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Abstract: 

Machine learning algorithms are attracting significant interest for predicting complex chemical 

phenomenon.  In this work, a model to predict research octane number (RON) and motor octane 

number (MON) of pure hydrocarbons, hydrocarbon-ethanol blends and gasoline-ethanol blends has 

been developed using artificial neural networks (ANN) and molecular parameters from 
1
H nuclear 

Magnetic Resonance (NMR) spectroscopy. RON and MON of 128 pure hydrocarbons, 123 hydrocarbon-

ethanol blends of known composition and 30 FACE (fuels for advanced combustion engines) gasoline-

ethanol blends were utilized as a dataset to develop the ANN model. The effect of weight % of seven 

functional groups including paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic -

CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups and ethanolic OH groups on RON and 

MON was studied.  The effect of branching (i.e., methyl substitution), denoted by a parameter termed as 

branching index (BI), and molecular weight (MW) were included as inputs along with the seven 

functional groups to predict RON and MON.  The topology of the developed ANN models for RON (9-

540-314-1) and MON (9-340-603-1)  have two hidden layers and a large number of nodes, and was 

validated against experimentally measured RON and MON of pure hydrocarbons, hydrocarbon-ethanol 

and gasoline-ethanol blends; a good correlation (R
2
=0.99) between the predicted and the experimental 

data was obtained. The average error of prediction for both RON and MON was found to be 1.2 which is 

close to the range of experimental uncertainty. This shows that the functional groups in a molecule or 
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fuel can be  used to predict its ON, and the complex relationship between them can be captured by tools 

like ANN. 

Keywords: RON; MON; functional group; 
1
H NMR; gasoline ethanol; machine learning 

1. INTRODUCTION 

 Octane number (ON) is a measure of the ignition quality of gasoline and its tendency to 

resist knocking. Gasolines with high octane numbers are less prone to knocking and can 

withstand higher compression ratios inside a spark-ignited (SI) internal combustion (IC) engine. 

Research octane number (RON) and motor octane number (MON) represent the two most 

commonly employed octane ratings used worldwide. RON is measured by running the fuel in a 

cooperative fuel research (CFR) engine at standard test conditions as specified by ASTM D2699-

16 method [1] and comparing the results obtained with primary reference fuels (PRFs) i.e., 

mixture of 2,2,4-trimethylpentane (iso-octane) and n-heptane. The compression ratio resulting 

in knock is measured in the CFR engine and used to evaluate the RON of the test gasoline. MON 

is also measured in the CFR engine but with a preheated fuel under more intense conditions of 

engine speed and variable spark timing as specified by ASTM D2700-16a method [2]. Both these 

standard methods employed for measurement of RON and MON require the use of specialized 

instrumentation and skilled operators. Also, these methods are time consuming, expensive, and 

labour intensive. This has led to the development of mathematical models to predict ON, and 

thus reduce time and costs associated with the experimental measurements.  

 Several correlations and methods have been reported in the literature to predict ON of 

pure hydrocarbons [3–6], PRFs [7,8], toluene primary reference fuels (TPRFs) [8–11], gasoline 

compounds [12], naphtha [13,14], gasolines [15–22], gasoline with ethanol [7,23–27] and 

petroleum fractions [16]. The inputs for these models have been generated by utilizing different 

analytical techniques such as Fourier transform infra-red (FT-IR) spectroscopy [5,13,28,29], 

flame emission spectroscopy [30], nuclear magnetic resonance (NMR) spectroscopy [23,31,32], 

dispersive fiber-optic Raman spectroscopy [19], dielectric spectroscopy [18], gas 

chromatography [17], distillation curves [15], thermal wave interferometry [21] and ignition 

delay time (IDT) measured in an ignition quality tester (IQT) [22]. The data from these 
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techniques have been analysed by a number of statistical and theoretical methods like multiple 

linear regression (MLR) [23], partial least square (PLS) [30], quantitative structure property 

relationship (QSPR) [3,4], response surface methodology [10,33] and artificial neural networks 

(ANN) [6,33–35] to process the data and yield the prediction models.          

 The required gasoline RON and MON for a specific vehicle depends on the engine type 

and operating conditions [36]. Since RON and MON measurements are made on standard CFR 

engines under pre-defined standard conditions, the fuel metrics are a direct result of the fuel’s 

physical and chemical properties. In the present work, a model has been developed to predict 

the RON and MON of gasolines containing oxygenates (ethanol) by utilizing the fuels chemical 

composition expressed in terms of functional groups. Real fuels like gasolines contain several 

hundred individual molecules and identifying and quantifying all of them is difficult. However, 

these fuels are made up of a finite number of functional groups which are responsible for their 

properties (i.e. derived cetane number (DCN) [37,38], sooting propensity [39] [40], flame speed 

[41,42], flash point [43] etc.) Determining these functional groups using analytical methods like 

1
H NMR spectroscopy presents a convenient way of characterizing the chemical composition of 

these fuels and also in predicting their properties. Gasolines are usually composed of the 

following hydrocarbon classes: paraffins, iso-paraffins, olefins, naphthenes and aromatics.  

Seven functional groups derived from the above hydrocarbon classes, namely weight % of 

paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic CH-CH2 groups, 

naphthenic CH-CH2 groups, aromatic C-CH groups and ethanolic OH groups, were used an input 

to the model along with molecular weight and a new parameter called as branching index (BI), a 

quantity that describes the degree of branching in a molecule while considering the position of 

the methyl branch.  

 The BI is defined as 0 for n-paraffinic molecules. The BI for iso-paraffins, is defined as 

per Equation (1). 

����� =
��	
��	��	�	���	�	���������	��	���	�������	��������	��	����	�	���������	��	���	�������	�����	

��	
��	��	�	���	�	��	���	�������	�����
 (1) 

Where PI is called as the position index. The position of the methyl branch in a molecule 

correlates with its properties. For example, RON/MON (73.4/73.5) of 2-methylpentane is lesser 

compared to RON/MON (74.5/74.3) of 3-methylpentane. Similarly DCN of 2-methylpentane 
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(34.5) is different compared to the DCN of 3-methylpentane (30.7). Both these molecules are 

isomers and have similar functional group distribution. These differences are true for all iso-

paraffinic molecules. PI is defined as per Equations (2) – (4). 

�� = 0,  !	"ℎ$	%	&"'(	 )	*'++$*"$,	"'	"ℎ$	'-"$.(')"	/') " '+	'!	"ℎ$	0'+1$)"	*ℎ& + (2) 

�� = 0.5,  !	"ℎ$	%	&"'(	 )	*'++$*"$,	1	/') " '+	&5&6	!.'(	"ℎ$	'-"$.(')"	/') " '+	'!	"ℎ$	0'+1$)"	*ℎ& +  (3) 

�� =

0.5 + 0.5	,  !	"ℎ$	%	&"'(	 )	*'++$*"$,	2	/') " '+)	&5&6	!.'(	"ℎ$	'-"$.(')"	/') " '+	'!	"ℎ$	0'+1$)"	*ℎ& +	&+,	)'	'+ 

(4) 

For example, let us calculate the BI of 3-methylpentane which has 5 C atoms in its longest 

chain. This is connected to 1 C atom (3-methyl) one position away from the outermost position 

on the longest chain. As a result it has a PI of 0.5 and BI of 3-methylpentane is computed as 0.3. 

