 ≡ 0 mod p. We may now
argue similarly that d̃4 ≡ 0 mod p, by writing Φd̃ (u) as the sum of a function with
no poles at −a/b and the rational function

Ξd̃ (u) = (d̃4(Ψ0(u) − Ψ1(u)) + d̃7)Ψ2(u)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PREDICTING NONLINEAR PSEUDORANDOM NUMBER GENERATORS 1481

and then using the fact that (17) is not satisfied when x ≡ −a/b mod p to prove
that Ξd̃ (u) has a pole at −a/b unless d̃4 ≡ 0 mod p.

It is now easy to see that d̃5 ≡ d̃6 ≡ d̃7 ≡ d̃8 ≡ 0 mod p by considering the poles
at ∞, 0, −a/b and −ab/(a+b2), respectively. The congruence (16) then shows that
d̃9 ≡ 0 mod p. Our bounds on the absolute value of the integers d̃i then show that
d̃i = 0 for all i. But this means that d = 0, which contradicts our assumption that
e and f are not parallel.

We have shown that if there exists a short vector f in L that is not parallel to e,
then u0 must satisfy a congruence of the form (16) for some choice of coefficients
d̃i. We have also shown that the left-hand side of (16) is nonconstant, and so there
are only a bounded number of possibilities for u0 once the d̃i are chosen. There
are at most O(∆15) choices for the vector d̃, and so we may assure ourselves that
a congruence (16) is never satisfied by excluding O(∆15) values of u0. Once these
values are excluded, we see that all short vectors f in L are parallel to e. The rest
of the proof is identical to the proof of Theorem 1. We also remark that because
u0 �≡ u1 mod p for u0 �∈ U(∆; a, b), from the congruence (9) we can determine b
(and then a). �

4. Predicting the quadratic generator

4.1. The quadratic generator with known multiplier and shift. For a given
integer ∆ > 0, let A(∆) be the set of a ∈ Fp that can be represented as a ≡
rs−1 mod p with |r| ≤ 4∆, |s| ≤ 4∆2; thus #A(∆) = O(∆3).

Theorem 3. Let p be a prime number and let ∆ be an integer such that p > ∆ ≥ 1.
For any a ∈ F

∗
p and c ∈ Fp such that a �∈ A(∆), there exists a set V(∆; a, c) ⊆ Fp

of cardinality #V(∆; a, c) = O(∆4) with the following property. There exists an
algorithm which, when given a, c and ∆-approximations w0, w1 to two consecutive
values v0, v1 produced by the quadratic generator (2) with f(X) = aX2 + c where
v0 �∈ V(∆; a, c), returns the value of v0 in deterministic polynomial time.

Proof. We may assume that ∆4 < p, for otherwise the theorem is trivially true.
Let εj = vj − wj , j = 0, 1. From

v1 ≡ av2
0 + c mod p,

we obtain

w1 + ε1 − a(w0 + ε0)2 − c ≡ 0 mod p.

Writing

A ≡ (w1 − aw2
0 − c)∆−2 mod p, B1 ≡ −2aw0∆−1 mod p,
B2 ≡ ∆−1 mod p, C ≡ −a mod p,

we obtain

A∆2 +B1∆ε0 +B2∆ε1 + Cε20 ≡ 0 mod p.

Therefore the lattice L consisting of integer solutions

x = (x0, x1, x2, x3) ∈ Z
4
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of the system of congruences
Ax0 +B1x1 +B2x2 + Cx3 ≡ 0 mod p,

x0 ≡ 0 mod ∆2,

x1 ≡ x2 ≡ 0 mod ∆

contains a vector

e = (∆2e0,∆e1,∆e2, e3) = (∆2,∆ε0,∆ε1, ε20).

We have
e0 = 1, |e1|, |e2| ≤ ∆, |e3| ≤ ∆2;

thus
‖e‖ ≤ (4∆4)1/2 = 2∆2.

Assume that there is another vector f = (∆2f0,∆f1,∆f2, f3) ∈ L with ‖f‖ ≤ ‖e‖ ≤
2∆2 which is not parallel to e. We have

|f0| ≤ 2, |f1|, |f2| ≤ 2∆, |f3| ≤ 2∆2.

The first component of the vector f0e− e0f ∈ L is zero, and hence

B1∆d1 +B2∆d2 + Cd3 ≡ 0 mod p,

or

(18) −2aw0d1 + d2 − ad3 ≡ 0 mod p,

where di = eif0 − fi, and thus |di| ≤ 2|ei| + |fi| for i = 1, 2, 3. Hence

(19) |d1|, |d2| ≤ 4∆, |d3| ≤ 4∆2.