The present definition of BI helps to explain the different properties of 2-methylpentane which 

has a BI of 0.2. The BI of olefins is computed similar to iso-paraffins. For, ringed structures like 

napthenes and aromatics with alkyl side chains, the BI is calculated by redrawing the molecular 

structure to iso-paraffins. For more detailed information on how to calculate the BI please refer 

to [37]. 

 The chemical kinetic reactivity of the fuel, which is dependent on molecular structure, 

governs ignition of gaseous air/fuel mixtures. The nine parameters used in the present work 

contain the necessary molecular information to explain chemical properties affecting gas-phase 

kinetic reactivity. Therefore, characterizing the fuel qualitatively and quantitatively in terms of 

the chemical functionalities present in the fuel can help predict both RON and MON. The 

present functional group approach of predicting fuel properties has been successfully applied to 

predict the DCN of hydrocarbon fuels by Abdul Jameel et al [37]. The above mentioned 

functional groups have also been used to formulate surrogates for gasolines, diesel and jet fuels 

in a method called as the minimalist functional groups (MFG) approach [44,45].    
1
H NMR 

spectroscopy was utilized to identify and quantify the different functional groups present in the 
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fuel. The various functional groups have distinct peaks in the NMR spectra and they can be 

quantified by integrating the peaks.  

 Artificial neural networks (ANN) are statistical machine learning tools that have the 

ability to ‘learn’ complex relationships between inputs and outputs in a given dataset. The 

predictive capability of methods like PLS and MLR was found to be limited when applied to RON 

and MON, especially in gasolines containing ethanol [23]. There is a non-linear increase in RON 

and MON of a gasoline when ethanol (an octane booster) is blended [26]. Therefore, ANN was 

employed to effectively capture non-linear and complex relationships between input features 

and the output of interest (RON and MON). ANN are computational models consisting of 

interconnected nodes that represent “features” or attributes of the analyzed dataset, which 

form a network that, if “trained” appropriately, can encompass the relationship between inputs 

and outputs of interest. These nodes are structured in layers depicted in figure 1.  Each ANN 

has a single ‘input layer’, one or more ‘hidden layers’, and a single ‘output layer’. The number of 

units in each layer can be varied. Apart from the nodes in the input layer, which are the original 

features supplied, a node in a particular layer is comprised of each node in the layer right 

before it. For example, a node in the ‘hidden layer’ is comprised of the nodes in the input layer 

(represented by the arrows in figure 1). As more hidden layers are added to the network, the 

subsequent nodes become more and more complex combinations of the original inputs (and 

what they represent becomes exponentially more convoluted). Each node has an associated 

weight that is directly proportional to the influence of that particular feature on the final output 

of the network.  

In this work, ANN models are used to analyze the relationship between the above nine 

parameters for predicting RON and MON of pure hydrocarbons, hydrocarbon-ethanol and 

gasoline-ethanol blends.  The ANN model was developed using a dataset comprising 

experimental ONs of pure hydrocarbons, blends of hydrocarbons and gasolines with ethanol. 
1
H 

NMR spectroscopy was employed to obtain the functional groups of gasoline-ethanol fuel 

mixtures. The developed ANN models were then validated against a separate test set of 

experimental data. 
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2. FUNCTIONAL GROUP DETERMINATION 

 For pure hydrocarbons and hydrocarbon-ethanol blends, the nine input parameters 

(seven functional groups, BI and MW)   can be calculated directly from the molecular structure 

and the compositional data. For example, n-heptane (MW= 100 g/mol) is composed of 2 

paraffinic CH3 groups (MW= 15 g/mol) and 5 paraffinic CH2 groups (MW= 14 g/mol). The weight 

% of paraffinic CH3 groups and paraffinic CH2 groups in n-heptane is 30 and 70, respectively. For 

a PRF mixture (n-heptane 40 vol%, 2,2,4-trimethylpentane 60 vol%), TPRF mixture (n-heptane 

40 vol%, 2,2,4-trimethylpentane 45 vol%, toluene 15 vol%)  and TPRF + ethanol mixture (n-

heptane 40 vol%, 2,2,4-trimethylpentane 35 vol%, toluene 15 vol%, ethanol 10 vol%) the 

functional groups (in weight %) can be calculated with the knowledge of density of the 

individual species. The calculated functional groups for the above 3 mixtures are presented in 

figure 2.   

 For real fuels like gasolines or gasolines containing ethanol, the functional groups can be 

calculated from their 
1
H NMR spectra. The 

1
H NMR experiments of six FACE gasoline fuels (FACE 

A, C, F, G, I, J) and their ethanol blends were performed using Bruker 700 AVANAC III 

spectrometer equipped with Bruker CP TCI multinuclear CryoProbe (BrukerBioSpin) at 298 K. 

Samples were prepared by dissolving 50 µl of the fuel in 700 µl of deuterated chloroform CDCl3. 

The spectra were recorded using a recycle delay time of 5s. The standard 1D 90
o
 pulse 

sequence using the standard (zg) program from Bruker pulse library was used and 128 scans 

were collected. Chemical shifts were adjusted using Tetramethylsilane (TMS) as an internal 

chemical shift reference and the spectra were processed using Bruker Topspin 2.1 software. 

The 
1
H NMR spectra are represented in terms of chemical shifts, usually between 0 – 12 ppm.  

Each functional group gives rise to a distinct peak in the spectra at their characteristic chemical 

shift region and integrating the individual peaks enables their quantification relative to other 

groups.  The characteristic 
1
H NMR structural assignments of the functional groups are 

presented in Table 1.  The quantity of a particular type of proton (H atom) in the sample (in 

mole %) can be calculated from the integral intensity of the corresponding peak divided by the 

integral intensities of all the peaks in the spectra, and then multiplying by 100. The quantity of 

the functional groups (in weight %) can then be deduced by the number of C and H atoms and 
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molecular weight of the group. For example, paraffinic CH2 groups possess two H atoms for 

each C atom. Their quantity in the sample (in weight %) can then be calculated by the product 

of mole % of the H atoms that give rise to paraffinic CH2 peaks (namely D and H, see Table 1) 

with the molecular weight (i.e., 14) and dividing the total by the number of H atoms in the 

paraffinic CH2 group (i.e., 2). The formulae required to calculate the functional groups discussed 

above are reported in Table 2. 

  Other inputs for the model, besides the functional groups, namely the branching index 

(BI) of the gasoline fuels can also be calculated from their 
1
H NMR spectra using the Equation 

(5) given below.  

���������� =
�/:�;/:�</=

>/=�?
+	

@

A∗C
+ 0.5 ∗

D

A∗EF
+

G/:�(I�J)/:

L/=��
     (5) 

The explanation of the terms in the above equation is provided in Table 1. More detailed 

information regarding the definition and derivation of the above Equation can be obtained 

from Abdul Jameel et al [37]. The MW of gasolines (which usually lies between 90-130 g/mol) 

can be calculated from theoretical methods [46] using the ASTM distillation curve data and 

specific gravity or from experimental methods like vapor pressure osmometry [47,48]. 

3. ANN TRAINING METHODOLOGY  

 The RON and MON of 128 pure hydrocarbons comprising of n-paraffins, iso-paraffins, 

olefins, naphthenes and aromatics (see Table 3), 123 hydrocarbons blended with ethanol (see 

Table 4) and 30 FACE (fuels for advanced combustion engines) gasolines blended with ethanol 

(see Table 5) were collected from literature. The nine input parameters (seven functional 

groups, molecular weight, and branching index) were calculated for each of these 281 entries 

and were used as the dataset to predict RON and MON. ANN models were chosen to capture 

the non-linearity and the presumed complexity between the input features and RON and MON, 

whilst keeping prediction as priority.   