Using the above congruences, we have that if d1 ≡ 0 mod p, then d2 − ad3 ≡
0 mod p. Now, if d2 ≡ 0 mod p, then we get a contradiction to the fact that f and
e are not parallel. Otherwise, we also get a contradiction because a �∈ A(∆). So
we may assume that d1 �≡ 0 mod p.

Substituting wi = vi − εi, i = 0, 1, into the congruence (18), we find the congru-
ence

−2ad1v0 ≡ E mod p,
where

E = a(−2d1ε0 + d3) − d2.

The bound (19) implies that d1 can take only O(∆) distinct values. Moreover, E
can take O(∆3) distinct values (because 2d1ε0 − d3 = O(∆2) and d2 = O(∆)).
Since d1 �≡ 0 mod p, this means that there are only O(∆4) values of v0 that satisfy
some congruence of the form (18). We place these values in the set V(∆; a, c). For
other values of v0, the shortest vector f of the lattice L is parallel to e. The rest of
the proof is identical to the proof of Theorem 1. �

It is clear that 1 ∈ A(∆); thus Theorem 3 does not apply to the Pollard generator.
Hence, now we consider this case separately and in fact obtain a stronger result.

Theorem 4. Let p be a prime number and let ∆ be an integer such that p > ∆ ≥
1. For any c ∈ F

∗
p, there exists a set V(∆; c) ⊆ Fp of cardinality #V(∆; c) =

O(∆3) with the following property. There exists an algorithm which, when given
∆-approximations wj, j = 0, 1, to two consecutive values v0, v1 produced by the
quadratic generator (2) with f(X) = X2 + c where v0 �∈ V(∆; c), returns the value
of v0 in deterministic polynomial time.
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Proof. We may assume that ∆3 < p, since otherwise the theorem is trivially true.
Let εj = vj − wj , j = 0, 1. From

v1 ≡ av2
0 + c mod p,

we obtain
w1 + ε1 − (w0 + ε0)2 − c ≡ 0 mod p.

Writing

A ≡ (w1 − w2
0 − c)∆−2 mod p, B ≡ −2w0∆−1 mod p, C ≡ 1 mod p,

we obtain
A∆2 +B∆ε0 + C(ε1 − ε20) ≡ 0 mod p.

Therefore the lattice L consisting of integer solutions

x = (x0, x1, x2) ∈ Z
3

of the system of congruences
Ax0 +Bx1 + Cx2 ≡ 0 mod p,

x0 ≡ 0 mod ∆2,

x1 ≡ 0 mod ∆

contains a vector

e = (∆2e0,∆e1, e2) = (∆2,∆ε0, ε1 − ε20).

We have
e0 = 1, |e1| ≤ ∆, |e2| ≤ 2∆2;

thus
‖e‖ ≤ (6∆4)1/2 ≤ 3∆2.

Assume that there is another vector f = (∆2f0,∆f1, f2) ∈ L with ‖f‖ ≤ ‖e‖ ≤ 3∆2

which is not parallel to e. We have

|f0| ≤ 3, |f1| ≤ 3∆, |f2| ≤ 3∆2.

The first component of the vector f0e− e0f ∈ L is zero, and hence

B∆d1 + Cd2 ≡ 0 mod p,

or

(20) −2w0d1 + d2 ≡ 0 mod p,

where di = eif0 − fi, and thus |di| ≤ 3|ei| + |fi| for i = 1, 2. Hence

(21) |d1| ≤ 6∆, |d2| ≤ 9∆2.

Using the above congruences, we have that if d1 ≡ 0 mod p, then d2 ≡ 0 mod p and
we get a contradiction to the fact that f and e are not parallel.

Substituting w0 = v0 − ε0 into the congruence (20), we find the congruence

2d1v0 ≡ E mod p,

where
E = 2d1ε0 + d2.

The bound (21) implies that d1 can take only O(∆) distinct values and E = O(∆2)
can take only O(∆2) distinct values. Hence there are only O(∆3) values of v0 that
satisfy some congruence of the form (20). We place these values of v0 in the set
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V(∆; c). For other values of v0, the shortest vector f of the lattice L is parallel to
e. The rest of the proof is identical to the proof of Theorem 1. �

4.2. The quadratic generator with unknown multiplier and shift. We an-
alyze the general case first, before considering the Pollard generator. Our results
require some restrictions on the multiplier. For a given integer ∆ > 0, let A(∆)
be the set of a ∈ Fp that can be represented as a ≡ rs−1 mod p with |r| ≤ 33∆,
|s| ≤ 77∆2. Note that #A(∆) = O(∆3).