 The data was split into a randomly generated validation set containing 57 points and a 

training set containing 225 points, in a 20/80 split. The fixed test set was used for the final 

evaluation of the RON and MON ANN models.�The ANN models were designed using the tools 
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made available by Keras, a deep-learning library on top of Theano, and optimization of the 

models was performed using an in-house python code.  In order to “tune” the ANN model, a 

continuous evaluation method is required. Adjusting the model directly on the test set leads to 

information from the test set leaking in to the final model, resulting in misrepresentative error 

metrics. This is why a separate set, the “validation set” was used exclusively for evaluating the 

model during fine-tuning. Due to the size of the dataset and its broad domain, defining a 

separate validation set would have led to a significant drop in overall learning capabilities. 

Instead K-fold Cross Validation (CV) was used. Not only is this a reliable validation method, it 

can also overcome the innate variance of the dataset to some degree, as the amount of 

information extracted from the dataset is maximized without prioritizing certain examples over 

others.  

 Firstly, the training set was split up in to K number of “folds” or subsamples, one of 

which was chosen as the validation fold, while the others were used for the training of the 

model. This was rotated until each fold had been tested on. The evaluation of the model 

consists of the average over the K tested folds.  Based on this evaluation, the following hyper 

parameters were tuned: the number of units per layer, regularization (common method for 

combating overfitting) coefficients, and the number of layers. Each node in the network has an 

associated weight that is directly proportional to the influence of that particular feature. For 

this study, feed forward neural networks [49] were used, wherein the data moves in a single 

direction: from the input layer to the output. After a certain number of iterations, also known 

as epochs, of the above process, a local minima was found for the specific ANN and dataset.  

Multiple feed forward architectures (topology of the model) were tested to arrive at the models 

that gave the best results. Finally, the ANN was retrained on all the folds (the original training 

set) and evaluated on the test set, which lead to a robust model. More information on the ANN 

methodology adopted is provided as  Supporting Information. 

4. RESULTS & DISCUSSION 

 Gasoline octane rating depends on the fuel’s chemical composition [50]. n-Paraffins 

have shorter ignition delays compared to aromatic and naphthenic molecules of the same C 
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number due to the rapid radical chain branching initiated by low-temperature oxidation 

reactions. Aromatic molecules are more knock resistant and display longer ignition delays due 

to their stabilized radical intermediates. The effect of the functional groups that make up these 

molecules on RON and MON is discussed below. 

4.1 Paraffinic CH3 groups 

 The occurrence and the degree of methyl substitution has a great impact on the ignition 

of paraffinic fuels as experimentally shown by Lapuerta et al. [51]. Experiments performed on 

mixtures of C16 isomers (n-hexadecane, 2,6,10-trimethyltridecane and heptamethylnonane) in a 

constant volume combustion chamber showed that  increasing methyl branches resulted in an 

increase in ignition delay [51]. Low temperature chain branching reactions are also inhibited by 

methyl substitution [52]. Figure 3 shows the effect of paraffinic CH3 groups in hydrocarbon-

ethanol and gasoline-ethanol blends on their RON and MON. It can be seen that as the 

paraffinic CH3 content increases, both RON and MON generally continue to decrease. In blends 

of 1,2,4-trimethylbenzene and ethanol we see an opposing trend. When ethanol is added to 

1,2,4-trimethylbenzene, RON of the mixture reduces due to antagonistic effects, and its value is 

lower than the individual ON of both the molecules. The CH3 content of 1,2,4-trimethylbenzene 

(37.5 wt %) is slightly higher than that of ethanol (32 wt %), and addition of ethanol reduces the 

overall CH3 content while simultaneously reducing both RON and MON. Addition of ethanol to 

TPRF 3 blends does not change the CH3 content significantly, so RON and MON increase due to 

ethanol’s octane boosting effect. For FACE J gasoline blended with ethanol, we see an increase 

in RON/MON with increase in CH3 content. This is because FACE J gasoline contains lower CH3 

content (25.4 wt %) than ethanol and also lower than the other FACE gasolines analyzed in the 

study. 

4.2 Paraffinic CH2 groups 

 Paraffinic CH2 and CH3 groups play a major role in the combustion characteristics of 

paraffinic fuels [53]. Generally the lengthening of the main chain in n-paraffins or iso-paraffins 

(increasing CH2 content) leads to decrease in the ignition delay time and therefore tends to 

decrease the octane number of the molecule. The mass ratio of CH2/CH3 groups has been 
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experimentally shown to be a governing parameter in auto-ignition reaction of paraffins by 

performing experiments with C16 isomers with the same CH2/CH3 ratio [51]. CH2 groups have 

been identified along with CH3 and benzyl groups as constraints that effect the gas phase 

combustion of jet fuels [54]. The effect of paraffinic CH2 groups on RON/MON of pure 

hydrocarbon-ethanol and gasoline-ethanol blends is shown in figure 4. As the paraffinic CH2 

content increases, RON/MON decreases in all the pure hydrocarbon blends. There is an 

increase in RON/MON in FACE A, F and G gasoline-ethanol blends. This is because ethanol 

addition brings about a net decrease in the paraffinic CH2 content of the mixture. 

4.3 Paraffinic CH groups 

 Octane rating generally increases by the addition of a side chain in a paraffin or an 

olefinic molecule. The position of the alkyl side chain also affects the ON of the molecule.  

Particularly, introduction of a branch (CH group) in the center of a paraffin or olefin results in 

the increase of RON/MON.  Paraffinic CH groups have lower bond dissociation energy 

compared to paraffinic CH2 and CH3 groups which reduces the energy barrier for H-atom 

abstraction and migration reactions.  In addition, introducing methyl substitutions hinders low 

temperature reactions leading to ignition [55–59]. Figure 5 shows the effect of paraffinic CH 

groups on RON/MON of hydrocarbon-ethanol and gasoline-ethanol blends. It can be observed 

throughout that RON/MON decreases with increase in paraffinic CH groups. This unexpected 

trend is because ethanol does not contain any paraffinic CH group, and its addition to both the 

hydrocarbon blends and gasolines reduces paraffinic CH content of the mixture.  Because the 

hydroxyl functionality is so effective at inhibiting reactivity, decreasing paraffinic CH content by 

ethanol addition serves to increase the RON/MON. 

 

4.4 Olefinic –CH=CH2 groups 

 The ON of olefins are usually greater than their corresponding paraffins/iso-paraffins of 

the same carbon number because olefinic functional groups are comparatively less reactive. 

Olefins are sometimes present in gasoline fuels in small fractions and have a major effect on the 

autoignition characteristics and their oxidative stability. At high temperatures (> 1000 K) 
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oxidation commences by abstraction of allylic H atoms which are in a β position to the double 

bond. The position of these double bonds also affects their ON. The effect of olefinic –CH=CH2 

groups present in hydrocarbon-ethanol and gasoline-ethanol blends on their RON/MON is 

shown in figure 6. It can be observed throughout the blends that as the olefinic groups increase, 

RON/MON continue to decrease, which again indicates that ethanol addition decreases olefinic 

content but increases antiknock quality. 

4.5 Naphthenic –CH-CH2 groups 

 Gasolines usually contain naphthenes (< 20 vol %) and their molecular formula is similar 

to mono-alkenes but their combustion chemistry is significantly different due to their ringed 

structures. Naphthenes generally have higher ON compared to n-paraffins, iso-paraffins and 

olefins of the same carbon number (e.g., comparing cyclopentane and other C5 hydrocarbons 

[60,61]. The ON of naphthenes can be increased by converting them into aromatics via 

dehydrogenation, and naphthenes possess high sooting tendency due to their propensity to 

form aromatic rings. The combustion of chemistry of naphthenes is similar to that of n-

paraffins. At high temperatures, cycloalkyl radicals are formed and subsequent ring-opening 

results in the formation of dienes. At low temperatures, the cycloalkyl radicals form alkylperoxy 

radicals after reacting with O2. Figure 7 shows the effect of variation of naphthenic –CH-CH2 

groups on RON/MON of hydrocarbon-ethanol and gasoline-ethanol blends. When the 

naphthenic groups reduce due to the addition of ethanol, the RON/MON of the fuel increases in 

all the mixtures studied. 

4.6 Aromatic C-CH groups 

 Aromatic groups increase the octane rating of the fuel by increasing the ignition delay 

time. Aromatic molecules have higher RON/MON (and sensitivity) compared to their 

corresponding napthenic molecules with the same carbon number. Toluene has a higher 

RON/MON (118/100.3) compared to methylcyclohexane (89.2/72), respectively.  The addition 

of alkyl chains to an aromatic tends to reduce the ON of the molecule. The low and 

intermediate temperature combustion chemistry of aromatics is significantly different than that 

of paraffins/ iso-paraffins. H atoms bonded to aromatic rings have high bond dissociation 
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energies that hinder initiation reactions. However, H atoms in alkyl chains connected to the 

aromatic rings are easier to abstract. The effect of aromatic C-CH groups on the RON/MON of 

hydrocarbon-ethanol and gasoline-ethanol blends is shown in figure 8. The addition of ethanol 

results in a net reduction of the aromatic C-CH groups, which should lead the observer to 

expect a reduction in both RON and MON, but however a steady increase in RON and MON is 

seen. This is because, while the aromatic C-CH groups decrease, the ethanol OH group increases 

steadily and compensates for the octane boosting nature of the aromatic groups. This shows 

that ethanol’s OH group has a more dominant effect on octane boosting compared to all other 

functional groups studied here. 

4.7 Ethanol OH group 

 As shown by the results above, a unit increase of ethanol OH groups in the fuel has a 

greater effect on RON/MON compared to the other groups. This is because ethanol reacts with 

OH radicals to primarily form CH3CHOH radicals. The OH group connected to the hydrocarbon 

chain in ethanol weakens the bond strength of the adjacent CH2 making it easy to abstract [62]. 

The alpha-hydroxyethyl radicals undergo a chain termination pathway; they react with O2 to 

form acetaldehyde and HO2 radical. Therefore, ethanol addition acts as a radical scavenger and 

leads to the reduction of low temperature heat release (LTHR) and the reactivity of the fuel 

[63]. Figure 9 shows the effect of ethanol OH groups on the RON/MON of hydrocarbon-ethanol 

and gasoline-ethanol blends. It can be observed that as the ethanol OH groups increase, 

RON/MON increase except for the 1,2,4-trimethylbenzene-ethanol blends as discussed in 

section 3.1. 

4.8 Molecular weight 

 The ON of a molecule generally decreases with increase in its molecular weight. This is 

valid for all cases of n-parafffins. For iso-paraffins, ON generally decreases with increasing size 

provided the degree of branching remains the same. Gasolines typically have a molecular 

weight in the range (≈ 100 g/mol) with average carbon number of 7. Aromatics comprise the 

highest molecular weight compounds present in gasolines in C6 – C9 range. Average molecular 

weight of gasoline has a major effect on its physical properties. The effect of molecular weight 
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on the RON/MON of hydrocarbon-ethanol and gasoline-ethanol blends is shown in figure 10. It 

is observed that when the molecular weight of the mixtures increases, RON/MON decreases. 

4.9 Branching Index (BI) 

 Branched paraffins of the same carbon number show an increase in the ON when the 

degree of branching increases. Also the position of the branch (or methyl substitution) has an 

effect on the reactivity of the molecule. RON/MON of 2,2-dimethylbutane and 2,3-

dimethylbutane is 91.8/93.4 and 100.3/94.3, respectively. These molecules have the same 

distribution of functional groups, molecular weight and CH3/CH2 ratio. The  BI term defined in 

our previous work [37] quantifies the ‘degree’ of branching and also incorporates a position 

index (PI) to account for the effect of the position of the methyl substitution. Also, an 

expression was developed to calculate the branching index of gasolines from their 
1
H NMR 

spectra. Figure 11 shows the effect of branching index on the RON/MON of hydrocarbon-

ethanol and gasoline-ethanol blends. As per the definition, ethanol has a BI of 0 and its addition 

reduces the overall BI of the mixture.  

4.10 ANN Model 

 The test data comprised of 57 points (20 % of the data) that were randomly selected to 

validate the developed ANN model comprising of pure hydrocarbons, hydrocarbon-ethanol 

blends and FACE gasoline –ethanol blends. A distinct model was constructed for both RON and 

MON using the same initially defined training and test sets. The topology of the final models are 

expressed as units in each layer separated by a dash; the first unit represents the input layer, 

the last  unit refers to the output layer, and the middle two units represent the hidden layers.  

The topology and error metrics are presented in Table 6.   There is good comparison between 

the experimental and the predicted values of RON and MON as shown in figure 12. The value of 

the regression coefficient (R
2
) obtained for both the cases was 0.99. Some of the points showed 

an absolute error of prediction of up to 6. The most likely reason for these outliers is that they 

could be statistically unique when compared to the rest of the dataset. When training the ANN, 

the relationships found between the input features and the output of interest are going to be 

those that are most prominent. If there are a few data points that do not fit this trend, or which 

Page 13 of 44

ACS Paragon Plus Environment

Energy & Fuels

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



have particular properties that are relatively unique, then the ANN may struggle in predicting 

their values accurately. The mean absolute error of prediction for RON and MON for the test 

set was found to be 1.2 for both, which is near the vicinity of experimental error (0.7) while 

measuring per the ASTM standard CFR methodology.  

 The majority of predictive models [23,34,64,65] in the literature use MLR for simplicity 

and ease in developing the model from a given dataset. MLR develops a mathematical relation 

between a dependent variable (ON) and a number of independent variables (the nine 

functional group parameters used herein) in the form of a straight line equation that best fits all 

the points in the dataset.   A separate model for RON and MON, was also developed using MLR 

with the present dataset and presented in Equations (2) and (3), respectively. 