Theorem 5. Let p be a prime number and let ∆ be an integer such that p > ∆ ≥ 1.
For any a ∈ F

∗
p and c ∈ Fp with a �∈ A(∆), there exists a set V(∆; a, c) ⊆ Fp

of cardinality #V(∆; a, c) = O(∆19) with the following property. There exists an
algorithm which, when given ∆-approximations wj, j = 0, 1, 2, 3, to four consecutive
values v0, v1, v2, v3 produced by the quadratic generator (2) with f(X) = aX2 + c
where v0 �∈ V(∆; a, c), recovers v0, a and c in deterministic polynomial time.

Proof. We may assume that ∆19 < p, since otherwise the theorem is trivially true.
Moreover, we assume that v2

0 − v2
1 �≡ 0 mod p. Clearly there are at most four

values of v0 for which this does not hold. From

(22) v1 ≡ av2
0 + c mod p, v2 ≡ av2

1 + c mod p, v3 ≡ av2
2 + c mod p

we derive

v2
0v2 − v3

1 + v1v
2
2 − v2

0v3 − v3
2 + v2

1v3 ≡ 0 mod p.

Let εj = vj − wj , j = 0, 1, 2, 3. Making the substitutions vj = wj + εj in the
congruence above, we find that

A∆3 +B1∆2ε0 +B2∆2ε1 +B3∆2ε2 +B4∆2ε3 + C1∆(ε20 − ε21)+

C2∆(ε2ε0 − ε0ε3) + C3∆(ε21 − 3ε22 + 2ε1ε2)+

C4∆(ε22 − 3ε21 + 2ε1ε3) +Dε ≡ 0 mod p,

where

(23) ε = ε22ε1 − ε31 + ε21ε3 − ε32 − ε20ε3 + ε20ε2

and

A ≡ (w2
0w2 − w3

1 − w3
2 + w2

2w1 − w2
0w3 + w2

1w3)∆−3 mod p,

B1 ≡ (2w0w2 − 2w0w3)∆−2 mod p,

B2 ≡ (w2
2 − 3w2

1 + 2w1w3)∆−2 mod p,

B3 ≡ (2w2w1 + w2
0 − 3w2

2)∆
−2 mod p,

B4 ≡ (w2
1 − w2

0)∆
−2 mod p,

C1 ≡ (−w3 + w2)∆−1 mod p,

C2 ≡ 2w0∆−1 mod p,

C3 ≡ w2∆−1 mod p,

C4 ≡ w1∆−1 mod p,
D ≡ 1 mod p.
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Therefore the lattice L consisting of integer solutions x = (x0, x1, . . . , , x9) ∈ Z
10

of the system of congruences

Ax0 +
4∑

i=1

Bixi +
4∑

i=1

Cix4+i +Dx9 ≡ 0 mod p,

x0 ≡ 0 mod ∆3,

x1 ≡ x2 ≡ x3 ≡ x4 ≡ 0 mod ∆2,

x5 ≡ x6 ≡ x7 ≡ x8 ≡ 0 mod ∆

contains a vector

e = (∆3e0,∆2e1,∆2e2,∆2e3,∆2e4,∆e5,∆e6,∆e7,∆e8, e9)
= (∆3,∆2ε0,∆2ε1,∆2ε2,∆2ε3,∆(ε20 − ε21),∆(ε2ε0 − ε0ε3),

∆(ε21 − 3ε22 + 2ε1ε2),∆(ε22 − 3ε21 + 2ε1ε3), ε),

where ε is given by (23). We have

e0 = 1, |e1|, |e2|, |e3|, |e4| ≤ ∆,

|e5|, |e6| ≤ 2∆2, |e7|, |e8| ≤ 6∆2, |e9| ≤ 6∆3;

thus
‖e‖ ≤ (121∆6)1/2 = 11∆3.

Assume that there is another vector

f = (∆3f0,∆2f1,∆2f2,∆2f3,∆2f4,∆f5,∆f6,∆f7,∆f8, f9) ∈ L
with ‖f‖ ≤ ‖e‖ ≤ 11∆3 which is not parallel to e. We have

|f0| ≤ 11, |f1|, |f2|, |f3|, f4| ≤ 11∆,

|f5|, |f6|, |f7|, f8| ≤ 11∆2, |f9| ≤ 11∆3.

The first component of the vector f0e− e0f ∈ L is zero, and so we obtain

(24)
4∑

i=1

Bi∆2di +
4∑

i=1

Ci∆d4+i +Dd9 ≡ 0 mod p

where di = eif0 − fie0 = eif0 − fi, and thus |di| ≤ 11|ei| + |fi| for i = 1, . . . , 9.
Hence

|d1|, |d2|, |d3|, |d4| ≤ 22∆, |d5|, |d6| ≤ 33∆2,

|d7|, |d8| ≤ 77∆2, |d9| ≤ 77∆3.
(25)

Using the definition of A,Bi, Ci, D and after the substitutions wi = vi − εi, i =
0, 1, 2, 3, and vi, i = 1, 2, 3, in terms of v0 in the congruence (24), we find

(26) F (v0) ≡ 0 mod p

for some polynomial

F (X) =
10∑

k=0

αkX
k ∈ Fp[X ]

where the coefficients αk, k = 0, . . . , 10, are polynomials in εj , j = 0, . . . , 3, and di,
i = 1, . . . , 9. Using Maple, we have computed the coefficients αi explicitly, and we
present some of these explicit expressions below. We claim that F is a nonconstant
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polynomial in v0 of degree at most 10. If we suppose the contrary, then from the
explicit formulas

α10 = 2a8d2 and α9 = −2a7d1

we conclude that if F is a constant polynomial, then

(27) d1 ≡ d2 ≡ 0 mod p.

Under the condition (27), the explicit formulas for α8 and α6 take the form (note
that we do not use α7)

α8 = −3a6d3 − a7d5 and α6 = −(12a5c− 2a4)d3 − 4a6cd5.

Thus if α8 ≡ α6 ≡ 0 mod p, then

(28) d3 ≡ d5 ≡ 0 mod p.

Under the conditions (27) and (28), the explicit formulas for α4, α2 and α1 take
the form (note that we do not use α5 and α3)

α4 = a3d7 − a2d4, α2 = ad8 + 2a2cd7 + (2ac− 2aε1 − 1)d4, α1 = 2d6 + 2d4ε0.

Then the condition α4 ≡ α2 ≡ α1 ≡ 0 mod p leads to

(29) d4 ≡ d7a mod p, d6 ≡ −d4ε0 mod p, d8 ≡ −(2ε1a+ 1)d7.

If d4 �≡ 0 mod p, then d7 �≡ 0 mod p since d4 ≡ d7a mod p. But then d4 ≡
d7a mod p contradicts the fact that a �∈ A(∆). So we may assume that d4 ≡
0 mod p. But then (27), (28) and (29) show that di ≡ 0 mod p, for i = 1, . . . , 8,
and by (24) it implies that d9 ≡ 0 mod p. Again our bounds (25) on |di| imply that
di = 0, i = 1, . . . , 9, and that d = 0 and so e and f are parallel. This contradicts
our choice of f .

Since F is a nonconstant polynomial in v0 of degree at most 10, the congru-
ence (26) can be satisfied for at most ten values of v0 once di, i = 1, . . . , 9, and εi,
i = 0, . . . , 3, have been chosen. By (25) the total number of possible vectors d is
O(∆15). There are also O(∆4) choices for (ε0, . . . , ε3). Hence there are only O(∆19)
values of v0 that satisfy some congruence of the form (26). For other values of v0,
the shortest vector f of the lattice L is parallel to e. Thus, once again, the rest
of the proof is identical to the proof of Theorem 1. We also remark that because
v2
0 �≡ v2

1 mod p for v0 �∈ V(∆; a, c), we can find a and c from the congruence (22). �

As before, in the case of the Pollard generator we have a stronger result (which
does not involve any exceptional set of parameters).

Theorem 6. Let p be a prime number and let ∆ be an integer such that p > ∆ ≥
1. For any c ∈ F

∗
p, there exists a set V(∆; c) ⊆ Fp of cardinality #V(∆; c) =

O(∆4) with the following property. There exists an algorithm which, when given
∆-approximations wj j = 0, 1, 2, to three consecutive values v0, v1, v2 produced by
the quadratic generator (2) with f(X) = X2 + c where v0 �∈ V(∆; c), recovers v0
and c in deterministic polynomial time.

Proof. We assume that ∆4 < p, since otherwise the theorem is trivial.
From

v1 ≡ v2
0 + c mod p and v2 ≡ v2

1 + c mod p,
we derive

−v1 + v2
0 + v2 − v2

1 ≡ 0 mod p.
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Let εj = vj − wj , j = 0, 1, 2. Substituting vj = wj + εj into the last congruence,
we obtain

−w1 − ε1 + w2
0 + 2w0ε0 + ε20 + w2 + ε2 − w2

1 − 2w1ε1 − ε21 ≡ 0 mod p.