MNO = 44.82 + 0.86 ∗ /&.&!! + *	%S:	(5"	%) + 0.25 ∗ /&.&!! + *	%S=(5"	%) + 0.23 ∗

/&.&!! + *	%S(5"	%) + 0.76 ∗ '0$! + * − %S = %S=(5"	%) + 0.43 ∗ +&/ℎ"ℎ$+ *	%S −

%S=(5"	%) + 0.56 ∗ &.'(&" *	% − %S(5"	%) + 1.22 ∗ $"ℎ&+'0 *	NS(5"	%) − 	0.31 ∗

XY + 26.69 ∗ ��   (2) 

XNO = 31.26 + 0.86 ∗ /&.&!! + *	%S:	(5"	%) + 0.29 ∗ /&.&!! + *	%S=(5"	%) + 0.26 ∗

/&.&!! + *	%S(5"	%) + 0.49 ∗ '0$! + * − %S = %S=(5"	%) + 0.40 ∗ +&/ℎ"ℎ$+ *	%S −

%S=(5"	%) + 0.49 ∗ &.'(&" *	% − %S(5"	%) + 0.94 ∗ $"ℎ&+'0 *	NS(5"	%) − 	0.22 ∗

XY + 28.47 ∗ ��   (3) 

As seen from figure 13, there is a poor comparison between the measured and MLR predicted 

values, wherein  R
2
 for RON and MON are 0.52 and 0.51, respectively. This is mostly due to the 

antagonistic effect of ethanol addition[23,24,26,63,66], which a linear MLR model is unable to 

capture.  

 Octane sensitivity (OS)[67], defined as the difference between RON and MON, is a 

measure of the difference in auto-ignition chemistry between that of the fuel and PRF. High 

octane sensitive fuels are more resistant to knock and are of interest in modern SI engines. The 

measured and predicted sensitivity of fuels are shown in figure 14. As seen, the ANN models 

are also able to capture the octane sensitivity of the fuels in the dataset. The mean absolute 
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error of prediction of the octane sensitivity is 1.4, which is also close to the level of 

experimental error.  

 This shows that the ON of pure hydrocarbons, blends, oxygenated gasoline fuels etc. can 

be predicted by knowledge of the functional groups comprising them. Also, ANN can be as used 

a successful tool to establish a relationship between ON and functional groups along with BI 

and molecular weight. The developed ANN model can be used to predict the octane numbers of 

pure hydrocarbons and blends. It can also be used to design fuels of specified RON and MON 

targets. The ON of oxygenated gasoline fuels can be predicted with knowledge of the 
1
H NMR 

spectra. These models are implemented in the Fuel Design Tool on CloudFlame [68,69] 

(cloudflame.kauste.edu.sa) cyber-infrastructure developed by KAUST and Saudi Aramco for 

predicting RON and MON. A list of standard molecules are also included in the tool; entering 

the composition in vol % or mol % of a known blend calculates he input parameters as well as  

RON and MON values of the blend. For real fuels like gasolines, the RON and MON can be 

automatically computed by uploading the 
1
H NMR spectra of the fuel. 

5. CONCLUSION 

An ANN based model was developed to predict the RON and MON of pure hydrocarbons, 

hydrocarbon-ethanol blends and gasoline-ethanol blends. Seven functional groups namely 

paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic -CH=CH2 groups, 

naphthenic CH-CH2 groups, aromatic C-CH groups and ethanol OH groups along with branching 

index (BI) and molecular weight were utilized as inputs of the model. A dataset comprising of 

281 points (128 pure hydrocarbons, 123 hydrocarbon-ethanol blends and 30 gasoline-ethanol 

blends) was used and the nine inputs for each of these points was calculated. The developed 

ANN models with two hidden layers and a high number of nodes for both RON (9-540-314-1) 

and MON (9-340-603-1) resulted in the lowest error metrics.  The model was validated against a 

separate test set comprising 20% of the original data set and there was a good accuracy of 

prediction for both RON and MON (R
2
=0.98). The mean absolute error of prediction for RON 

and MON was found to be 1.2 which is close to the experimental measurement error. The 

developed ANN models can be used to predict the ON of pure hydrocarbons, hydrocarbon-
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ethanol and gasoline- ethanol blends by knowledge of the functional groups, branching index 

(BI) and molecular weight. 
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Table 1 

1
H NMR assignments of the functional groups 

Chemical shift region 

(ppm) 

H type Integral intensity 

6.42 – 8.99 aromatics A 

4.50 – 6.42 olefinic CH and CH2 groups B 

2.88 – 3.40 α-CH C 

2.64 – 2.88 α-CH2 D 

2.04 – 2.64 α-CH3 E 

1.57 – 1.96 naphthenic CH and CH2 groups F 

1.39 – 1.57 paraffinic CH groups G 

0.94 – 1.39 paraffinic CH2 groups H 

0.25 – 0.94 paraffinic CH3 groups I 

3.68 – 3.78 ethanolic OH groups OH 

 Total 

(A+B+C+D+E+F+G+H+I+OH) 

T 

0.84 – 0.87 paraffinic CH3 groups 

connected to the longest chain 

towards the interior 

J 

1.35 – 1.39 paraffinic CH2 groups 

connected to the longest chain 

towards the interior 

K 

2.31 – 2.34 α-CH3 groups in the meta 

position with respect to other 

α-CH3 groups 

L 

2.17 – 2.19 α-CH3 groups in the para 

position with respect to other 

α-CH3 groups 

M 
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Table 2 

Formulas used to calculate the weight % of the functional groups 

Functional groups H type 

(mol %) 

Weight 

(arb.unit) 

Weight 

(%) 

Paraffinic CH3 X�[\]

=
(� + ^)

_
∗ 100 

`�[\]
=

X�[\]
∗ 15

3
 Y�[\]

=
`�[\]

∗ 100

`�[\]
+ `�[\a

+ `�[\
+ `b[\.[\a

+ `�[\.[\a
+ `@[.[\

+ `b>

 

Paraffinic CH2 X�[\a

=
(S + c)

_
∗ 100 

`�[\a
=

X�[\a
∗ 14

2
 Y�[\a

=
`�[\a

∗ 100

`�[\]
+ `�[\a

+ `�[\
+ `b[\.[\a

+ `�[\.[\a
+ `@[.[\

+ `b>

 

Paraffinic CH X�[\

=
(` + %)

_
∗ 100 

`�[\
=

X�[\
∗ 13

1
 Y�[\

=
`�[\

∗ 100

`�[\]
+ `�[\a

+ `�[\
+ `b[\.[\a

+ `�[\.[\a
+ @̀[.[\

+ `b>

 

Olefinic CH-CH2 
Xb[\.[\a

=
�

_
∗ 100 `b[\.[\a

=
Xb[\.[\a

∗ 13.5

1.5
 Yb[\.[\a

=
`b[\.[\a

∗ 100

`�[\]
+ `�[\a

+ `�[\
+ `b[\.[\a

+ `�[\.[\a
+ @̀[.[\

+ `b>

 

Naphthenic CH-CH2 
X�[\.[\a

=
d

_
∗ 100 `�[\.[\a

=
X�[\.[\a

∗ 13.5

1.5
 Y�[\.[\a

=
`�[\.[\a

∗ 100

`�[\]
+ `�[\a

+ `�[\
+ `b[\.[\a

+ `�[\.[\a
+ `@[.[\

+ `b>

 

α-CH 
Xα�ef =

%

_
∗ 100 

  

α-CH2 
Xα�efa

=
c

_
∗ 100 

  

α-CH3 
Xα�ef]

=
^

_
∗ 100 

  

Aromatic C-CH 
X@[.[\

=
g

_
∗ 100 @̀[.[\

=
X@[.[\

∗ 13

1
+

Xα�ef ∗ 13

1

+
Xα�efa

∗ 14

2
+

Xα�ef]
∗ 15

3
 

Y@[.[\
=

@̀[.[\
∗ 100

`�[\]
+ `�[\a

+ `�[\
+ `b[\.[\a

+ `�[\.[\a
+ @̀[.[\

+ `b>

 