Writing

A ≡ (−w1 + w2
0 + w2 − w2

1)∆
−2 mod p, B1 ≡ 2w0∆−1 mod p,

B2 ≡ (−1 − 2w1)∆−1 mod p, C ≡ 1 mod p,

we obtain
A∆2 +B1∆ε0 +B2∆ε1 + C(ε2 + ε20 − ε21) ≡ 0 mod p.

Therefore the lattice L consisting of integer solutions

x = (x0, x1, x2, x3) ∈ Z
4

of the system of congruences
Ax0 +B1x1 +B2x2 + Cx3 ≡ 0 mod p,

x0 ≡ 0 mod ∆2,

x1 ≡ x2 ≡ 0 mod ∆

contains a vector

e = (∆2e0,∆e1,∆e2, e3) = (∆2,∆ε0,∆ε1, ε2 + ε20 − ε21).

We have
e0 = 1, |e1|, |e2| ≤ ∆, |e3| ≤ 3∆2;

thus
‖e‖ ≤ (12∆4)1/2 ≤ 4∆2.

Assume that there is another vector f = (∆2f0,∆f1,∆f2, f3) ∈ L with ‖f‖ ≤ ‖e‖ ≤
4∆2 which is not parallel to e. We have,

|f0| ≤ 4, |f1|, |f2| ≤ 4∆, |f3| ≤ 4∆2.

The first component of the vector f0e− e0f ∈ L is zero, and so we find

B1∆d1 +B2∆d2 + Cd3 ≡ 0 mod p,

or

(30) 2w0d1 + (−1 − 2w1)d2 + d3 ≡ 0 mod p,

where di = eif0 − fi, and thus |di| ≤ 4|ei| + |fi| for i = 1, . . . , 9. Hence

(31) |d1|, |d2| ≤ 8∆, |d3| ≤ 16∆2.

Using the above congruences, we have that d1 and d2 cannot both be 0 modulo p;
otherwise we get a contradiction to the fact that f and e are not parallel.

Substituting w0 = v0 − ε0, w1 = v2
0 + c− ε1 into congruence (30), we find

−2d2v
2
0 + 2d1v0 ≡ E mod p,

where
E = 2ε0d1 − 2ε1d2 + d2 + 2cd2 − d3.

The bound (31) implies that d1 can take only O(∆) distinct values and that E can
take O(∆3) distinct values (because d2 = O(∆); thus 2cd2 can take O(∆) distinct
values, and 2ε0d1 − 2ε1d2 + d2 − d3 = O(∆2)). Hence there are only O(∆4) values
of v0 that satisfy some congruence of the form (30); we place these values in the
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set V(∆; c). For other values of v0, the shortest vector f of the lattice L is parallel
to e. The rest of the proof is identical to the proof of Theorem 1. �

5. Numerical tests and heuristic arguments

5.1. The inversive generator. We have implemented the algorithm of Theorem 1
in a C++ program using the NTL library; see [34]. For each level of precision, ∆,
we have tested the algorithm for 1000 random examples with 500-bit primes p. For
∆ = p0.24 the algorithm was successful in 100% of the cases. In the borderline case
∆ = p0.25 the algorithm was successful in about 58% of the cases. For larger values
of ∆, namely for ∆ = p0.26, the algorithm was successful in only about 2% of the
cases (and for ∆ = p0.27 it was successful only once, that is, in 0.1% of the cases).
This confirms that ∆ = p1/4 is indeed the natural threshold for the algorithm of
Theorem 1.

The algorithm of Theorem 2 has also been tested 1000 times with 500-bit primes
p. For ∆ = p0.065 the algorithm was successful in 100% of the cases. Moreover,
for ∆ = p0.07 it was successful in about 20% of the cases, which indicates that the
threshold value ∆ = p1/15 of Theorem 2 can probably be improved.

In fact, there is a clear reason for why the result of Theorem 1 is tight while the
result of Theorem 2 is not. To estimate the size of the set of exceptional values
in the proof of Theorem 1, we find that any exceptional value v0 must satisfy a
congruence of the form (8), where d1, d2 and E are small. We then count the
number of congruences (8) which can arise by bounding the number of choices
for d1, d2 and E. However, the corresponding congruence (16) in the proof of
Theorem 2 has various coefficients d̂i that we have not computed explicitly, and
this might well have affected our counting arguments adversely. Moreover, in this
case, due to the much higher dimension of the lattice, the influence of the implied
constants hidden in the ‘O’-symbols is also more substantial.