Ethanolic OH 
Xb> =

NS

_
∗ 100 `b> =

Xb> ∗ 17

1
 Yb> =

`b> ∗ 100

`�[\]
+ `�[\a

+ `�[\
+ `b[\.[\a

+ `�[\.[\a
+ `@[.[\

+ `b>
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Table 3 

RON and MON of pure hydrocarbons. Ref [70] 

S. No. Name RON MON 

1 Propane 112 97.1 

2 n-butane 93.8 89.6 

3 n-pentane 61.7 62.6 

4 2-methylpentane 73.4 73.5 

5 3-methylpentane 74.5 74.3 

6 2,2-dimethylbutane 91.8 93.4 

7 2,3-dimethylbutane 100.3 94.3 

8 3-ethylpentane 65 69.3 

9 2,2-dimethylpentane 92.8 95.6 

10 2,3-dimethylpentane 91.1 88.5 

11 2,4-dimethylpentane 83.1 83.8 

12 3,3-dimetmylpentane  80.8 86.6 

13 2,2-dimethylhexane 72.5 77.4 

14 2,3-dimethylhexane 73.4 78.9 

15 2,4-dimethylhexane 65.2 69.9 

16 3,3-dimethylhexane 75.5 83.4 

17 3,4-dimethylhexane 76.3 81.7 

18 2-methyl-3-ethylpentane 87.3 88.1 

19 3-methyl-3-ethylpentane 80.8 88.7 

20 2,2,3-trimethylpentane 101.2 99.9 

21 2,2,4-trimethylpentane 100 100 

22 2,3,3-trimethylpentane 100.6 99.4 

23 2,3,4-trimethylpentane 100.2 95.9 

24 3,3-diethylpentane 84 91.6 

25 2,2-dimethyl-3-ethylpentane 101.8 99.5 

26 2,4-dimethyl-3-ethylpentane 100.5 96.6 

27 2,2,3,3-tetramethylpentane 103.6 95 

28 3,3,5-trimethylheptane 86.4 88.7 

29 2,2,3,3-tetramethylhexane 102 92.4 

30 ethylene 100 75.6 

31 propylene 100.2 84.9 

32 1-butene 97.4 80.8 

33 2-butene 100 83.5 

34 1-pentene 90.9 77.1 

35 2-methyl-1-butene 100.2 81.9 

36 2-methyl-2-butene 97.3 84.7 

37 1-hexene 76.4 63.4 

38 2-methyl-1-pentene 94.2 81.5 

39 3-methyl-1-pentene 96 81.2 

40 4-methyl-1-pentene 95.7 80.9 

41 2-methyl-2-pentene 97.8 83 

42 4-methyl-2-pentene 99.7 84.5 

43 2-ethyl-1-butene 98.3 79.4 
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44 2,3-dimethyl-1-butene 100.1 82.8 

45 3,3-dimethyl-1-butene 101.7 93.3 

46 2,3-dimethyl-2-butene 97.4 80.5 

47 1-heptene 54.5 50.7 

48 2-methyl-1-hexene 90.7 78.8 

49 3-methyl-1-hexene 82.2 71.5 

50 4-methyl-1-hexene 86.4 74 

51 5-methyl-1-hexene 75.5 64 

52 2-methyl-2-hexene 91.6 79.2 

53 cis-3-methyl-2-hexene 92.4 80 

54 3-ethyl-1-pentene 95.6 81.6 

55 3-ethyl-2-pentene 93.7 80.6 

56 2,3-dimethyl-1-pentene 99.3 84.2 

57 2,4-dimethyl-1-pentene 99.2 84.6 

58 3,3-dimethyl-1-pentene 100.3 86.1 

59 3,4-dimethyl-1-pentene 98.9 80.9 

60 4,4-dimethyl-1-pentene 100.4 85.4 

61 2,3-dimethyl-2-pentene 97.5 80 

62 2,4-dimethyl-2-pentene 100 85.3 

63 cis-3,4-dimethyl-2-pentene 96 82.2 

64 cis-4,4-dimethyl-2-pentene 100.5 90.2 

65 3-methyl-2-ethyl-1-buteme 97 82 

66 2,3,3-trimethyl-1-butene 100.5 90.5 

67 2-methyl-1-heptene 70.2 66.3 

68 2,3-dimethyl-1-hexene 96.3 83.6 

69 2,3-dimethyl-2-hexene 93.1 79.3 

70 cis-2,2-dimethyl-3-hexene 100.7 88 

71 2,3,3-trimethyl-1-pentene 100.6 85.7 

72 2,4,4-trimethyl-1-pentene 100.6 86.5 

73 2,4,4-trimethyl-2-pentene 100.3 86.2 

74 2-methyl-1,3-butadiene 99.1 81 

75 1,5-hexadiene 71.1 37.6 

76 cyclopentene 93.3 69.7 

77 1-methyl-cyclopentene 93.6 72.9 

78 1-ethylcyclopentene 90.3 72 

79 3-ethylcyclopentene 90.8 71.4 

80 cyclohexene 83.9 63 

81 1-methylcyclohexene 89.2 72 

82 1-ethylcyclohexene 85 70.5 

83 cyclopentane 100.1 84.9 

84 methylcyclopentane 91.3 80 

85 ethylcyclopentane 67.2 61.2 

86 1,1-dimethylcyclopentane 92.3 89.3 

87 1,3-dimethylcyclopentane 79.2 73.1 

88 n-propylcyclopentane 31.2 28.1 

89 isopropylcyclopentane 81.1 76.2 

90 1-methyl-3-ethyl-ccyclopentane 57.6 59.8 

91 1,1,3-trimetmylcyclopentane 87.7 83.5 
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92 cyclohexane 83 77.2 

93 methylcyclohexane 74.8 71.1 

94 ethylcyclohexane 45.6 40.8 

95 1,1-dimethylcyclohexane 87.3 85.9 

96 1,2-dimethylcyclohexane 80.9 78.6 

97 i,3-dimetmylcyclohexane 71.7 71 

98 i,4-dimethylcyclohexane 67.2 68.2 

99 isopropylcyclohexane 62.8 61.1 

100 benzene 105 102.8 

101 toluene 118 100.3 

102 ethylbenzene 100.8 97.9 

103 o-xylene 105 100 

104 m-xylene 104 102.8 

105 p-xylene 103.4 101.2 

106 n-propylbenzene 101.5 98.7 

107 isopropylbenzene 102.1 99.3 

108 o-ethyltoluene 100.2 92.1 

109 m-ethyltoluene 101.8 100 

110 p-ethyltoluene 102 97 

111 1,2,3-trimethylbenzene 100.5 101.1 

112 1,3,5-trimethylbenzene 106 100.6 

113 n-butylbenzene 100.4 94.5 

114 isobutylbenzene 101.6 98 

115 sec-butylbenzene 100.7 95.7 

116 tert-butylbenzene 103 100.8 

117 1-methyl-2-n-propylbenzene 100.3 92.2 

118 1-methyl-3-n-propylbenzene 101.8 100 

119 o-cymene 100.6 96 

120 p-cynene 101.4 97.7 

121 m-diethylbenzene 103 97 

122 p-diethylbenzene 100.6 95.2 

123 1,2-dimethyl-3-ethylbenzene 100.4 91.9 

124 1,3-dimethyl-4-ethylbenzene 100.6 95.9 

125 1,3-dimethyl-5-ethylbenzene 102.7 100.2 

126 1,4-dimethyl-2-ethylbenzene 100.6 96 

127 1,2,3,4-tetramethylbenzene 100.5 100 

128 ethanol 108
a
 90

a
 

a:taken from [7] 
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Table 4  

RON and MON of hydrocarbon blends 

S.n

o 

Name Components (vol %) RON MON Ref 

n-heptane 

 

i-octane toluene TMB 

 