We now present some heuristic arguments showing that Theorem 1 could possibly
be strengthened so that it becomes nontrivial when the precision ∆ is of the order
of p1/3 rather than of order p1/4 as currently. Suppose that we are given k ≥ 2
consecutive ∆-approximations wj . Denoting εj = vj − wj , j = 0, . . . , k − 1, as in
the proof of Theorem 1, we calculate that the vector

e = (∆2,∆ε0, . . . ,∆εk−1, ε0ε1, . . . , εk−2εk−1)

of dimension s = 2k belongs to the lattice L consisting of integer solutions x =
(x0, . . . , x2k−1) ∈ Z

2k of the system of congruences
Ajx0 +B1,jxj+1 +B2,jxj+2 + Cjxk+j+1 ≡ 0 mod p, j = 0, . . . , k − 2,

x0 ≡ 0 mod ∆2,

x1 ≡ · · · ≡ xk ≡ 0 mod ∆,

where the coefficients Aj , B1,j , B2,j , Cj , j = 0, . . . , k−1, can be explicitly evaluated
in terms of w0, . . . , wk−1 (and, of course, a, b and ∆). The volume of the lattice L
is

vol (L) = pk−1 · ∆2 · ∆k = pk−1∆k+2.

The Gaussian heuristic suggests that an s-dimensional lattice with volume vol (L)
is unlikely to have a nonzero vector which is substantially shorter than vol (L)1/s.
Moreover, if it is known that such a very short vector does exist, then up to a scalar
factor it is likely to be the only vector with this property.
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One easily verifies that for any ε > 0 there exists some η > 0 such that if
∆ ≤ p(k−1)/(3k−2)−ε, then

‖e‖ = O(∆2) = O(p(k−1)/2k−η∆(k+2)/2k) = O( vol (L)1/2kp−η).

In this case, ‖e‖ is substantially smaller than vol (L)1/2k. Therefore, e is likely to
be the only vector (up to a scalar factor) of such a small norm in L. Thus it can
be found by one of the shortest vector problem algorithms.

For the case k = 2 this reduces to the inequality ∆ ≤ p1/4−ε which corresponds
to Theorem 1. However for large k this bound remains heuristic. We also note that
when k grows slowly with p, it can be replaced by the bound ∆ ≤ p1/3−ε.

We have carried out some numerical testing for this approach too, although due
to very high dimension of lattices involved we content ourselves with fewer tests
and shorter primes. Here is a selection of our test results. For ∆ = p0.3 we tested
the algorithm 1000 times with 100-bit primes p and k = 5; the algorithm succeeded
in about 89% of the cases. For ∆ = p0.32 we tested the algorithm 200 times with
100-bit primes p and k = 10; the algorithm succeeded in 55% of the cases. These
values of k are chosen according to the above heuristic arguments to guarantee that

0.3 <
k − 1
3k − 2

and 0.32 <
k − 1
3k − 2

,

respectively.
Similar heuristic improvements can be made in the situation of subsection 3.2.

Arguing as above in this situation, one verifies that using k ≥ 4 consecutive ∆-
approximations leads to a lattice L of dimension s = 6k − 14 consisting of integer
solutions x = (x0, . . . , x6k−15) ∈ Z

6k−14 of the system of congruences

Ajx0 +
3∑

i=0

Bi,jxi+j+1 +
3∑

i=0

Ci,jxi+k+4j+1 +Djx5k+j−11 ≡ 0 mod p,

j = 0, . . . , k − 4,

x0 ≡ 0 mod ∆3,

x1 ≡ · · · ≡ xk ≡ 0 mod ∆2,

xk+1 ≡ · · · ≡ x5k−12 ≡ 0 mod ∆

of volume

vol (L) = pk−3 · ∆3 · ∆2k · ∆4k−12 = pk−3∆6k−9

which contains a vector e ∈ L of norm ‖e‖ = O(∆3). One easily verifies that for
any ε > 0 there exists some η > 0 such that if ∆ ≤ p(k−3)/(12k−33)−ε, then

‖e‖ = O(∆3) = O(p(k−3)/(6k−14)−η∆(6k−9)/(6k−14)) = O( vol (L)1/(6k−14)p−η).

Hence again, in this case, ‖e‖ is substantially smaller than vol (L)1/(6k−14) and can
probably be found by one of the shortest vector problem algorithms.

For the case k = 4 this reduces to the inequality ∆ ≤ p1/15−ε which corresponds
to Theorem 2. When k grows slowly with p, it can be replaced by the bound
∆ ≤ p1/12−ε.