CP 1-hexene ethanol 

1 PRF+10 54 36     10 55.6 53 [7] 

2 PRF+20 48 32     20 69 64 [7] 

3 PRF+30 42 28     30 80.7 76 [7] 

4 PRF+40 36 24     40 90.5 83.6 [7] 

5 PRF+50 30 20     50 97.9 87.5 [7] 

6 PRF+60 24 16     60 102.5 89 [7] 

7 PRF+70 18 12     70 104.8 89.8 [7] 

8 PRF+80 12 8     80 105.3 90.2 [7] 

9 PRF+90 6 4     90 108.5 91 [7] 

10 TPRF 1+0 42.5 47.3 10.2    0 60.8 58 [7] 

11 TPRF 1+10 38.3 42.5 9.2    10 71.9 68 [7] 

12 TPRF 1+20 34.0 37.8 8.2    20 82.5 77.7 [7] 

13 TPRF 1+40 25.5 28.4 6.1    40 97.8 87.8 [7] 

14 TPRF 1+60 17.0 18.9 4.1    60 105.2 88.5 [7] 

15 TPRF 2+0 46.5 33.7 19.8    0 59.5 55.5 [7] 

16 TPRF 2+10 41.9 30.3 17.8    10 70.3 65 [7] 

17 TPRF 2+20 37.2 27.0 15.8    20 81 75.8 [7] 

18 TPRF 2+40 27.9 20.2 11.9    40 96.8 86.6 [7] 

19 TPRF 2+60 18.6 13.5 7.9    60 104.4 89.7 [7] 

20 TPRF 3+0 54.2 5.6 40.2    0 57.5 50.7 [7] 

21 TPRF 3+10 48.8 5.0 36.2    10 68.7 59.4 [7] 

21 TPRF 3+20 43.3 4.5 32.2    20 78.3 70.5 [7] 

23 TPRF 3+40 32.5 3.4 24.1    40 94.4 84.3 [7] 

24 TPRF 3+60 21.7 2.2 16.1    60 103.4 88.4 [7] 

25 TPRF 4+1 40 60 0    0 60.6 60.8 [71] 

26 TPRF 4+2 40 45 15    0 64.3 62.3 [71] 

27 TPRF 4+3   35 57.5 7.5    0 67.3 66.1 [71] 

28 TPRF 4+4   40 47.5 7.5    5 66.6 64 [71] 

29 TPRF 4+5   30 70 0    0 70.3 70.4 [71] 

30 TPRF 4+6   40 35 15    10 72.2 69 [71] 

31 TPRF 4+7   35 60 0    5 70.5 68.7 [71] 

32 TPRF 4+8   30 55 15    0 74.2 71.9 [71] 

33 TPRF 4+9   40 50 0    10 69.7 66.8 [71] 

34 TPRF 4+10   35 45 15    5 73.5 69.4 [71] 

35 TPRF 4+11   35 52.5 7.5    5 71.9 69.4 [71] 

36 TPRF 4+12   35 47.5 7.5    10 74.9 71.8 [71] 

37 TPRF 4+13   30 57.5 7.5    5 76.8 74.2 [71] 

38 TPRF 4+14   30 60 0    10 78.7 76.7 [71] 

39 TPRF 4+15  30 45 15    10 81.6 77.2 [71] 

40 TMB+0    100   0 109.5 108 [26] 

41 TMB+10    90   10 107 102 [26] 

42 TMB+25    75   25 105 95.5 [26] 

43 TMB+40    60   40 104 93.5 [26] 

44 TMB+60    40   60 103.8 91 [26] 

45 CP+0     100  0 100 85.6 [26] 

46 CP+10     90  10 101 85.9 [26] 
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47 CP+25     75  25 102.3 86.3 [26] 

48 CP+40     60  40 103.3 86.6 [26] 

49 CP+60     40  60 104.8 87.2 [26] 

50 Hex+0      100 0 73.6 64.5 [26] 

51 Hex+10      90 10 81 68.5 [26] 

52 Hex+25      75 25 89.2 74.5 [26] 

53 Hex+40      60 40 96.5 79.5 [26] 

54 Hex+60      40 60 101.7 84 [26] 

55 TPRF 1 26.6 0.0 73.4     92.3 80.7 [72] 

56 TPRF 2 9.8 72.3 17.9     93.7 90.3 [72] 

57 TPRF 3 16.5 43.5 39.9     93 85.8 [72] 

58 TPRF 4 14.6 51.7 33.7     93 86.7 [72] 

59 TPRF 5 20.8 0.0 79.2     97.7 86.2 [72] 

60 TPRF 6 10.0 65.1 24.9     95.2 90.5 [72] 

61 TPRF 7 14.9 35.0 50.0     96.3 87.3 [72] 

62 TPRF 8 16.6 69.3 14.1     86.6 84.2 [72] 

63 TPRF 9 16.2 74.2 9.7     85.7 84.6 [72] 

64 TPRF 10 13.7 42.8 43.5     96.3 88.3 [72] 

65 TPRF 11 16.6 16.7 66.6     98 87.4 [72] 

66 TPRF 12 66.6 16.7 16.7     39 37 [72] 

67 TPRF 13 16.6 66.7 16.7     87 84 [72] 

68 TPRF 14 49.9 0.0 50.1     65.9 57.7 [72] 

69 TPRF 15 33.3 33.4 33.3     76.2 70.9 [72] 

70 TPRF 16 41.9 0.0 58.1     75.6 66.9 [72] 

71 TPRF 17 34.0 0.0 66.0     85.2 74.8 [72] 

72 TPRF 18 30.0 0.0 70.0     89.3 78.2 [72] 

73 TPRF 19 26.0 0.0 74.0     93.4 81.5 [72] 

74 TPRF 20 21.0 5.0 73.9     96.9 85.2 [72] 

75 TPRF 21 16.0 10.0 74.0     99.8 88.7 [72] 

76 TPRF 22 36.0 54.0 10.0     66 64.4 [72] 

77 TPRF 23 18.0 72.0 10.0     84.5 82 [72] 

78 TPRF 24 32.0 48.0 20.0     73.6 70 [72] 

79 TPRF 25 16.0 64.0 20.0     89.1 85.6 [72] 

80 TPRF 26 56.0 14.0 30.0     53.2 48 [72] 

81 TPRF 27 42.0 28.0 30.0     66.1 61 [72] 

82 TPRF28 28.0 42.0 30.0     79 74 [72] 

83 TPRF 29 14.0 56.0 30.0     92.8 86.9 [72] 

84 TPRF 30 48.0 12.0 40.0     63.7 58 [72] 

85 TPRF 31 36.0 24.0 40.0     75.1 68 [72] 

86 TPRF 32 24.0 36.0 40.0     86.2 79.6 [72] 

87 TPRF 33 11.9 48.0 40.0     96.7 88.7 [72] 

88 TPRF 34 40.0 10.0 50.0     75.5 68 [72] 

89 TPRF 35 30.0 20.0 50.0     83.8 76.2 [72] 

90 TPRF 36 20.0 30.0 50.0     92.1 82.9 [72] 

91 TPRF 37 9.9 40.0 50.0     99.8 90.9 [72] 

92 TPRF 38 30.0 10.0 60.0     85.3 75.2 [72] 

93 TPRF 39 20.0 20.0 60.0     95 83.7 [72] 

94 TPRF 40 33.0 52.0 15.0     71.2 69 [72] 

95 TPRF 41 40.0 30.0 30.0     68.4 63.7 [72] 

96 TPRF 42 12.5 72.5 15.0     90.5 88 [72] 

97 TPRF 43 17.5 52.5 30.0     89.5 84.7 [72] 

98 MC 1 23.0 57.0 0.0   20.0  74.6 72 [72] 

99 MC 2 31.0 44.0 15.0   10.0  72 68 [72] 
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100 MC 3 29.0 36.0 15.0   20.0  72 67.2 [72] 