It should be noted that in the case of growing k (and in many practical situations
even for fixed values of k) one would rather use one of the approximate algorithms
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for the shortest vector problem which we have outlined in subsection 2.1. In par-
ticular, by (4) we can find a vector f ∈ L with

‖f‖ ≤ exp(α
k(log log k)2

log k
)‖e‖

for some absolute constant α > 0. Thus, if k = O(log p), we still have that, for
the same values of ∆, ‖f‖ is much smaller than vol (L)1/s for the above lattices L.
Thus this does not affect our heuristic arguments and it is very likely that such a
vector f is a scalar multiple of ‖e‖.

Here is a brief summary of our test results (again with few and smaller primes).
For ∆ = p0.075 we tested the algorithm 1000 times with 100-bit primes p and k = 6;
the algorithm succeeded in about 98% of the cases. For ∆ = p0.08 we tested the
algorithm 200 times with 100-bit primes p and k = 10; the algorithm succeeded
in about 50% of the cases. These values of k are chosen according to the above
heuristic arguments to guarantee that

0.075 <
k − 3

12k − 33
and 0.08 <

k − 3
12k − 33

,

respectively.
Note that the algorithm had a relatively low success rate of just over 50% when

k = 10, whether the parameters a, b are known or not. We believe that this is
probably due to the fact that for k = 10 the right-hand sides of the corresponding
inequalities 0.32142 · · · and 0.080459 · · · are only barely greater than the left-hand
sides 0.32 and 0.08. Of course, the influence of the constants depending on the
dimension s of the corresponding lattice, as well as of the fact that LLL finds only
a short vector rather than a shortest one, is more significant in these cases (we have
s = 20 and s = 46, respectively).

We have also carried out some selective testing with smaller values of k and
discovered that the algorithm is occasionally successful. However, our testing has
not been done in a systematic way and it is hard to give any estimates of the success
rate in this situation.

5.2. The quadratic generator. We have not carried out any numerical tests for
the case of the general quadratic generator (that is, for algorithms of Theorems 3
and 5) but rather concentrated on the special case of the Pollard generator. We
remark that the lattice corresponding to Theorem 3 is very similar to that of The-
orem 1. Moreover, the heuristic extension of the algorithm of Theorem 3 leads to
a lattice of the same volume and dimension as that in the case of the inversive
generator with known coefficients. We have no reason to suspect that these lattices
behave substantially differently to those corresponding to the inversive generator.
In particular, we believe that heuristically the quadratic generator with known
coefficients a and c can be reconstructed up to the value ∆ = p1/3−ε.

The algorithm of Theorem 4 has been implemented in a C++ program using
the NTL library; see [34]. As in the case of Theorem 1, for each level of precision ∆
we have tested the algorithm for 1000 random examples with 500-bit primes p and
in fact the numerical results are very similar to those for the inversive generator.
For ∆ = p0.32 the algorithm was successful in 100% of the cases, for ∆ = p0.33 the
algorithm was successful in about 99% of the cases and for ∆ = p0.34 the algorithm
was successful in less than 7% of the cases. Therefore, we believe that ∆ = p1/3 is
indeed the natural threshold for the algorithm of Theorem 4.
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Similar tests (1000 trials with 500-bit primes p) for the algorithm of Theorem 6
have revealed that with ∆ = p0.24 the algorithm was successful in 100% of the cases,
and in the borderline case with ∆ = p0.25 the algorithm was successful in about
56% of the cases. For larger values of ∆, namely for ∆ = p0.26 it was successful in
less than 2% of the cases (and for ∆ = p0.27 it was never successful). Thus, these
results confirm the sharpness of the threshold ∆ = p1/4 for Theorem 6.

Naturally, we have also tried to use heuristic arguments for the Pollard gen-
erator. Surprisingly enough, when c is known, they do not seem to lead to any
improvements of Theorem 4 leaving the upper bound on the admissible values of
∆ at the same level p1/3−ε. However, when c is unknown, heuristic arguments lead
to a refinement of the algorithm of Theorem 6.

We now present these calculations showing that when more approximations to
consecutive values of a sequence (vn) given by the Pollard generator f(X) = X2 +c
are available, then the precision ∆ could be of order p1/3 rather than of order p1/4.
We assume that we are given k ≥ 3 consecutive ∆-approximations wj . Denoting
εj = vj − wj , j = 0, . . . , k − 1, as in the proof of Theorem 6 we derive that the
vector

e = (∆2,∆ε0, . . . ,∆εk−2, ε2 + ε20 − ε21, . . . , εk−1 + ε2k−3 − ε2k−2)

of dimension s = 2(k − 1) belongs to the lattice L consisting of integer solutions
x = (x0, . . . , x2k−3) ∈ Z

2(k−1) of the system of congruences

Ajx0 +B1,jxj+1 +B2,jxj+2 + Cjxk+j ≡ 0 mod p, j = 0, . . . , k − 3,

x0 ≡ 0 mod ∆2,

x1 ≡ · · · ≡ xk−1 ≡ 0 mod ∆,

where the coefficients Aj , B1,j , B2,j , Cj , j = 0, . . . , k−3, can be explicitly evaluated
in terms of w0, . . . , wk−1, c and ∆. The volume of the lattice L is

vol (L) = pk−2 · ∆2 · ∆k−1 = pk−2∆k+1.

One easily verifies that for any ε > 0 there exists some η > 0 such that if ∆ ≤
p(k−2)/(3k−5)−ε, then

‖e‖ = O(∆2) = O(p(k−2)/(2k−2)−η∆(k+1)/(2k−2)) = O( vol (L)1/(2k−2)p−η).

Hence again, ‖e‖ is substantially smaller than vol (L)1/(2k−2) and can probably be
found by one of the shortest vector problem algorithms.

For the case k = 3 this reduces to the inequality ∆ ≤ p1/4−ε which corresponds
to Theorem 6. When k grows slowly with p, it can be replaced by the bound
∆ ≤ p1/3−ε.

For ∆ = p0.3 and for ∆ = p0.32 we need that

0.3 <
k − 2
3k − 5

and 0.32 <
k − 2
3k − 5

which imply k ≥ 6 and k ≥ 11, respectively. Accordingly, we have tested 1000
generators with 500-bit primes p for ∆ = p0.3 and k = 6; the algorithm was
successful in 99.7% of the cases. We have also tested 200 generators with 100-bit
primes p for ∆ = p0.32 and k = 11; the algorithm was successful in 99% of the
cases.
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6. Remarks and open questions

Some of our results exclude certain sets of exceptional parameters. Typically the
parameters excluded involve elements a ∈ Fp which admit a representation of the
form a ≡ rs−1 mod p with some small integers r and s. First of all we remark that
such elements a can easily be tested, and in fact the corresponding r and s can be
found by the continued fraction algorithm. Indeed, one sees that if as = r+ kp for
some integer k, then

a

p
− k

s
=

r

sp
.

Thus if r and s are small enough, k/s gives an anomalously good approximation
to a/p which can be achieved only at one of the convergents of the continued
fraction expression of a/p. On the other hand, it is natural to ask whether one can
deliberately choose the generator coefficients from such exceptional sets in order
to obtain cryptographically stronger sequences. We believe that this is not the
case, and some modifications to our method can eliminate these exceptional sets
completely. In the case of the inversive generator with only one unknown coefficient
(that is, in the intermediate situation between Theorem 1 and Theorem 2) the
appropriate modifications have been carried out in [3].

As we mentioned in subsection 5.1, the bound on the size of the set of exceptional
values of u0 given in Theorem 2 is probably not tight and might be improved by
more careful examination of the structure of the coefficients of rational functions
arising in the proof of Theorem 2. Probably this applies to Theorem 5 too. Giving
rigorous proofs of our heuristic arguments in Section 5 is a challenging open question
as well.

Finally, another “nonlinear” approach to attacking the generators considered
here might be feasible. Here we multiply 
 distinct congruences modulo p and ob-
tain a congruence modulo p�, as in subsection 3.2 of [5]. However in our case the
structure of the variables is more complicated than that of [5], and, after “lineari-
sation” it leads to a lattice of very large dimension. Thus this approach does not
seem to provide any advantages. It may be very hard to give any precise rigorous
or even convincing heuristic analysis of this approach. For example, it is not clear
how to evaluate the volume of the associated lattice (as some of the relations may
be linearly dependent).

Our approach also works for congruential generators modulo composite numbers;
see [4]. However, as we have mentioned, one of our basic tools, the Lagrange
theorem, should be replaced with much weaker bounds which apply to zeros of
polynomial congruences modulo composite numbers; see [23].

Unfortunately, we do not know how to predict the nonlinear generators when the
modulus p is secret as well. We remark that in the case of the linear congruential
generator a heuristic approach to this problem has been proposed in [19]. However
it is not clear how to extend the arguments of [19] (even just heuristically) to the
case of nonlinear generators.

Recently pseudorandom number generators on elliptic curves have been actively
studied; see [2], [14], [17] and references therein. Studying predictability properties
of these sequences is a very interesting and important question and is an area ripe
for further study.
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