101 MC 4 5.1 84.7 0.0   10.2  92.9 90.2 [72] 

102 MC 5 3.0 77.0 0.0   20.0  93 88.5 [72] 

103 MC 6 10.0 65.0 15.0   10.0  91.2 86.8 [72] 

104 MC 7 28.0 57.0 0.0 15.0    77.8 74.6 [72] 

105 MC 8 7.0 58.0 15.0   20.0  91.7 85.2 [72] 

106 MC 9 29.0 41.0 0.0 30.0    83 77.7 [72] 

107 MC 10 14 46.5 32   7.5  91.4 84.9 [72] 

108 MC 11 31.0 54.0 8.0 7.0    73.5 71.8 [72] 

109 MC 12 11.0 39.0 30.0   20.0  90.9 82.7 [72] 

110 MC 13 34.0 36.0 17.6 12.3    76.7 72 [72] 

111 MC 14 9.0 76.0 0.0 15.0    94.2 90.5 [72] 

112 MC 15 34.0 36.0 15.0 15.0    82.6 76.2 [72] 

113 MC 16 9.0 61.0 0.0 30.0    96.8 90 [72] 

114 MC 17 10.0 75.0 8.0 7.0    93.3 90.1 [72] 

115 MC 18 12.5 57.5 15.0 15.0    94.4 88.4 [72] 

116 MC 19 25.0 65.0 0.0  10.0   74.2 72.6 [72] 

117 MC 20 9.0 81.0 0.0  10.0   94.1 91.4 [72] 

118 MC 21 9.0 71.0 0.0  20.0   97.5 90.7 [72] 

119 MC 22 13.0 62.0 15.0  10.0   93 88 [72] 

120 MC 23 17.0 43.0 30.0  10.0   91.7 85.5 [72] 

121 MC 24 14.0 51.0 15.0  20.0   94.5 87.8 [72] 

122 MC 25 18.0 32.0 30.0  20.0   92.9 85.3 [72] 

123 MC 26 43.0 7.0 30.0  20.0   70.9 66 [72] 

 i-octane refers to 2,2,4-trimethylpentane; TMB refers to 1,2,4-trimethylbenzene; CP refers to cyclopentane and MC 

refers to multi component; 
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Table 5  

RON and MON of gasoline-ethanol blends. Ref [26] 

S.n

o 

Name Components (vol %) RON MON 

FACE A 

gasoline  

 

FACE C 

gasoline 

FACE F 

gasoline 

FACE G 

gasoline 

 

FACE I 

gasoline 

FACE F 

gasoline 

ethanol 

1 FACE A+0 100      0 83.6 82.9 

2 FACE A+10 90      10 92 88 

3 FACE A+25 75      25 100.7 92.6 

4 FACE A+40 60      40 104.1 91.7 

5 FACE A+60 40      60 106 91.3 

6 FACE C+0  100     0 84.4 83 

7 FACE C+10  90     10 92.2 87.1 

8 FACE C+25  75     25 100.3 90.5 

9 FACE C+40  60     40 104.1 91 

10 FACE C+60  40     60 105.8 91.3 

11 FACE F+0   100    0 94.2 87.4 

12 FACE F+10   90    10 98.9 88.5 

13 FACE F+25   75    25 103.2 89.5 

14 FACE F+40   60    40 104.7 90.3 

15 FACE F+60   40    60 105.7 90.5 

16 FACE G+0    100   0 96.4 84.9 

17 FACE G+10    90   10 98.8 86.1 

18 FACE G+25    75   25 102.4 87.9 

19 FACE G+40    60   40 103 88.5 

20 FACE G+60    40   60 105 88.9 

21 FACE I+0     100  0 69.5 69 

22 FACE I+10     90  10 79.9 78 

23 FACE I+25     75  25 89.8 85.3 

24 FACE I+40     60  40 98 88.3 

25 FACE I+60     40  60 103.6 89.7 

26 FACE J+0      100 0 71.8 66.9 

27 FACE J+10      90 10 79 73.6 

28 FACE J+25      75 25 89.8 81.7 

29 FACE J+40      60 40 98 85.9 

30 FACE J+60      40 60 103.6 88.2 
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Table 6 

Final ANN architecture  

ON Architecture Mean error 

absolute RMS percentage 

RON 9-540-314-1 1.6 2.2 1.8 

MON 9-340-603-1 1.3 2.2 1.6 
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Figure 1. Overview of a simple neural network 
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Figure 2. Functional groups present in three sample mixtures. Composition of each mixture is given in 

section 2. 
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Figure 3. Effect of paraffinic CH3 groups on a) RON of hydrocarbons blended with ethanol b) RON of 

FACE gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of 

FACE gasolines blended with ethanol 
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Figure 4. Effect of paraffinic CH2 groups on a) RON of hydrocarbons blended with ethanol b) RON of 

FACE gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of 

FACE gasolines blended with ethanol 
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Figure 5. Effect of paraffinic CH groups on a) RON of hydrocarbons blended with ethanol b) RON of FACE 

gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of FACE 

gasolines blended with ethanol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 35 of 44

ACS Paragon Plus Environment

Energy & Fuels

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 
Figure 6. Effect of olefinic -CH=CH2  groups on a) RON of hydrocarbons blended with ethanol b) RON of 

FACE gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of 

FACE gasolines blended with ethanol 
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Figure 7. Effect of naphthenic CH-CH2 groups on a) RON of hydrocarbons blended with ethanol b) RON of 

FACE gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of 

FACE gasolines blended with ethanol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 37 of 44

ACS Paragon Plus Environment

Energy & Fuels

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 
Figure 8. Effect of aromatic CH groups on a) RON of hydrocarbons blended with ethanol b) RON of FACE 

gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of FACE 

gasolines blended with ethanol 
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Figure 9. Effect of ethanol OH groups on a) RON of hydrocarbons blended with ethanol b) RON of FACE 

gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of FACE 

gasolines blended with ethanol 
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Figure 10. Effect of molecular weight on a) RON of hydrocarbons blended with ethanol b) RON of FACE 

gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of FACE 

gasolines blended with ethanol 
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Figure 11. Effect of molecular weight on a) RON of hydrocarbons blended with ethanol b) RON of FACE 

gasolines blended with ethanol c) MON of hydrocarbons blended with ethanol and d) MON of FACE 

gasolines blended with ethanol 
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Figure 12. Comparison of measured and predicted RON and MON values using the ANN models 
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Figure 13. Comparison of measured and predicted RON and MON values using MLR 
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Figure 14. Comparison of measured and predicted sensitivity of the fuels 
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